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4.3 For each of the following sets, either show that the set is a subspace of C(R) or explain why it is not a
subspace.

(a) The set {f € C(R)|f(z) <0,Vz € R}
(b) The set {f € C(R)|f(z) =0}

(c) The set {f € C(R)|f(x) =2}

(d) The set of all constant functions.

(e) The set {a + Ssin(z)|a, B € R}.

Solution (a) This set, which I name S is not a subspace, it is not closed under scalar multiplication.
Consider the constant function f(z) = —1 and multiply it by —1, then —f(z) =1, so f — () > 0 and
—f isnot in S.

(b) This set, which I also name S, is a subspace of C(R). I must check additive and multiplicative
closure. Take A € R and f € S then

Af(0) =A-0

so A\f € S. Take f,g € S, then
f(0) +4(0)=0+0
:0’

so f+g¢g € S. Hence, S C C(R) is closed under vector addition and multiplication and is a vector
subspace.

(c) This set, again named S, is not a subspace. Take f,g € S then f(1)+g(1)=4so f+g¢ S.

(d) This set, S, is a subspace of C(R). Note that f is a constant function if and only if f'(x) = 0. Let
f,9 €5, then

(f+9) =f+4
=0,

so S is closed under addition. Now take f € S and A € R, then

(Af) =Af
=0,

so S is closed under multiplication; hence, S is a subspace of C(R).



(e) This set is a vector space. Let v = a4+ Bsin(z) and A € R, then

Ma + Bsin(x)) = a + A\Gsin(z)
=1 + 62 SiIl(I),

so this set is closed under multiplication. If T consider the sum of two elements
a1 + frsin(x) + as + P sin(x) = (a1 + ag) + (81 + B2) sin(x),

so this set is closed under vector addition; hence, this subset of C(R) is a subspace.

4.4 Give an example of a non-empty subset U C R? such that U is closed under scalar multiplication but is
not a subspace of R?

Solution Define U to be the union of the z and y-axes; i.e., all points with x or y component zero. This set
is closed under scalar multiplication because the product of any number and zero is zero; thus if the x
component is zero this property is maintained by scalar multiplication, and likewise if the y component
is zero. This set is not closed under addition as (0,1) + (1,0) = (1,1) ¢ U .

4.5 Let F[z] denote the vector space of all polynomials having coefficients over F, and define U to be the
subspace of F[z] given by

U = {az® +bz5|a,b € F}.

Find a subspace W of F such that F[z] =U & W

Solution Let W be the set of all polynomials in z over F with no degree two or degree five term. To show
that F[z] is a direct sum of U, W I must show that any element of F[z] can be written as the sum of
an element in U, W. Let p be a polynomial, then p had finite degree n and may be written as

n 00 1 4 n
E a;z" + E 02" = a2 + a52° + E a;z" + E a;z" + E a; 2",
i—0 i=0 i=3 i=6

1=n—+1

q

where ¢ € W. The second requirement is that this representation must be unique. It is sufficient
to check that the representation of the zero vector is unique. The zero polynomial has zero as its
coeflicient for all terms, which is uniquely written as the sum of the zero of U and the zero of W.

PWE 4.2 Let V be a vector space over F. The, given a € F and v € V such that av = 0, prove that either
a=0orv=0.

Solution Note that if @ = 0 or v = 0 then av = 0. What remains to be proven is that if av = 0 then one of
a,v must be zero. Suppose, towards a contradiction, that av = 0 and neither a nor v were zero. Since
a # 0 there exists ¢!, then

aY(av) =v
#0;

however,

which is a contradiction. Thus, it must be that one of a, v was zero. This completes the proof.



PWE 4.3 Prove or give a counterexample to the following claim:

Claim. Let V be a vector space over F and suppose that Wy, W5, and W3 are subspace of V' such that
Wi 4+ W3 = Wy 4+ W3, then Wy = W

Solution The claim is false. Let V = F2 and W3 = V while W; = span(0,1) and W5 = span(1,0). Then
Wi 4+ W3 =V =W, + W3 but Wy # Wa.

PWE 4.4 Prove or give a counterexample to the following claim:

Claim. Let V be a vector space over ' and suppose that W, W5, and W3 are subspace of V' such that
W1 & W3 = Wy @ W3, then Wy = W

Solution This is also false. Again take V = F2, but this time take W; = span(1,0),W> = span(0, 1), and
W3 = span(1,1).

5.1 Show that the vectors v; = (1,1,1), vo = (1,2,3), and v3 = (2, —1,1) are linearly independent in R3.
Write (1, —2,5) as a linear combination of vy, vs and vs.

Solution The simplest way to see if three vectors are linearly dependent or independent and to decompose
a vector into a sum of those vectors is through Gauss-Jordan elimination on an augmented matrix

11 2 1 1 1 2 1 11 2 1 11 2 1 11 0 -3
1 2 -1 =2 01 -3 =3 01 -3 -3 01 -3 =3 010 3
1 3 1 5 0 2 -1 4 0 0 5 10 00 1 2 00 1 2

so v1,v9 and vs are linearly independent and —6v; + 3vg + 2v3 = (1, —2,5)

5.2 Consider the complex vector space V = C? and the list (v, vq,v3) of vectors in V, where
v = (4,0,0), vy = (i, 1,0), vy = (1,1, —1).
(a) Prove that span(vy,ve,vs) = V.
(b) Prove or disprove: (vy,v9,v3) is a basis for V.

Solution (a) Let (aj,az2,a3) € C3. Gauss-Jordan elimination is reliable method of finding the necessary
coeflicients to represent this vector in terms of vy, va, v3

T 1 ) a 1 1 1 —iaq 1 1 0 —ia1+as 1 0 0 —iag—as+ (1 — i)ag
0 1 1 as 0 1 = a9 0 1 0 as + tag 0 1 0 as + ias
0 0 —1 ag 0 0 1 =—ag 0 0 1 —as 0 0 1 —as

This computation shows that (a1, aq,a3) = (—ia; — az + (1 — @)as)v1 + (a2 + ias)ve — agvs; thus any
element of C3 can be written as a linear combination of vy, v, v5 S0 span(vy, ve,v3) = V.

(b) The set {v1,va,v3} is a basis for V. A basis is a linearly independent spanning set. In part (a) I
showed that this set spans V. Since the row reduced matrix had all ones along the main diagonal we
also know that v, ve,v3 are linearly independent, thus they are a basis of V.

PWE 5.1 Let V be a vector space over F, and suppose that the list (v1,va, ..., v, ) of vectors spans V', where
each v; € V. Prove that the list

(Ul — V2,V2 — V3, ..., Un—1 — Un, Un)

also spans V.

Solution Choose v € V. Since (vy,vs, ..., v,) spans V we have that for some a; € F

W= a1V + ... + apvy.

OO =

o = O

_= o O



I seek a way to write this in terms of the second set of vectors (v1 — v, V3 — V3, ..., Up—1 — Up, Up) and
see that —v, = (v1 — v2) + (v2 — v3) + ... + (Vk—1 — vi); thus,

n

w = aj(v1 —v2) + (a2 + a1)(v2 — v3) + ... + (Z a;)vp.

The vector w was arbitrary, so any element of V' can be written as a linear combination of (vy —vg, vo —
V3, «ery Un—1 — Up, Up); thus (vq — va,va — v3, ..., Up—1 — Uy, vy,) spans V.



