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Question 1

Definitions:
Let V' be a vector space over F. Define the following:

(1) The vectors vy, ... v, are linearly independent.

(ii) The vectors (vy,...,v,) are a basis for V.

Counting bit bases:
Consider the vector space V' = Z, over Z,. In the following include a brief
Justification for each answer.

(a) How many vectors are there in Z;?

(b) Which element of Zg is never a basis vector?

(c) Suppose you are given a basis for Z, whose first basis vector is f;, how
many choices remain for the second basis vector f?

To be continued...



(d) Suppose your basis now includes f; and f,. How many choices are there
for the third basis vector f3?

(e) Suppose your basis now includes f, f> and f3. How many choices are there
for the fourth basis vector f;?

(f) How many (ordered) bases are there for Zg?



Extra space for question 1.



Question 2

Definition:
Define what it means for a map to be injective:

Application:
Let V and W be vector spaces over [F, and suppose that T € L(V, W) is
injective. Given linearly independent vectors vy, ..., v, in V, prove or disprove

that the vectors T'(vy), ..., T(v,) are linearly independent in 1V .



Question 3

Definition:
Define what it means for two vector spaces to be isomorphic.

Application:
Let R, := (0, 00) and define

@:R+XR+—>R+ and @:RXR+—>R+,

by
uUdv=uv and AOov =10,

(i) Show (R, ,®, R, ®) is a vector space.

To be continued...



(ii) Prove that the vector spaces (R, ,®,R,®) and (R, +,R, .) are isomor-
phic. Hint: Try a constructive proof by choosing a special invertible func-
tionR — R,.



