

Last Initial _____

FULL Name _____

Student ID _____

67 MIDTERM II

3:10pm-4:00pm, Wednesday February 19, 2012

Declaration of honesty: I, the undersigned, do hereby swear to uphold the highest standards of academic honesty, including, but not limited to, submitting work that is original, my own and unaided by books, calculators, pet rocks, the secret service, computers, mobile phones, immobile phones, muses or any other electronic device.

Only carefully set out work is guaranteed full credit. Focus on doing questions well rather than scoring partial credit.

Signature _____ **Date** _____

1	
2	
3	
Σ	

Question 1

Definitions:

Let V be a vector space over \mathbb{F} . Define the following:

(i) The vectors v_1, \dots, v_n are linearly independent.

(ii) The vectors (v_1, \dots, v_n) are a basis for V .

Counting bit bases:

Consider the vector space $V = \mathbb{Z}_2^n$ over \mathbb{Z}_2 . In the following include a *brief* justification for each answer.

(a) How many vectors are there in \mathbb{Z}_2^n ?

(b) Which element of \mathbb{Z}_2^n is never a basis vector?

(c) Suppose you are given a basis for \mathbb{Z}_2^n whose first basis vector is f_1 , how many choices remain for the second basis vector f_2 ?

To be continued...

(d) Suppose your basis now includes f_1 and f_2 . How many choices are there for the third basis vector f_3 ?

(e) Suppose your basis now includes f_1 , f_2 and f_3 . How many choices are there for the fourth basis vector f_4 ?

(f) How many (ordered) bases are there for \mathbb{Z}_2^n ?

Extra space for question 1.

Question 2

Definition:

Define what it means for a map to be injective:

Application:

Let V and W be vector spaces over \mathbb{F} , and suppose that $T \in \mathcal{L}(V, W)$ is injective. Given linearly independent vectors v_1, \dots, v_n in V , **prove** or **disprove** that the vectors $T(v_1), \dots, T(v_n)$ are linearly independent in W .

Question 3

Definition:

Define what it means for two vector spaces to be isomorphic.

Application:

Let $\mathbb{R}_+ := (0, \infty)$ and define

$$\oplus : \mathbb{R}_+ \times \mathbb{R}_+ \longrightarrow \mathbb{R}_+ \quad \text{and} \quad \odot : \mathbb{R} \times \mathbb{R}_+ \longrightarrow \mathbb{R}_+,$$

by

$$u \oplus v = uv \quad \text{and} \quad \lambda \odot v = v^\lambda.$$

(i) Show $(\mathbb{R}_+, \oplus, \mathbb{R}, \odot)$ is a vector space.

To be continued...

(ii) Prove that the vector spaces $(\mathbb{R}_+, \oplus, \mathbb{R}, \odot)$ and $(\mathbb{R}, +, \mathbb{R}, \cdot)$ are isomorphic. *Hint: Try a constructive proof by choosing a special invertible function $\mathbb{R} \rightarrow \mathbb{R}_+$.*