Math 21A
Vogler
Discussion Sheet 2
1.) Consider function $f(x)=\frac{1}{x}+3$. Determine a function $g(x)$ so that
a.) $f(g(x))=x^{3}+x^{2}$
b.) $f(g(x))=5 f(x)$
c.) $f(g(x))=g(x)$
2.) Write the volume of a cube as a function of its surface area. Use your result to find the volume of a cube of surface area 24 square feet.
3.) Determine the domain and range for each function.
a.) $f(x)=\ln \left(x^{2}-4\right)$
b.) $g(x)=\frac{e^{x}}{1000+e^{x}}$
c.) $h(x)=\frac{6}{3-\sqrt{x^{2}-16}}$
d.) $f(x)=\sqrt{\frac{(x-1)(x-2)}{(x+3)(x+2)}}$
4.) Compute the following limits.
a.) $\lim _{x \rightarrow \frac{\pi}{4}} \tan x$
b.) $\lim _{x \rightarrow \frac{\pi}{2}^{+}} \tan x$
c.) $\lim _{x \rightarrow 8} \frac{x^{1 / 3}-2}{x-8}$
d.) $\lim _{x \rightarrow 0^{-}} \sin (1 / x)$
e.) $\lim _{x \rightarrow-1} \frac{x^{2}+6 x+5}{x^{3}+1}$
f.) $\lim _{x \rightarrow-\infty} \frac{\sqrt{9 x^{2}+16}}{x+1}$
5.) Use the Intermediate Value Theorem (IMVT) to verify that the following equation is solvable. This is a writing exercise as well as a math exercise. Please be organized, clear, and precise in your writing : $x^{3}=10+\sqrt{x}$
6.) Determine the radius of the inscribed semi-circle.
$++++++++++++++++++++++++++++++$

The following problem is for recreational purposes only.
7.) Plant 10 trees in 5 straight rows of four trees each.

