Math 21A
Vogler
Discussion Sheet3
1.) Evaluate the following limits.
a.) $\lim _{x \rightarrow 4} \frac{\sqrt{5+x}-3}{\sqrt{x}-2}$
b.) $\lim _{x \rightarrow \infty}(x-x \cos (4 / x))$
c.) $\lim _{x \rightarrow 0} \frac{2 x}{\sin x-x}$
(HINT : $\left.\frac{\sin x}{x} \leq 1.\right)$
2.) Use one-sided limits and limits to infinity to find all vertical and horizontal asymptotes for the following functions. Use the asymptotes together with x - and y -intercepts to sketch graphs of each function.
a.) $y=\frac{x-2}{x^{2}-9}$
b.) $y=\frac{x+2}{x^{2}(x+1)}$
3.) Give an ε, δ-proof for $\lim _{x \rightarrow 1} \frac{x+3}{1+\sqrt{x}}=2$.
4.) Use the IMVT to determine if the following equation is solvable. This is a writing exercise : $x^{3}+x-\sqrt{x+4}=0$.
5.) In the given diagram the smaller circle is the largest one that can be inscribed in the given semi-circle. If the larger circle has circumference $4 \pi \mathrm{in}$., what is the area of the inscribed shaded square?
6.) Determine the x-values for which the following function is continuous. It is not necessary to graph the function :

$$
f(x)=\left\{\begin{array}{cc}
\frac{\sin 3 x}{x}, & \text { if } x<0 \\
3.01, & \text { if } x=0 \\
\frac{x-1}{\sqrt{x}-1}, & \text { if } 0<x<1 \\
2, & \text { if } x \geq 1 .
\end{array}\right.
$$

7.) Use the limit definition of derivative, $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$, to differentiate
 each of the following functions.
a.) $f(x)=\cos x$
b.) $f(x)=\frac{7+x}{3 x-5}$
c.) $f(x)=\sqrt{x^{2}+x}$
8.) Let $f(x)=\left\{\begin{aligned} \sin 2 x, & \text { if } x \geq 0 \\ 2 x, & \text { if } x<0\end{aligned}\right.$. Use the limit definition of derivative to determine $f^{\prime}(0)$

$$
++
$$

The following problem is for recreational purposes only.
9.) Without lifting your pencil, join all sixteen dots with six straight lines.

