Math 21A
Vogler
Discussion Sheet 4
1.) Use the limit definition of derivative to compute $f^{\prime}(x)$ for each of the following functions.
a.) $f(x)=\frac{1}{3+\sqrt{x}}$
b.) $f(x)=\frac{x}{x^{2}+1}$
c.) $f(x)=\sin 3 x$
d.) $f(x)=\sqrt{3+\sqrt{x}}$
2.) Use any method to differentiate each of the following functions.
a.) $y=1+5 x-6 x^{5}$
b.) $f(x)=x^{3} \sin x$
c.) $y=\frac{x+5}{x^{2} \tan x}$
d.) $g(x)=\frac{x \cos x}{\tan x-5 \sec x}$
3.) Determine a function whose derivative is :
a.) $f^{\prime}(x)=1+5 x-6 x^{5}$
b.) $f^{\prime}(x)=4-\sqrt{x}$
c.) $y^{\prime}=\frac{x^{2}+1}{x^{2}}$
d.) $y^{\prime}=\frac{4 x^{3}+3 x^{2}+2 x+1}{x^{4}+x^{3}+x^{2}+x+1}$
4.) Use the limit definition of derivative to show that $f(x)=|x|$ is NOT differentiable at $x=0$, i.e., show that $f^{\prime}(0)$ does not exist.
5.) Use the limit definition of derivative to show that the following function IS differentiable at $x=1$, i.e., show that $f^{\prime}(1)$ does exist.

$$
f(x)= \begin{cases}2+\sqrt{x}, & \text { if } x \geq 1 \\ \frac{1}{2} x+\frac{5}{2}, & \text { if } x<1\end{cases}
$$

6.) Draw a possible graph for f^{\prime} using the given graph of $y=f(x)$.

7.) Let $f(x)=\frac{x}{x^{2}+1}$. Slove $f^{\prime}(x)=0$ for x. What is the geometric significance of these x-vaules?
8.) Assume that $h(x)=f(x) g(x)$ and that $f(0)=1, f^{\prime}(0)=2, g(0)=-1$, and $g^{\prime}(0)=3$. Determine the value of $h^{\prime}(0)$.

$$
++
$$

The following problem is for recreational purposes only.
9.) A snail is at the bottom of a well which is 100 feet deep. Each day it climbs up 5 feet and back down 4 feet. In how many days will the hapless snail reach the top of the well ?

