Math 21A
Vogler
Discussion Sheet 5
1.) Use any method to differentiate the following functions. You need not simplify answers.
a.) $y=7 \sec 3 x$
b.) $f(x)=\frac{x \sin x}{1+\tan x}$
c.) $f(x)=\left(\frac{3 x+7}{7 x-9}\right)^{50}$
d.) $g(x)=x^{3} \cos x^{2}$
e.) $f(x)=\sqrt{1+\sqrt{2+\sqrt{3-x}}}$
f.) $y=\cot ^{5}\left(\sin ^{3}\left(10 x^{5}\right)\right)$
2.) Derive a formula for the measure of angle θ as a function of x in the given diagram.
3.) Let $f(x)=x(x-5)^{4}$.
a.) Solve $f^{\prime}(x)=0$ for x.

b.) Solve $f^{\prime \prime}(x)=0$ for x.
6.) Find all points (x, y) which are equidistant from the three given points $(0,0),(4,0)$, and (3,2).
7.) Derive an equation of the line tangent to the graph of $y=\frac{x}{x^{2}+3}$ at $x=-1$.
8.) Derive equations of all lines which are tangent to the graph of $y=-7-x^{2}$ and passing through the point $(3,0)$.
9.) Assume that a baseball is projected directly upward from the ground with an initial velocity of $112 \mathrm{ft} . / \mathrm{sec}$. Assuming only that the acceleration due to gravity is $-32 \mathrm{ft} . / \mathrm{sec}^{2}{ }^{2}$, derive equations for the height of the ball above the ground after t seconds and the velocity of the ball after t seconds. What is the velocity of the ball after $t=1 \mathrm{sec}$., $t=2 \mathrm{sec}$., and $t=3 \mathrm{sec}$. ? At what time does the ball reach its maximum height? What is the maximum height ? In how many seconds does the ball strike the ground? What is the ball's velocity as it strikes the ground?
10.) A spaceship is traveling (left to right) along the curve $y=3 \cos x$. An object is released from the spaceship at $x=\frac{\pi}{3}$ and travels along a line tangent to the graph of $y=3 \cos x$
towards the x -axis.
a.) At what point x will the object strike the x -axis?
b.) At what angle θ will the object strike the x -axis ?
1.) Assume that y is a function of x. Compute $y^{\prime}=\frac{d y}{d x}$ and $y^{\prime \prime}=\frac{d^{2} y}{d x^{2}}$ (You need not simplify $y^{\prime \prime}$.) for each equation.
a.) $y=x+x^{3}$
b.) $x=y+y^{3}$
c.) $y=x^{2} \sin x$
d.) $y=x^{2} \sin y$
e.) $x^{2}+y^{3}=x y$
f.) $(x-y)^{3}=x^{2}-y^{2}$
g.) $\sin (3 y)+\tan ^{2} y=\cos x$

$$
+++
$$

The following problem is for recreational purposes only.
11.) A horse is tethered by a rope to the corner of a small shed with a square 10 ft . by 10 ft . floor. If the rope is 40 feet long, sketch the shape of the horse's grazing area. How close can you plant flowers to the shed and keep the horse from eating them ?

