Math 21A

Vogler

Discussion Sheet 7

1.) The volume V of a sphere is changing at the rate of $\pi \mathrm{ft} .^{3} / \mathrm{min}$. At what rate is the sphere's surface area S changing when
a.) $\mathrm{S}=4 \pi \mathrm{ft} .^{2}$?
b.) $\mathrm{S}=36 \pi \mathrm{ft} .^{2}$?
2.) Car B is 30 miles directly east of car A and begins moving west at 90 mph . At the same moment car A begins moving north at 60 mph .
a.) At what rate is the distance between the cars changing after $t=\frac{1}{5} \mathrm{hr}$. ? $\mathrm{t}=\frac{1}{3}$ hr. ?
b.) What is the minimum distance between the cars and at what time t does the minimum distance occur?
3.) A conical tank (point down) has height 10 ft . and base radius 8 ft . Water begins flowing into the tank at the rate of $\pi \mathrm{ft}^{3} / \mathrm{sec}$. At what rate is the depth h of the water changing
a.) when $\mathrm{h}=1 \mathrm{ft}$.?
b.) when $\mathrm{h}=9 \mathrm{ft}$. ?
4.) Use a differential to estimate the value of each number. Compare your differential estimate with the calculator value of each number.
a.) $\sqrt{27}$ (Use 25 as a convenient, nearby x-value.)
b.) $\sqrt{27}$ (Use 36 as a convenient, nearby x-value.)
c.) $12^{1 / 3}$
d.) $(9900)^{1 / 4}$.
5.) The radius of a sphere is measured with absolute percentage error of at most 4%. Use differentials to estimate the maximum absolute percentage error in computing the sphere's
a.) surface area.
b.) volume.
6.) Use a differential to linearize each function at the given value of x.
a.) $f(x)=\sqrt{x+4}$ at $x=0$
b.) $f(x)=\sqrt{x+4}$ at $x=5$
c.) $f(x)=\sqrt{x+4}$ at $x=-3$
d.) $f(x)=x^{3}-2 x+\sin x$ at $x=0$
e.) $f(x)=\frac{4 e^{x}}{e^{x}+1}$ at $x=0$

The following problem is for recreational purposes only.
11.) Try to figure out what the value of this "continued fraction" is :

$$
1+\frac{1}{1+-\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\cdots}}}}}
$$

