1.) Differentiate each of the following functions. DO NOT SIMPLIFY ANSWERS.

a.) 
$$y = \pi + (5x + 1)^{-4}$$

b.) 
$$f(x) = \sec x \cdot \tan 3x$$

c.) 
$$g(x) = \sin(\cos^3(x^4))$$

d.) 
$$y = x^5 + 8^{-x^2}$$

e.) 
$$y = \frac{4 - \ln x}{10 + \log_2(3x + 7)}$$

f.) 
$$y = x^{\ln x}$$

2.) Use 
$$\lim_{h\to 0} \frac{f(x+h)-f(x)}{h}$$
 to differentiate the function  $f(x)=\frac{x+7}{3-x}$ .

3.) Sketch the graph of f' using the graph of f.



7.) Consider the given diagram. Write  $\alpha$  as a function of x.



8.) Let  $f(x) = x + 5 \arctan(1/x)$ . Solve f'(x) = 0 for x.

9.) Differentiate the following function and SIMPLIFY your answer as much as possible:  $f(x) = (x-3)\sqrt{6x-x^2} + 9\arcsin\left(\frac{x-3}{3}\right)$ .

8.) A 15-foot ladder is leaning against a wall. If the base of the ladder is pushed toward the wall at the rate of 2 ft./sec., at what rate is the top of the ladder moving up the wall when the base of the ladder is 6 ft. from the wall?

9.) Use differentials to estimate the value of  $\sqrt{96}$ .

10.) The radius and height of a cylinder are both equal to x so that the volume of the cylinder is given by  $V = \pi x^3$ . Assume that x is measured with an absolute percentage error of at most 3%. Use a differential to estimate the maximum absolute percentage error in computing the cylinder's volume.

The following EXTRA CREDIT PROBLEM is worth points. This problem is OPTIONAL.

1.) A beetle crawls along a thin rod on the x-axis from x=0 in. to x=16 in. at the rate of 3 in./min. The temperature of the rod at point x is  $40+12\sqrt{x}$  degrees Fahrenheit (° F). At what rate (° F per min.) is the temperature of the rod under the beetle changing when the beetle is at x=9 in.?