
A useful tool in the the determination of limits of functions is the Squeeze
Principle. I t  can be used when ambiguous or indeterminate forms arise, often
times with problems involving oscillating trigonometric functions, and more
common algebraic means may fail.

The Squeeze Principle : Let f  , g, and h be functions. I f

g (x) <  f  (x) <  h(x) a n d  g ( x )  =  L = lim h(x)x a

then

lim f  (x) =  Lx a

Remark : The term "a" can be a finite number or +oc.
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Example : Evaluate l i m  x  + cos 4 x
. ( N o t e  t h a t  
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Begin with the well known fact that —1 < cos 4x < 1 Th e n
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and l i m    =  l i m     =  l i m   =   =  0
x---oc x
2  +  
1 3  
x -
- -
o c  
X
2  
+  
1
3  
1
/
x
2  
x
-
-
-
*
-
-
-
.  
1  
+  
1
3
/
x
2  
1  
+  
0

it follows from the Squeeze Principle that

X +  COS2 4 xurn  =  0
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