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As we have discussed in the lecture on ”What is Linear Algebra?” one of the main goals
of linear algebra is the characterization of the solutions to the set of m linear equations in n

unknowns x1, . . . , xn

a11x1 + · · · + a1nxn = b1

...
...

...

am1x1 + · · · + amnxn = bm,

where all coefficients aij and bi are in F. Linear maps and their properties that we are about
to discuss give us a lot of insight into the characteristics of the solutions.

1 Definition and elementary properties

Throughout this chapter V, W are vector spaces over F. We are going to study maps from
V to W that have special properties.

Definition 1. A function T : V → W is called linear if

T (u + v) = T (u) + T (v) for all u, v ∈ V , (1)

T (av) = aT (v) for all a ∈ F and v ∈ V . (2)

The set of all linear maps from V to W is denoted by L(V, W ). We also write Tv for T (v).

Example 1.

1. The zero map 0 : V → W mapping every element v ∈ V to 0 ∈ W is linear.

2. The identity map I : V → V defined as Iv = v is linear.
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3. Let T : P(F) → P(F) be the differentiation map defined as Tp(z) = p′(z). Then for
two polynomials p(z), q(z) ∈ P(F) we have

T (p(z) + q(z)) = (p(z) + q(z))′ = p′(z) + q′(z) = T (p(z)) + T (q(z)).

Similarly for a polynomial p(z) ∈ P(F) and a scalar a ∈ F we have

T (ap(z)) = (ap(z))′ = ap′(z) = aT (p(z)).

Hence T is linear.

4. Let T : R
2 → R

2 be the map given by T (x, y) = (x − 2y, 3x + y). Then for
(x, y), (x′, y′) ∈ R

2 we have

T ((x, y) + (x′, y′)) = T (x + x′, y + y′) = (x + x′ − 2(y + y′), 3(x + x′) + y + y′)

= (x − 2y, 3x + y) + (x′ − 2y′, 3x′ + y′) = T (x, y) + T (x′, y′).

Similarly, for (x, y) ∈ R
2 and a ∈ F we have

T (a(x, y)) = T (ax, ay) = (ax − 2ay, 3ax + ay) = a(x − 2y, 3x + y) = aT (x, y).

Hence T is linear. More generally, any map T : F
n → F

m defined by

T (x1, . . . , xn) = (a11x1 + · · ·+ a1nxn, . . . , am1x1 + · · ·+ amnxn)

with aij ∈ F is linear.

5. Not all functions are linear! For example the exponential function f(x) = ex is not
linear since e2x 6= 2ex. Also the function f : F → F given by f(x) = x− 1 is not linear
since f(x + y) = (x + y) − 1 6= (x − 1) + (y − 1) = f(x) + f(y).

An important result is that linear maps are already completely determined if their values
on basis vectors are specified.

Theorem 1. Let (v1, . . . , vn) be a basis of V and (w1, . . . , wn) an arbitrary list of vectors in

W . Then there exists a unique linear map

T : V → W such that T (vi) = wi.

Proof. First we verify that there is at most one linear map T with T (vi) = wi. Take any
v ∈ V . Since (v1, . . . , vn) is a basis of V there are unique scalars a1, . . . , an ∈ F such that
v = a1v1 + · · · + anvn. By linearity we must have

T (v) = T (a1v1 + · · ·+ anvn) = a1T (v1) + · · ·+ anT (vn) = a1w1 + · · · + anwn, (3)
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and hence T (v) is completely determined. To show existence, use (3) to define T . It remains
to show that this T is linear and that T (vi) = wi. These two conditions are not hard to
show and are left to the reader.

The set of linear maps L(V, W ) is itself a vector space. For S, T ∈ L(V, W ) addition is
defined as

(S + T )v = Sv + Tv for all v ∈ V .

For a ∈ F and T ∈ L(V, W ) scalar multiplication is defined as

(aT )(v) = a(Tv) for all v ∈ V .

You should verify that S + T and aT are indeed linear maps again and that all properties
of a vector space are satisfied.

In addition to addition and scalar multiplication we can defined the composition of

linear maps. Let V, U, W be vector spaces over F. Then for S ∈ L(U, V ) and T ∈ L(V, W ),
we define T ◦ S ∈ L(U, W ) as

(T ◦ S)(u) = T (S(u)) for all u ∈ U .

The map T ◦ S is often also called the product of T and S denoted by TS. It has the
following properties:

1. Associativity: (T1T2)T3 = T1(T2T3) for all T1 ∈ L(V1, V0), T2 ∈ L(V2, V1) and T3 ∈
L(V3, V2).

2. Identity: TI = IT = T where T ∈ L(V, W ) and I in TI is the identity map in
L(V, V ) and I in IT is the identity map in L(W, W ).

3. Distributive property: (T1 +T2)S = T1S +T2S and T (S1 +S2) = TS1 +TS2 where
S, S1, S2 ∈ L(U, V ) and T, T1, T2 ∈ L(V, W ).

Note that the product of linear maps is not always commutative. For example if T ∈
L(P(F),P(F)) is differentiation Tp(z) = p′(z) and S ∈ L(P(F),P(F)) is multiplication by
z2 given by Sp(z) = z2p(z), then

(ST )p(z) = z2p′(z) but (TS)p(z) = z2p′(z) + 2zp(z).

2 Null spaces

Definition 2. Let T : V → W be a linear map. Then the null space or kernel of T is the
set of all vectors in V that map to zero:

null T = {v ∈ V | Tv = 0}.
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Example 2. Let T ∈ L(P(F),P(F)) be differentiation Tp(z) = p′(z). Then

null T = {p ∈ P(F) | p(z) is constant}.

Proposition 2. Let T : V → W be a linear map. Then null T is a subspace of V .

Proof. We need to show that 0 ∈ null T and that null T is closed under addition and scalar
multiplication. By linearity we have

T (0) = T (0 + 0) = T (0) + T (0)

so that T (0) = 0. Hence 0 ∈ null T . For closure under addition let u, v ∈ null T . Then

T (u + v) = T (u) + T (v) = 0 + 0 = 0,

and hence u + v ∈ null T . Similarly for closure under scalar multiplication, let u ∈ null T
and a ∈ F. Then

T (au) = aT (u) = a0 = 0,

so that au ∈ null T .

Definition 3. The linear map T : V → W is called injective if for all u, v ∈ V , the
condition Tu = Tv implies that u = v. In other words, different vectors in V are mapped to
different vector in W .

Proposition 3. Let T : V → W be a linear map. Then T is injective if and only if

null T = {0}.

Proof.

”=⇒” Suppose that T is injective. Since null T is a subspace of V , we know that 0 ∈ null T .
Assume that there is another vector v ∈ V that is in the kernel. Then T (v) = 0 = T (0).
Since T is injective this implies that v = 0, proving that null T = {0}.
”⇐=” Assume that null T = {0}. Let u, v ∈ V such that Tu = Tv. Then 0 = Tu − Tv =
T (u − v), so that u − v ∈ null T . Hence u − v = 0 or equivalently u = v showing that T is
indeed injective.

Example 3.

1. The differentiation map p(z) 7→ p′(z) is not injective since p′(z) = q′(z) implies that
p(z) = q(z) + c where c ∈ F is a constant.

2. The identity map I : V → V is injective.

3. The linear map T : P(F) → P(F) given by T (p(z)) = z2p(z) is injective since null T =
{0}.
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3 Ranges

Definition 4. Let T : V → W be a linear map. The range of T , denoted by rangeT , is the
subset of vectors of W that are in the image of T

rangeT = {Tv | v ∈ V } = {w ∈ W | there exists v ∈ V such that Tv = w}.

Example 4. The range of the differentiation map T : P(F) → P(F) is range T = P(F) since
for every polynomial q ∈ P(F) there is a p ∈ P(F) such that p′ = q.

Proposition 4. Let T : V → W be a linear map. Then range T is a subspace of W .

Proof. We need to show that 0 ∈ range T and that rangeT is closed under addition and
scalar multiplication. We already showed that T0 = 0 so that 0 ∈ range T .

For closure under addition let w1, w2 ∈ range T . Then there exist v1, v2 ∈ V such that
Tv1 = w1 and Tv2 = w2. Hence

T (v1 + v2) = Tv1 + Tv2 = w1 + w2

so that w1 + w2 ∈ range T .
For closure under scalar multiplication, let w ∈ rangeT and a ∈ F. Then there exists a

v ∈ V such that Tv = w. Thus
T (av) = aTv = aw

so that aw ∈ rangeT .

Definition 5. A linear map T : V → W is called surjective if range T = W . A linear map
T : V → W is called bijective if T is injective and surjective.

Example 5. The differentiation map T : P(F) → P(F) is surjective since range T = P(F).
However, if we restrict ourselves to polynomials of degree at most m, then the differentiation
map T : Pm(F) → Pm(F) is not surjective since polynomials of degree m are not in the range
of T .

4 Homomorphisms

It should be mentioned that linear maps between vector spaces are also called vector space

homomorphisms. Instead of the notation L(V, W ) one often sees the convention

HomF(V, W ) = {T : V → W | T is linear}.

A homomorhpism T : V → W is called
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• Monomorphism iff T is injective;

• Epimorphism iff T is surjective;

• Isomorphism iff T is bijective;

• Endomorphism iff V = W ;

• Automorphism iff V = W and T is bijective.

5 The dimension formula

The next theorem is the key result of this chapter. It relates the dimension of the kernel and
range of a linear map.

Theorem 5. Let V be a finite-dimensional vector space and T : V → W a linear map. Then

range T is a finite-dimensional subspace of W and

dim V = dim null T + dim range T. (4)

Proof. Let V be a finite-dimensional vector space and T ∈ L(V, W ). Since null T is a
subspace of V , we know that null T has a basis (u1, . . . , um). This implies that dim null T =
m. By the Basis Extension Theorem it follows that (u1, . . . , um) can be extended to a basis
of V , say (u1, . . . , um, v1, . . . , vn), so that dim V = m + n.

The theorem will follow by showing that (Tv1, . . . , T vn) is a basis of rangeT since this
would imply that rangeT is finite-dimensional and dim rangeT = n proving (4).

Since (u1, . . . , um, v1, . . . , vn) spans V , every v ∈ V can be written as a linear combination
of these vectors

v = a1u1 + · · · + amum + b1v1 + · · · + bnvn

where ai, bj ∈ F. Applying T to v we obtain

Tv = b1Tv1 + · · · + bnTvn,

where the terms Tui disappeared since ui ∈ null T . This shows that (Tv1, . . . , T vn) indeed
spans rangeT .

To show that (Tv1, . . . , T vn) is a basis of range T it remains to show that this list is
linearly independent. Assume that c1, . . . , cn ∈ F are such that

c1Tv1 + · · ·+ cnTvn = 0.

By linearity of T this implies that

T (c1v1 + · · · + cnvn) = 0,
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so that c1v1 + · · · + cnvn ∈ null T . Since (u1, . . . , um) is a basis of null T there must exist
scalars d1, . . . , dm ∈ F such that

c1v1 + · · ·+ cnvn = d1u1 + · · ·+ dmum.

However by the linear independence of (u1, . . . , um, v1, . . . , vn) this implies that all coefficients
c1 = · · · = cn = d1 = · · · = dm = 0. Thus (Tv1, . . . , T vn) is linearly independent and we are
done.

Corollary 6. Let T ∈ L(V, W ).

1. If dim V > dim W , then T is not injective.

2. If dim V < dim W , then T is not surjective.

Proof. By Theorem 5 we have

dim null T = dim V − dim range T

≥ dim V − dim W > 0.

Since T is injective if and only if dim null T = 0, T cannot be injective.
Similarly,

dim rangeT = dim V − dim null T

≤ dim V < dim W,

so that range T cannot be equal to W . Hence T cannot be surjective.

6 The matrix of a linear map

Now we will see that every linear map can be encoded by a matrix, and vice versa every
matrix defines a linear map.

Let V, W be finite-dimensional vector spaces, and let T : V → W be a linear map.
Suppose that (v1, . . . , vn) is a basis of V and (w1, . . . , wm) is a basis for W . We have seen
in Theorem 1 that T is uniquely determined by specifying the vectors Tv1, . . . , T vn ∈ W .
Since (w1, . . . , wm) is a basis of W there exist unique scalars aij ∈ F such that

Tvj = a1jw1 + · · · + amjwm for 1 ≤ j ≤ n. (5)
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We can arrange these scalars in an m × n matrix as follows

M(T ) =







a11 . . . a1n

...
...

am1 . . . amn







with m rows and n columns. Often this is also written as A = (aij)1≤i≤m,1≤j≤n. The set of
all m × n matrices with entries in F is denoted by F

m×n.

Remark 7. It is important to remember that M(T ) not only depends on the linear map T ,
but also on the choice of the basis (v1, . . . , vn) for V and (w1, . . . , wm) for W . The j-th
column of M(T ) contains the coefficients of the j-th basis vector vj expanded in terms of
the basis (w1, . . . , wm) as in (5).

Example 6. Let T : R
2 → R

2 be the linear map given by T (x, y) = (ax + by, cx + dy) for
some a, b, c, d ∈ R. Then with respect to the canonical basis of R

2 given by ((1, 0), (0, 1))
the corresponding matrix is

M(T ) =

[

a b

c d

]

since T (1, 0) = (a, c) gives the first column and T (0, 1) = (b, d) gives the second column.
More generally, if V = F

n and W = F
m with the standard basis (e1, . . . , en) for V and

(f1, . . . , fm) for W , where ei (resp. fi) is the n-tuple (resp. m-tuple) with a one in position
i and zeroes everywhere else, then the matrix M(T ) = (aij) is given by

aij = (Tej)i.

Example 7. Let T : R
2 → R

3 be the linear map defined as T (x, y) = (y, x + 2y, x + y).
Then with respect to the standard basis we have T (1, 0) = (0, 1, 1) and T (0, 1) = (1, 2, 1) so
that

M(T ) =





0 1
1 2
1 1



 .

However, if alternatively we take the basis ((1, 2), (0, 1)) of R
2 and ((1, 0, 0), (0, 1, 0), (0, 0, 1))

of R
3, then T (1, 2) = (2, 5, 3) and T (0, 1) = (1, 2, 1) so that

M(T ) =





2 1
5 2
3 1



 .

Example 8. Let S : R
2 → R

2 be the linear map S(x, y) = (y, x). With respect to the basis
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((1, 2), (0, 1)) of R
2 we have

S(1, 2) = (2, 1) = 2(1, 2) − 3(0, 1) and S(0, 1) = (1, 0) = 1(1, 2) − 2(0, 1),

so that

M(S) =

[

2 1
−3 −2

]

.

Note that given the vector spaces V and W of dimensions n and m, respectively, and a
fixed choice of bases, there is a one-to-one correspondence between linear maps in L(V, W )
and matrices in F

m×n. Given the linear map T , the matrix M(T ) = A = (aij) is defined
via (5). Conversely, given the matrix A = (aij) ∈ F

m×n we can define a linear map T : V →
W by setting

Tvj =

m
∑

i=1

aijwi.

Recall that we saw that the set of linear maps L(V, W ) is a vector space. Since we have
a one-to-one correspondence between linear maps and matrices we can also make the set of
matrices F

m×n into a vector space. Given two matrices A = (aij) and B = (bij) in F
m×n and

a scalar α ∈ F we define the sum of matrices and scalar multiplication componentwise:

A + B = (aij + bij)

αA = (αaij).

Next we show that the composition of linear maps imposes a product on matrices,
also called matrix multiplication. Suppose U, V, W are vector spaces over F with bases
(u1, . . . , up), (v1, . . . , vn) and (w1, . . . , wm), respectively. Let S : U → V and T : V → W be
linear maps. Then the product is a linear map T ◦ S : U → W .

Each linear map has its corresponding matrix M(T ) = A, M(S) = B and M(TS) = C.
The question is whether C is determined by A and B. We have for j ∈ {1, 2, . . . p}

(T ◦ S)uj = T (b1jv1 + · · ·+ bnjvn) = b1jTv1 + · · ·+ bnjTvn

=
n

∑

k=1

bkjTvk =
n

∑

k=1

bkj

(

m
∑

i=1

aikwi

)

=
m

∑

i=1

(

n
∑

k=1

aikbkj

)

wi.

Hence the matrix C = (cij) is given by

cij =
n

∑

k=1

aikbkj . (6)
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Equation (6) can be used as the definition of the m × p matrix C defined as the product of
a m × n matrix A and a n × p matrix B

C = AB. (7)

Our derivation implies that the correspondence between linear maps and matrices respects
the product structure.

Proposition 8. Let S : U → V and T : V → W be linear maps. Then

M(TS) = M(T )M(S).

Example 9. Take the matrices of the linear maps T : R
2 → R

3 with bases ((1, 2), (0, 1))
for R

2 and the standard basis for R
3 and S : R

2 → R
2 with basis ((1, 2), (0, 1)) for R

2 of
Examples 7 and 8. Then

M(TS) = M(T )M(S) =





2 1
5 2
3 1





[

2 1
−3 −2

]

=





1 0
4 1
3 1



 .

Given a vector v ∈ V we can also associate a matrix M(v) to v as follows. Let (v1, . . . , vn)
be a basis of V . Then there are unique scalars b1, . . . , bn such that

v = b1v1 + · · · bnvn.

The matrix of v is the n × 1 matrix defined as

M(v) =







b1

...
bn






.

Example 10. The matrix of a vector x = (x1, . . . , xn) ∈ F
n in the standard basis (e1, . . . , en)

is the column vector or n × 1 matrix

M(x) =







x1

...
xn







since x = (x1, . . . , xn) = x1e1 + · · · + xnen.

The next result shows how the notion of a matrix of a linear map T : V → W and the
matrix of a vector v ∈ V fit together.
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Proposition 9. Let T : V → W be a linear map. Then for every v ∈ V

M(Tv) = M(T )M(v).

Proof. Let (v1, . . . , vn) be a basis of V and (w1, . . . , wm) a basis for W . Suppose that with
respect to these bases the matrix of T is M(T ) = (aij)1≤i≤m,1≤j≤n. Recall that this means
that for all j ∈ {1, 2, . . . , n}

Tvj =

m
∑

k=1

akjwk.

The vector v ∈ V can be written uniquely as a linear combination of the basis vectors as

v = b1v1 + · · ·+ bnvn.

Hence

Tv = b1Tv1 + · · · + bnTvn

= b1

m
∑

k=1

ak1wk + · · ·+ bn

m
∑

k=1

aknwk

=
m

∑

k=1

(ak1b1 + · · ·+ aknbn)wk.

This shows that M(Tv) is the m × 1 matrix

M(Tv) =







a11b1 + · · · + a1nbn

...
am1b1 + · · · + amnbn






.

It is not hard to check using the formula for matrix multiplication that M(T )M(v) gives the
same result.

Example 11. Take the linear map S from Example 8 with basis ((1, 2), (0, 1)) of R
2. To

determine the action on the vector v = (1, 4) ∈ R
2 note that v = (1, 4) = 1(1, 2) + 2(0, 1).

Hence

M(Sv) = M(S)M(v) =

[

2 1
−3 −2

] [

1
2

]

=

[

4
−7

]

.

This means
Sv = 4(1, 2) − 7(0, 1) = (4, 1)

which is indeed true.



7 INVERTIBILITY 12

7 Invertibility

Definition 6. A linear map T : V → W is called invertible if there exists a linear map
S : W → V such that

TS = IW and ST = IV ,

where IV : V → V is the identity map on V and IW : W → W is the identity map on W .
We say that S is an inverse of T .

Note that if the linear map T is invertible, then the inverse is unique. Suppose S and R

are inverses of T . Then

ST = IV = RT

TS = IW = TR.

Hence
S = S(TR) = (ST )R = R.

We denote the unique inverse of an invertible linear map T by T−1.

Proposition 10. A linear map T ∈ L(V, W ) is invertible if and only if T is injective and

surjective.

Proof.

”=⇒” Suppose T is invertible.
To show that T is injective, suppose that u, v ∈ V are such that Tu = Tv. Apply the

inverse T−1 of T to obtain T−1Tu = T−1Tv so that u = v. Hence T is injective.
To show that T is surjective, we need to show that for every w ∈ W there is a v ∈ V

such that Tv = w. Take v = T−1w ∈ V . Then T (T−1w) = w. Hence T is surjective.
”⇐=” Suppose that T is injective and surjective. We need to show that T is invertible. We
define a map S ∈ L(W, V ) as follows. Since T is surjective, we know that for every w ∈ W

there exists a v ∈ V such that Tv = w. Moreover, since T is injective, this v is uniquely
determined. Hence define Sw = v.

We claim that S is the inverse of T . Note that for all w ∈ W we have TSw = Tv = w

so that TS = IW . Similarly for all v ∈ V we have STv = Sw = v so that ST = IV .
It remains to show that S is a linear map. For all w1, w2 ∈ W we have

T (Sw1 + Sw2) = TSw1 + TSw2 = w1 + w2,

so that Sw1 + Sw2 is the unique vector v in V such that Tv = w1 + w2 = w. Hence

Sw1 + Sw2 = v = Sw = S(w1 + w2).
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The proof that S(aw) = aSw is similar. For w ∈ W and a ∈ F we have

T (aSw) = aT (Sw) = aw

so that aSw is the unique vector in V that maps to aw. Hence S(aw) = aSw.

Definition 7. Two vector spaces V and W are called isomorphic if there exists an invertible
linear map T ∈ L(V, W ).

Theorem 11. Two finite-dimensional vector spaces V and W over F are isomorphic if and

only if dim V = dim W .

Proof.

”=⇒” Suppose V and W are isomorphic. Then there exists an invertible linear map
T ∈ L(V, W ). Since T is invertible, it is injective and surjective, so that null T = {0}
and range T = W . From the dimension formula this implies that dim V = dim null T +
dim range T = dim W .
”⇐=” Suppose that dim V = dim W . Let (v1, . . . , vn) be a basis of V and (w1, . . . , wn) a
basis of W . Define the linear map T : V → W as

T (a1v1 + · · ·+ anvn) = a1w1 + · · ·+ anwn.

Since the scalars a1, . . . , an ∈ F are arbitrary and (w1, . . . , wn) spans W , this means that
range T = W and T is surjective. Also, since (w1, . . . , wn) is linearly independent, T is
injective (since a1w1 + · · ·+ anwn = 0 implies that all a1 = · · · = an = 0 and hence only the
zero vector is mapped to zero). Hence T is injective and surjective and by Proposition 10
invertible. Therefore, V and W are isomorphic.

Next we consider the case of linear maps from a vector space V to itself. These linear
maps are also called operators. The next remarkable theorem shows that the notion of
injectivity, surjectivity and invertibility of T are the same, as long as V is finite-dimensional.
For infinite-dimensional vector spaces this is not true. For example the set of all polynomials
P(F) is an infinite-dimensional vector space and we saw that the differentiation map is
surjective, but not injective!

Theorem 12. Let V be a finite-dimensional vector space and T : V → V a linear map.

Then the following are equivalent:

1. T is invertible.

2. T is injective.

3. T is surjective.
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Proof. By Proposition 10 1 implies 2.
Next we show that 2 implies 3. If T is injective, then we know that null T = {0}. Hence

by the dimension formula we have

dim range T = dim V − dim null T = dim V.

Since range T ⊂ V is a subspace of V , this implies that rangeT = V and hence T is surjective.
Finally we show that 3 implies 1. Since by assumption T is surjective, we have range T =

V . Hence again by the dimension formula

dim null T = dim V − dim range T = 0,

so that null T = {0}, and hence T is injective. By Proposition 10 an injective and surjective
linear map is invertible.


