1 Defining Representation of S_n

For convenience, I will write all column vectors as row vectors.

For the defining representation X of S_n over \mathbb{C} with the standard basis, the span of $\mu = (1, 1, 1, ..., 1)$ is clearly G-invariant (that is, for all $v \in Span(\mu)$, $\sigma v = v \forall \sigma \in S_n$); we will call this subrepresentation X^{Triv} on subspace U (I leave it to the reader to show that this is the trivial representation). Then X may be written as $X^{Triv} \oplus X^{\perp}$ (this is proven for finite dimensional representations in 150C). It follows that the orthogonal complement V of U (X^{\perp} is over V) is also G-invariant; were it not, there would exist some $v \in V$ and some $X_g \in X$ such that $X_g v \in U \Rightarrow X_{g^{-1}} X_g v \in V \Rightarrow \exists u \in U$ such that $X_{g^{-1}} u \in X^{\perp} \not{a}$. Note V is of dimension n-1.

Proposition 1.1. X^{\perp} is an irreducible representation.

Proof. It will prove useful to know what vectors are contained in V. I claim it is the set $\{v \in \mathbb{C}^n | \Sigma_{i=1}^n v_i = 0\}$. This is not difficult to see, as $\langle v, l\mu \rangle = l \Sigma_{i=1}^n v_i$ (where \langle , \rangle is the standard dot product) and for orthogonal vectors this product must be 0.

Now, for the sake of contradiction, assume X^{\perp} has some subrepresentation. This is equivalent to stating there is some non-trivial G-invariant subspace of V, which we will call W. Let $\xi \in W$; as $W \subset V$, ξ may be expressed as a sum of basis vectors of V. Assume ξ has only two non-zero terms, in which case one is the negative of the other, say γ and $-\gamma$. Multiply ξ by $\frac{1}{|\gamma|}$ and we will have a vector, call it ξ' , that has only 0's, one 1 and one -1 as entries. We can use ξ' to define a basis of V; take the set $\{X_{(ij)}\xi' \mid i \text{ is the index of the negative entry of } \xi' \text{ and } 1 \leq j \leq n, i \neq j \}$ (if it was unclear, $X_{(ij)}$ refers to the representation of the cycle (ij)). This set has n-1 linearly independent vectors and is thus a basis. However, because W is G-invariant, every vector in that set is also in W, so a complete basis for V is contained in W which implies $dim(W) = dim(V) \frac{1}{2}$.

Now assume ξ has more than 2 non-zero terms. Let j-1 equal the index of the first non-zero entry of ξ and let q be a vector such that $q_{j-1} = 1$, $q_j = -1$ and 0 elsewhere; take the basis of V, $\mathcal{B} = \{X_{(ji)}q \mid 1 \le i \le n, i \ne j\}$. Let $q_1 = q$, $q_2 = X_{(j \ j+1)}q$, $q_3 = X_{(j \ j+2)}q$ and so on. Then we have

$$\xi = m_1 q_1 + m_2 q_2 + \dots$$

Let $m_k q_k$ be the first term such that $m_k \neq 0$. Then we have

$$\xi = m_k q_k + m_{k+1} q_{k+1} + \dots$$

Let

$$\begin{aligned} \xi' &= X_{(j-1\ k)}\xi = X_{(j-1\ k)}m_kq_k + X_{(j-1\ k)}m_{k+1}q_{k+1} + \dots \\ &= -m_kq_k + X_{(j-1\ k)}m_{k+1}q_{k+1} + \dots \\ &\Rightarrow \xi + \xi' = X_{(j-1\ k)}m_{k+1}q_{k+1} + X_{(j-1\ k)}m_{k+1}q_{k+1} + \dots \end{aligned}$$

Call the resulting vector ξ'' . Notice that the k^{th} entry of ξ'' is now 0 and that all entries with index less than j-1 remain 0, so we have reduced the number of non-zero terms by at least 1. The previous method used in class did not account for the situation in which $\xi'' = 0$, but this does not occur here. $X_{(j-1\ k)}\xi$ only differs from ξ in the entries with index j-1 and k, so all other entries will be doubled in ξ'' and by assumption there are at least 3 non-zero entries. Furthermore, this method will always leave at least 2 non-zero entries in ξ' . To see this assume there is only one non-zero entry. However, that would imply the sum of the entries cannot be 0, in which case V would not be a G-invariant subspace $\frac{1}{2}$. Thus we may repeat the process until there are exactly 2 non-zero entries and then proceed as above.