1 Defining Representation of 5,

For convenience, I will write all column vectors as row vectors.

For the defining representation X of S,, over C with the standard basis, the span of p = (1,1,1...,1)
is clearly G-invariant (that is, for all v € Span(u), ov = v V o € S,); we will call this subrepresentation
XTriv on subspace U (I leave it to the reader to show that this is the trivial representation). Then X may
be written as X77% @ X (this is proven for finite dimensional representations in 150C). It follows that the
orthogonal complement V of U (X is over V) is also G-invariant; were it not, there would exist some v € V
and some X, € X such that Xgv € U = X 1 Xyv € V = Ju € U such that X,-1u € X+4. Note V is of

dimension n — 1.
Proposition 1.1. X is an irreducible representation.

Proof. It will prove useful to know what vectors are contained in V. I claim it is the set {v € C"|Z}_,v; = 0}.
This is not difficult to see, as (v,lu) =37 v; (where (, ) is the standard dot product) and for orthogonal
vectors this product must be 0.

Now, for the sake of contradiction, assume X has some subrepresentation. This is equivalent to stating
there is some non-trivial G-invariant subspace of V', which we will call W. Let & € W; as W C V,
& may be expressed as a sum of basis vectors of V. Assume & has only two non-zero terms, in which

case one is the negative of the other, say v and —y. Multiply & by and we will have a vector, call
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it &', that has only 0’s, one 1 and one -1 as entries. We can use &' to define a basis of V; take the set
{X (& | i1is the index of the negative entry of £ and 1 < j < n,i # j} (if it was unclear, X(;;) refers to
the representation of the cycle (ij)). This set has n — 1 linearly independent vectors and is thus a basis.
However, because W is G-invariant, every vector in that set is also in W, so a complete basis for V is
contained in W which implies dim(W) = dim (V).

Now assume & has more than 2 non-zero terms. Let j — 1 equal the index of the first non-zero entry of

& and let g be a vector such that ¢;_; =1, ¢; = —1 and 0 elsewhere; take the basis of V, B = {X(iq | 1 <

i <n,i#j} Let ¢ =q, @2 = X(j j41)¢ @3 = X(j j+2)¢ and so on. Then we have

E=miq1 +maga + ...



Let myqi be the first term such that my % 0. Then we have

&= Mrqr + Mpp1qr+1 + -

Let

& =Xo1 &= X1 nymrte + X1 k)yMr1qk+1 + -
= —miqr + XG-1 5)Mhtr1qh+1 + -

= E+ & = X1 pymMer1@ee1 + XG-1 )Mkt 1qhr1 + -

Call the resulting vector &”. Notice that the k*" entry of & is now 0 and that all entries with index less than
j—1 remain 0, so we have reduced the number of non-zero terms by at least 1. The previous method used in
class did not account for the situation in which &” = 0, but this does not occur here. X(j—1 k& only differs
from & in the entries with index 7 — 1 and k, so all other entries will be doubled in &” and by assumption
there are at least 3 non-zero entries. Furthermore, this method will always leave at least 2 non-zero entries
in &’. To see this assume there is only one non-zero entry. However, that would imply the sum of the entries
cannot be 0, in which case V' would not be a G-invariant subspace 4. Thus we may repeat the process until

there are exactly 2 non-zero entries and then proceed as above.



