1 Defining Representation of S_{n}

For convenience, I will write all column vectors as row vectors.
For the defining representation X of S_{n} over \mathbb{C} with the standard basis, the span of $\mu=(1,1,1 \ldots, 1)$ is clearly G-invariant (that is, for all $v \in \operatorname{Span}(\mu), \sigma v=v \forall \sigma \in S_{n}$); we will call this subrepresentation $X^{\text {Triv }}$ on subspace U (I leave it to the reader to show that this is the trivial representation). Then X may be written as $X^{T r i v} \oplus X^{\perp}$ (this is proven for finite dimensional representations in 150C). It follows that the orthogonal complement V of $U\left(X^{\perp}\right.$ is over $\left.V\right)$ is also G-invariant; were it not, there would exist some $v \in V$ and some $X_{g} \in X$ such that $X_{g} v \in U \Rightarrow X_{g^{-1}} X_{g} v \in V \Rightarrow \exists u \in U$ such that $X_{g^{-1}} u \in X^{\perp}$. Note V is of dimension $n-1$.

Proposition 1.1. X^{\perp} is an irreducible representation.

Proof. It will prove useful to know what vectors are contained in V. I claim it is the set $\left\{v \in \mathbb{C}^{n} \mid \Sigma_{i=1}^{n} v_{i}=0\right\}$. This is not difficult to see, as $\langle v, l \mu\rangle=l \Sigma_{i=1}^{n} v_{i}$ (where \langle,$\rangle is the standard dot product) and for orthogonal$ vectors this product must be 0 .

Now, for the sake of contradiction, assume X^{\perp} has some subrepresentation. This is equivalent to stating there is some non-trivial G-invariant subspace of V, which we will call W. Let $\xi \in W$; as $W \subset V$, ξ may be expressed as a sum of basis vectors of V. Assume ξ has only two non-zero terms, in which case one is the negative of the other, say γ and $-\gamma$. Multiply ξ by $\frac{1}{|\gamma|}$ and we will have a vector, call it ξ^{\prime}, that has only 0 's, one 1 and one -1 as entries. We can use ξ^{\prime} to define a basis of V; take the set $\left\{X_{(i j)} \xi^{\prime} \mid \mathrm{i}\right.$ is the index of the negative entry of ξ^{\prime} and $\left.1 \leq j \leq n, i \neq j\right\}$ (if it was unclear, $X_{(i j)}$ refers to the representation of the cycle $(i j))$. This set has $n-1$ linearly independent vectors and is thus a basis. However, because W is G-invariant, every vector in that set is also in W, so a complete basis for V is contained in W which implies $\operatorname{dim}(W)=\operatorname{dim}(V)$ 亿.

Now assume ξ has more than 2 non-zero terms. Let j - 1 equal the index of the first non-zero entry of ξ and let q be a vector such that $q_{j-1}=1, q_{j}=-1$ and 0 elsewhere; take the basis of $V, \mathcal{B}=\left\{X_{(j i)} q \mid 1 \leq\right.$ $i \leq n, i \neq j\}$. Let $q_{1}=q, q_{2}=X_{(j j+1)} q, q_{3}=X_{(j j+2)} q$ and so on. Then we have

$$
\xi=m_{1} q_{1}+m_{2} q_{2}+\ldots
$$

Let $m_{k} q_{k}$ be the first term such that $m_{k} \neq 0$. Then we have

$$
\xi=m_{k} q_{k}+m_{k+1} q_{k+1}+\ldots
$$

Let

$$
\begin{aligned}
\xi^{\prime} & =X_{(j-1 k)} \xi=X_{(j-1 k)} m_{k} q_{k}+X_{(j-1 k)} m_{k+1} q_{k+1}+\ldots \\
& =-m_{k} q_{k}+X_{(j-1 k)} m_{k+1} q_{k+1}+\ldots \\
& \Rightarrow \xi+\xi^{\prime}=X_{(j-1 k)} m_{k+1} q_{k+1}+X_{(j-1 k)} m_{k+1} q_{k+1}+\ldots
\end{aligned}
$$

Call the resulting vector $\xi^{\prime \prime}$. Notice that the $k^{t h}$ entry of $\xi^{\prime \prime}$ is now 0 and that all entries with index less than $j-1$ remain 0 , so we have reduced the number of non-zero terms by at least 1 . The previous method used in class did not account for the situation in which $\xi^{\prime \prime}=0$, but this does not occur here. $X_{(j-1 k)} \xi$ only differs from ξ in the entries with index $j-1$ and k, so all other entries will be doubled in $\xi^{\prime \prime}$ and by assumption there are at least 3 non-zero entries. Furthermore, this method will always leave at least 2 non-zero entries in ξ^{\prime}. To see this assume there is only one non-zero entry. However, that would imply the sum of the entries cannot be 0 , in which case V would not be a G-invariant subspace \downarrow. Thus we may repeat the process until there are exactly 2 non-zero entries and then proceed as above.

