
1 Defining Representation of Sn

For convenience, I will write all column vectors as row vectors.

For the defining representation X of Sn over C with the standard basis, the span of µ = (1, 1, 1..., 1)

is clearly G-invariant (that is, for all v ∈ Span(µ), σv = v ∀ σ ∈ Sn); we will call this subrepresentation

XTriv on subspace U (I leave it to the reader to show that this is the trivial representation). Then X may

be written as XTriv ⊕X⊥ (this is proven for finite dimensional representations in 150C). It follows that the

orthogonal complement V of U (X⊥ is over V ) is also G-invariant; were it not, there would exist some v ∈ V

and some Xg ∈ X such that Xgv ∈ U ⇒ Xg−1Xgv ∈ V ⇒ ∃u ∈ U such that Xg−1u ∈ X⊥ . Note V is of

dimension n− 1.

Proposition 1.1. X⊥ is an irreducible representation.

Proof. It will prove useful to know what vectors are contained in V . I claim it is the set {v ∈ Cn|Σni=1vi = 0}.

This is not difficult to see, as 〈v, lµ〉 = lΣni=1vi (where 〈 , 〉 is the standard dot product) and for orthogonal

vectors this product must be 0.

Now, for the sake of contradiction, assume X⊥ has some subrepresentation. This is equivalent to stating

there is some non-trivial G-invariant subspace of V , which we will call W . Let ξ ∈ W ; as W ⊂ V ,

ξ may be expressed as a sum of basis vectors of V . Assume ξ has only two non-zero terms, in which

case one is the negative of the other, say γ and −γ. Multiply ξ by 1
|γ| and we will have a vector, call

it ξ′, that has only 0’s, one 1 and one -1 as entries. We can use ξ′ to define a basis of V ; take the set

{X(ij)ξ
′ | i is the index of the negative entry of ξ′ and 1 ≤ j ≤ n, i 6= j} (if it was unclear, X(ij) refers to

the representation of the cycle (ij)). This set has n − 1 linearly independent vectors and is thus a basis.

However, because W is G-invariant, every vector in that set is also in W , so a complete basis for V is

contained in W which implies dim(W ) = dim(V ) .

Now assume ξ has more than 2 non-zero terms. Let j − 1 equal the index of the first non-zero entry of

ξ and let q be a vector such that qj−1 = 1, qj = −1 and 0 elsewhere; take the basis of V, B = {X(ji)q | 1 ≤

i ≤ n, i 6= j}. Let q1 = q, q2 = X(j j+1)q, q3 = X(j j+2)q and so on. Then we have

ξ = m1q1 +m2q2 + ...
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Let mkqk be the first term such that mk 6= 0. Then we have

ξ = mkqk +mk+1qk+1 + ...

Let

ξ′ = X(j−1 k)ξ = X(j−1 k)mkqk +X(j−1 k)mk+1qk+1 + ...

= −mkqk +X(j−1 k)mk+1qk+1 + ...

⇒ ξ + ξ′ = X(j−1 k)mk+1qk+1 +X(j−1 k)mk+1qk+1 + ...

Call the resulting vector ξ′′. Notice that the kth entry of ξ′′ is now 0 and that all entries with index less than

j−1 remain 0, so we have reduced the number of non-zero terms by at least 1. The previous method used in

class did not account for the situation in which ξ′′ = 0, but this does not occur here. X(j−1 k)ξ only differs

from ξ in the entries with index j − 1 and k, so all other entries will be doubled in ξ′′ and by assumption

there are at least 3 non-zero entries. Furthermore, this method will always leave at least 2 non-zero entries

in ξ′. To see this assume there is only one non-zero entry. However, that would imply the sum of the entries

cannot be 0, in which case V would not be a G-invariant subspace  . Thus we may repeat the process until

there are exactly 2 non-zero entries and then proceed as above.
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