Homework 2

due January 23, 2015 for presentation in class

1. An inversion in $\pi=\pi_{1} \pi_{2} \cdots \pi_{n} \in S_{n}$ in one-line notation is a pair π_{i}, π_{j} such that $i<j$ and $\pi_{i}>\pi_{j}$. Let $\operatorname{inv}(\pi)$ be the number of inversions of π.
(a) Show that if π can be written as a product of k transpositions, then $k \equiv \operatorname{inv}(\pi)(\bmod 2)$.
(b) Use part (a) to show that the sign of π is well-defined.
2. Let G act on S with corresponding permutation representation $\mathbb{C} S$. Prove the following:
(a) The matrices for the action of G in the standard basis (meaning, with the elements of S as the basis) are permutation matrices.
(b) If the character of this representation is χ and $g \in G$, then $\chi(g)$ is the number of fixed points of g acting on S.
3. SAGE exercise:

Write a SAGE program where you input n (any positive integer) and a partition λ of n, and the program returns the value of the character $\chi^{\operatorname{def}}(\lambda)$ for the defining representation.

