Homework 4

due February 6, 2015 for presentation in class

1. Let χ^{λ} be the character of M^{λ}. Find (with proof) a formula for $\chi^{\lambda}(\lambda)$, the value of χ^{λ} on the conjugacy class K_{λ}.
2. Let $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\ell}\right)$ and $\mu=\left(\mu_{1}, \mu_{2}, \ldots, \mu_{m}\right)$ be partitions. Characterize the fact that λ is covered by μ if the ordering used is (a) lexicographic, (b) dominance order.
3. Consider $S^{(n-1,1)}$, where each tabloid is identified with the element in its second row. Prove the following facts about this module and its character.
(a) We have

$$
S^{(n-1,1)}=\left\{c_{1} \mathbf{1}+c_{2} \mathbf{2}+\cdots+c_{n} \mathbf{n} \mid c_{1}+\cdots+c_{n}=0\right\} .
$$

(b) For any $\pi \in S_{n}$,

$$
\chi^{(n-1,1)}(\pi)=\text { number of fixed points of } \pi-1
$$

