MAT 180

Winter 2015

Homework 5

due February 13, 2015 for presentation in class

1. Let the group G act on the set S. We say that G acts *transitively* on S if, given any $s, t \in S$, there is a $g \in G$ such that gs = t. The group is *doubly* transitive if, given any $s, t, u, v \in S$ with $s \neq u$ and $t \neq v$, there is a $g \in G$ with gs = t and gu = v. Show the following:

- (a) The orbits of the action of G partition S.
- (b) The multiplicity of the trivial representation in $V = \mathbb{C}S$ is the number of orbits. Thus if G acts transitively, then the trivial representation occurs exactly once. What does this say about the module M^{λ} ?
- (c) If G is doubly transitive and V has character χ , then $\chi 1$ is an irreducible character of G. Hint: Fix $s \in S$ and use Frobenius reciprocity on the stabilizer $G_s \leq G$.
- (d) Use part (c) to conclude that in S_n the function

 $f(\pi) = ($ number of fixed points of $\pi) - 1$

is an irreducible character.

2. Show that every irreducible character of S_n is an integer-valued function.