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Abstract. In this manuscript we study braid varieties, a class of affine algebraic varieties associated
to positive braids. Several geometric constructions are presented, including certain torus actions on

braid varieties and holomorphic symplectic structures on their respective quotients. We also develop

a diagrammatic calculus for correspondences between braid varieties and use these correspondences
to obtain interesting stratifications of braid varieties and their quotients. It is shown that the max-

imal charts of these stratifications are exponential Darboux charts for the holomorphic symplectic

structures, and we relate these strata to exact Lagrangian fillings of Legendrian links.

1. Introduction

This article studies braid varieties, a class of affine algebraic varieties associated to positive braids, and
their relation to contact and symplectic geometry. First, the geometric properties of braid varieties are
studied, including the construction of torus actions and holomorphic symplectic structures on their
quotients. Then, we construct correspondences between these braid varieties by using certain moduli
spaces associated to weaves, a class of labeled planar diagrams. These geometric correspondences are
shown to induce valuable stratifications for braid varieties and their quotients, also unifying known
constructions of A. Mellit, in the case of character varieties, and M. Henry and D. Rutherford, in the
case of augmentation varieties.

The diagrammatic calculus based on weaves, presented in Section 5, allows for direct and explicit
computations, and we provide new constructions of embedded exact Lagrangian fillings for Legendrian
links through combinatorial methods. The main results of the article are Theorems 1.1, 1.4, 1.8 and
1.10, and several detailed examples are provided throughout the manuscript. In particular, we believe
that both the construction of a holomorphic symplectic structure on augmentation varieties, developed
in Section 3, and the relation between weaves and cluster structures, as discussed in Section 6, is of
value for contact and symplectic geometry.

1.1. Context. Legendrian links in contact 3–manifolds [1, 4, 38] are central in contact and symplectic
geometry. Legendrian fronts, immersed planar cuspidal curves, arise in topology, as Cerf diagrams
[2, 10, 24], in differential equations, as Stokes data for irregular singularities [5, 86, 87], and in analysis,
as wavefront sets [49, 50, 61]. In this article, we use that a positive braid β naturally gives rise to a
Legendrian link Λ(β) ⊆ (R3, ξst) [16, 38].

Associated to a Legendrian link Λ ⊆ (R3, ξst), there exist two geometrically defined moduli spaces:
the moduli space of microlocal sheaves in R2 microlocally supported at Λ [44, 56, 57], and the moduli
space of exact Lagrangian fillings L ⊆ (R4, ωst), with boundary ∂L = Λ [2, 38, 16]. Note that
the latter can be understood as the (geometric part of the) moduli space of objects of the Fukaya
category of (R4, ωst) partially wrapped at Λ. For the Legendrian links Λ(β) ⊆ (R3, ξst), these moduli
are algebraic stacks, often smooth algebraic varieties. The present manuscript studies a collection
of algebraic varieties associated to a positive braid β, including and generalizing these two moduli
spaces, and new correspondences between them. These algebraic correspondences are often induced
by geometric exact Lagrangian cobordisms between Legendrian links, and can in general be described
with a diagrammatic calculus, as we will show, building on the recent work of the first author with
E. Zaslow [19].

In summary: we introduce the class of braid varieties, study torus actions and their quotients, con-
struct correspondences and morphisms between them, and develop a diagrammatic calculus associated
to these correspondences. As we establish these results, we prove several theorems of interest, including
the fact that the augmentation variety associated to Λ(β) admits a holomorphic symplectic structure,
and explain the relation between A. Mellit’s stratification of character varieties [68] and the ruling
stratification of the augmentation variety [45, 46]. Note that holomorphic symplectic structures play
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a central role in the study of moduli spaces of connections [7, 8], and there ought to be a relation to
their symplectic structures through understanding the moduli stack of objects in the Aug+-category
[72] as a wild character variety [6, 85]. It should be noted that our diagrammatic calculus, which we
refer to as algebraic weaves, provides a combinatorial and explicit approach to these stratifications. In
addition, the strata are compatible with the holomorphic symplectic structure, the open toric charts
admitting (exponential) holomorphic Darboux coordinates.

Finally, the manuscript illustrates several new connections to braid varieties and algebraic weaves that
remain to be explored. For instance, a relation to cluster algebras is partially detailed at the end of
the article. We believe that the calculus of algebraic weaves, as described in the present manuscript,
may prove useful in the study of cluster algebras, character varieties (including irregular singularities),
subword complexes and Rouquier complexes, see Section 7.

1.2. Main Results. Let γ be a positive n-braid word [γ] ∈ Br+
n , γ = σi1 · · ·σi` , and π ∈ GL(n,C) a

permutation matrix. Associated to these data, we consider the braid variety

X0(γ;π) := {(z1, . . . , z`) : Bγ(z1, . . . , z`)π is upper-triangular} ⊆ C`,
where the matrix Bγ(z1, . . . , z`) ∈ GL(n,C[z1, . . . , z`]) is defined to be the matrix product

Bγ(z1, . . . , z`) := Bi1(z1) · · ·Bi`(z`),
and the matrices Bi(z) ∈ GL(n,C[z]) are defined by:

(Bi(z))jk :=


1 j = k and j 6= i, i+ 1

1 (j, k) = (i, i+ 1) or (i+ 1, i)

z j = k = i+ 1

0 otherwise;

, i.e. Bi(z) :=



1 · · · · · · 0
...

. . .
...

0 · · · 0 1 · · · 0
0 · · · 1 z · · · 0
...

. . .
...

0 · · · · · · 1


.

These matrices Bi(z) are referred to as braid matrices, and the only the non-trivial (2 × 2)-block is
at ith and (i+ 1)st rows. Braid matrices have appeared in a range of areas, starting with L. Euler’s
continuants [33], G. Stokes’ study of irregular singularities [87] (see P. Boalch’s [8]), M. Broué and J.
Michel’s work on Deligne-Lusztig varieties [11], P. Deligne’s braid invariants [25], and more recently
in T. Kálmán’s study of the Legendrian Contact DGA [54] (see also [20]) and A. Mellit’s results on
the curious Lefschetz property for character varieties [68], among others.

From our definition above, it is simple to see thatX0(γ;π) is isomorphic toX0(γ′;π) if [γ] = [γ′] ∈ Brn,
i.e. if two positive words γ, γ′ represent the same n-braid, the resulting braid varieties are isomorphic,
hence the name. In the course of the article, the permutation (matrix) π will often be the identity
π = Id = e ∈ Sn or π = w0 = (n n − 1 . . . 1) ∈ Sn. Let ∆ ∈ Br+

n be a positive braid lift of the
permutation w0, i.e. ∆ will be a braid word for the half-twist.1

The first result of the article establishes geometric properties of braid varieties, including the existence
of a torus action and their relation to the Floer-theoretically defined augmentation varieties [9, 23, 72].
It reads as follows:

Theorem 1.1. Let γ be a positive n-braid word [γ] ∈ Br+
n . Then the following statements hold:

(i) X0(γ∆; 1) ' X0(γ;w0)×C(n2), and X0(γ;w0) is non-empty if and only if the Demazure prod-
uct of γ equals w0. In this case, X0(γ;w0) is an irreducible complete intersection of dimension
`(γ)−

(
n
2

)
, and X0(γ∆; 1) is an irreducible complete intersection of dimension `(γ).

Suppose that there exists a positive n-braid word β such that γ = β∆. Then:

(ii) The braid variety X0(β∆;w0), and thus X0(β∆2; 1), is smooth.

(iii) There exists a free torus T -action on X0(β∆;w0) such that the quotient algebraic variety
X0(β∆;w0)/T is smooth and holomorphic symplectic.

1See Example 2.2 for our specific choice of positive braid word for ∆.
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(iv) There exists an isomorphism between X0(β∆;w0)/T and an augmentation variety Aug(β)
associated to the Legendrian link Λ(β). In particular, Aug(β) is a holomorphic symplectic
(smooth) affine variety.2

In addition, the open Bott-Samelson variety OBS(β) associated to β is isomorphic to the quotient

OBS(β) ∼= (GL(n,C)×X0(β; 1)) /B,
where B ⊆ GL(n,C) is the Borel subgroup of upper-triangular matrices. �

In Theorem 1.1.(iii), the dimension of the torus T does depend on the number of components in the
closure of β, see Section 2 for details. The different varieties and the torus action featured in Theorem
1.1 are presented in the course of the article, and the proof of this theorem is obtained by gathering
some the results we develop, such as Theorem 2.30, Theorem 2.6, Theorem 3.5 and Corollary 5.22.
See also Section 4.3 for the definition of Demazure product, and note that the Demazure product of
β∆ equals w0 for any β.

Remark 1.2. In the development of this article, we learned that the authors of [37] were also studying
holomorphic symplectic structures on augmentation varieties, working on a different construction with
plabic graphs. Their work is yet to appear but, once it does, it would be interesting to compare these
symplectic structures, as the constructions seem to be significantly different and a potential link
between weaves and plabic graphs could be fruitful. �

Theorem 1.1 discusses the absolute aspects of braid varieties. The study of such varieties also relies
crucially on their relative geometry: morphisms between different such braids varieties and, more
generally, correspondences, yield interesting (and useful) results. In order to study this relative
setting, we develop the diagrammatic calculus of algebraic weaves, which we summarize as follows.

Let Wn be the category defined as:

- Objects: Ob(Wn) are arbitrary positive braid words γ = σi1 · · ·σi` , [γ] ∈ Br+
n ,

- Morphisms: HomWn(γ, γ′) are compositions of the four elementary moves

σiσi → σi, σiσi+1σi ↔ σi+1σiσi+1, σiσj → σjσi (|i− j| > 1), and σiσi ↔ 1,

modulo certain relations, explicitly drawn in Section 4.2.

The morphisms in Wn will be represented diagrammatically as certain planar graphs with edges
decorated by simple transpositions si. (Namely, si are the Coxeter projections of the Artin braid
generators σi, 1 ≤ i ≤ n.) These planar graphs are referred to as weaves, following the notation in
[19, Section 2], and Wn will be called the category of algebraic weaves. The elementary moves above,
i.e. the building blocks for morphisms, can be drawn as follows:

There is also a dual 6-valent vertex corresponding to σiσi−1σi → σi−1σiσi−1 which we do not draw
here. An algebraic weave, obtained by (vertically) concatenating the models above, represents a
morphism from the braid word on the top to the braid word on the bottom. The composition of
weaves

HomWn(γ, γ′)×HomWn(γ′, γ′′) −→ HomWn(γ, γ′′)

is given by vertical stacking of these weave diagrams. See Figure 1 for an instance of a morphism.

2See Section 2.6 for the details on marked points.
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Figure 1. An algebraic weave in HomWn(γ, γ′) between the two positive 3-braids
γ = σ3

1σ2σ
3
1σ

2
1σ

3
1σ

3
2σ

3
1σ2σ

3
1 , on the top, and γ′ = σ3

2σ
2
1σ

2
2 , on the bottom. The color

code is that blue is labeled with the transposition s1 and red is labeled with s2.

Remark 1.3. Note that this diagrammatic category is in part similar to the categories appearing in
Soergel calculus [30, 31], but differs in several key aspects. In particular, in the category of algebraic
weaves there is no requirement that the two ways of getting from σiσiσi to σi, via the moves σiσi → σi,
are equivalent:

The difference between these diagrams will be referred to as a weave mutation. �

Let C be the category of algebraic varieties whose morphisms are correspondences [64]. The second re-
sult in this manuscript shows that the braid varieties, and their correspondences, provide a realization
of the weave category Wn:

Theorem 1.4. There exists a functor X0 : Wn −→ C such that:

(a) Objects: For a positive braid word γ ∈ Ob(Wn), the functor X0 associates the braid variety
X0(γ) := X0(β;w0).

(b) Morphism: For a weave Σ ∈ HomWn
(β0, β1), the functor associates a correspondence X0(Σ)

between X0(β0;w0) and X0(β1;w0), such that correspondences X0(Σ) and X0(Σ′) associated
to equivalent weaves Σ,Σ′ are isomorphic. (The algebraic variety X0(Σ) is in fact described
as a certain moduli space governed by the weave Σ.)

(c) Composition: Let Σ1 ∈ HomWn
(β0, β1), Σ2 ∈ HomWn

(β1, β2), and their composition Σ ∈
HomWn(β0, β2), which is obtained by concatenation of Σ1 and Σ2. Then the composition of
weaves corresponds to the diagram:
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X0(Σ)

X0(Σ1) X0(Σ2)

X0(β0;w0) X0(β1;w0) X0(β2;w0),

where the middle square is Cartesian.

(d) Let Σ ∈ HomWn
(β0, β1) be a weave with no caps, a cups and b trivalent vertices. Then the

correspondence X0(Σ) defines an injective map

X0(Σ) : Ca × (C∗)b ×X0(β1;w0) ↪→ X0(β0;w0).

Furthermore, the correspondences X0(Σ) are equivariant with respect to appropriate torus T -actions
and, using Theorem 1.1.(iv), yield correspondences between augmentations varieties.

The proof of Theorem 1.4 occupies the majority of Section 5, the equivariance statement being
discussed in Subsection 5.4.

Remark 1.5. The statements in Theorem 1.4.(a)-(c) are the algebraic analogues of the symplec-
tic geometric results obtained by the first author in [19]. In short, [19] shows that any weave
HomWn

(β0, β1) yields an exact Lagrangian cobordism L(Σ) ⊆ (R4, λst) from the Legendrian link
Λ(β1) ⊆ (R3, ξst) to Λ(β0). Equivalent weaves give rise to Hamiltonian isotopic Lagrangians, and
certain weaves yield embedded exact Lagrangian cobordisms. �

It should be noted that Theorem 1.4.(d) provides a unifying framework for many known stratifications,
including the ruling stratification in augmentation varieties [36, 45, 46], and the stratification by walks
in character varieties [68]. In particular, note that the algebraic variety X0(∆;w0) is a point, and
thus Theorem 1.4 implies the following:

Corollary 1.6. Let Σ ∈ HomWn
(γ,∆) be a weave with no caps, a cups and b trivalent vertices,

a, b ∈ N. Then the correspondence X0(Σ) yields an injective map

X0(Σ) : Ca × (C∗)b ↪→ X0(γ;w0), 2a+ b = `(γ)−
(
n

2

)
.

In fact, Theorem 5.21 will prove that weaves can be used to provide many stratifications of the braid
varieties X0(γ;w0), with strata of the form Ca× (C∗)b. In particular, weaves Σ ∈ HomWn

(γ,∆) with

no caps or cups yield (algebraic) toric charts (C∗)`(γ)−(n2) ⊂ X0(γ;w0) of maximal dimension, whose
complement can also be stratified with weaves. These weaves, with no caps or cups, are referred to
as Demazure weaves.

Remark 1.7. The manuscript also includes a new construction of weaves, coming from a class of
labeled triangulations. This construction uses Demazure products in a crucial manner and provides
a systematic (and combinatorial) mechanism to construct embedded exact Lagrangian fillings for
Legendrian links Λ(β) ⊆ (R3, ξst) which are obtained as the closure of a positive braid β. �

Finally, complementing Theorem 1.1 and Theorem 1.4, we give a geometric interpretation to these
toric charts associated to Demazure weaves Σ ∈ HomWn

(β∆,∆), as follows.

First, we show in Section 2.3 that these charts can be combinatorially obtained by opening the
crossings of the positive braid β. Indeed, Section 2.3 shows that there is an injective map

X0(β′∆;w0)× C∗ ↪→ X0(β∆;w0),

if the positive braid word β′ is obtained from β by removing exactly one crossing. Therefore, opening
the crossings in β one by one, in some order, yields a toric chart in X0(β∆;w0). Different orders might
yield identical or different toric charts. For instance, for a 2-strand braid β = σn1 , there are n! possible
orderings and one obtains a Catalan number Cn of toric charts. In particular, in this correspondence,
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each toric chart is obtained by exactly one 312-pattern avoiding permutation. Regarding this relation,
between toric charts and openings of crossings, we establish the following result:

Theorem 1.8. Let [β] ∈ Br+
n be a positive braid and β = σi1 · σi2 · . . . · σil positive braid word.

Consider an ordering ρ ∈ Sl for the crossings of β. Then:

(i) There exists a (Demazure) weave Σρ such that the sequence of crossing openings according to
ρ is realized by the weave Σρ. Conversely, any Demazure weave Σ is equivalent to opening
crossings for some ordering ρ ∈ Sl, i.e. there exists ρ ∈ Sl such that Σ is equivalent to Σρ.

(ii) Two toric charts C1, C2 ⊆ X0(β∆;w0) associated to different orderings of the crossings are
represented by weaves Σ1,Σ2 such that Σ1,Σ2 are related by a sequence of mutations. In
addition, the union of all such toric charts covers X0(β∆;w0) up to codimension 2.

The first item is proven in Lemma 5.6 and Theorem 5.8, and the proof of the codimension-2 cover
is established in Theorem 2.18. The mutation equivalence of any weaves yielding toric charts follows
from the more general Theorem 4.6, which states that, under technical conditions that are satisfied in
the weaves pertaining to Theorem 1.8, any two Demazure weaves between the same two braid words
are related by a sequence of equivalence moves and mutations. Note that Theorem 4.6 is a translation
of a result of B. Elias [29] to our weaves framework.

Remark 1.9. Note that both the openings of crossings and mutations can be described in terms of
braid words. Indeed, consider a braid word σiuσj with σiu = uσj , i.e. (σi, σj) is deletion pair in the
notation of [47]. Then, we can consider two different weaves:

σiuσj

σiσiu uσjσj

σiu uσj

In this diagram, the left weave σiuσi → uσj corresponds to the opening of the crossing σi, and the
right weave σiuσi → uσj to opening the crossing σj . Suppose that the positive braid word u can be
broken down in the middle u = u1σku2. Then we obtain:

σiuσj = σiu1σku2σj , σiu1 = u1σk, σku2 = u2σj ,

and the two associated weaves are either related by a sequence of mutations, or they are equivalent.
Theorem 1.8 ensures that any Demazure weave is equivalent to a weave composed from such pieces.�

We conclude by giving a topological interpretation to these toric charts. Given a weave Σ, we consider
the associated spectral curve L(Σ), constructed as a branched cover of the plane ramified along the
trivalent vertices of the weave, following [19, 40, 85]. Then we show the following result:

Theorem 1.10. Let β be a positive braid word, and Σ ∈ HomWn
(β∆,∆) a Demazure weave. Then,

the following two statements hold:

(a) The toric chart C(Σ) ⊆ Aug(β) corresponding to the weave Σ is naturally isomorphic to
Spec(Z[H1(L(Σ),Z)]) × S, where S is a 2(k − 1)-dimensional symplectic torus that does not
depend on Σ and k is the number of components of the closure of β.

(b) The restriction of the symplectic form to the toric chart C(Σ) ∼= Spec(Z[H1(L(Σ),Z)]) corre-
sponds to the intersection form on H1(L(Σ),Z). �

Remark 1.11. The article [37] endows X0(β∆, w0) and Aug(β) with the structure of cluster varieties,
with toric charts being cluster charts, and mutations corresponding to cluster mutations. To be
precise, [37] only works in characteristic 2, but can be lifted to characteristic 0 by using the first
author’s upcoming work [20]. We expect that the cluster coordinates correspond to some natural
bases in H1(L(Σ)). (The difference between cluster X-coordinates and cluster A-coordinates is yet
to be understood in the context of augmentation varieties.) It would be interesting to describe these
bases and cluster coordinates directly from a weave, see Section 6 for a more detailed discussion. �
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2. Braid Varieties and Augmentation Varieties

In this section we introduce and start studying braid varieties. Part of Theorem 1.1 is proven in
this section, with the holomorphic symplectic structure being discussed in Section 3. This section
also discusses the torus actions on braid varieties and their quotients, which relate to augmentations
varieties.

Notations for the braid group. Let n ∈ N, the braid group Brn on n-strands is presented with
n− 1 generators σi, i ∈ [1, n− 1], and relations

(2.1) σiσi+1σi = σi+1σiσi+1, σiσj = σjσi for |i− j| ≥ 2, i, j ∈ [1, n− 1].

In this article, we mainly work with the positive braid monoid Br+
n ⊆ Brn generated by the nonnegative

powers of the generators σi, i ∈ [1, n−1]. By definition, a (positive) braid word is a product expression
of non-negative powers of the generators σi where no relations are being applied. For instance, the
two braid words σ1σ2σ3σ1 and σ2σ1σ2σ3 are distinct as braid words and represent the same element
[σ1σ2σ3σ1] = [σ2σ1σ2σ3] ∈ Br+

4 .

The symmetric group Sn is the Coxeter group associated to Brn: it is generated by the transpositions
si = (i i+ 1), subject to relations (2.1) above and the additional relation s2

i = 1, for all i ∈ [1, n− 1].
By definition, a reduced expression for a permutation w ∈ Sn is a minimal length expression for
the element w as a product of the generators si, i ∈ [1, n − 1]; the length `(w) is defined as the
length of such reduced expression. It is well-known that any two reduced expressions are related by
a sequence of braid moves (2.1). Therefore, one can define a positive braid lift of w ∈ Sn to Br+

n by
choosing an arbitrary reduced expression and replacing each generator si with the generator σi, for
each i ∈ [1, n− 1]. We will refer to such positive braid lifts as reduced braid words. To ease notation,
we interchangeably use σi, si, and sometimes simply i for the braid group generators, i ∈ [1, n− 1].

2.1. Braid matrices and braid varieties. Braid varieties are affine algebraic varieties cut out by
matrix equations. Their definition relies on the following notion:

Definition 2.1. Let n ∈ N, i ∈ [1, n − 1] ∈ N and z a (complex) variable. The braid matrix
Bi(z) ∈ GL(n,C[z]) is defined as

(Bi(z))jk :=


1 j = k and j 6= i, i+ 1

1 (j, k) = (i, i+ 1) or (i+ 1, i)

z j = k = i+ 1

0 otherwise;

, i.e. Bi(z) :=



1 · · · · · · 0
...

. . .
...

0 · · · 0 1 · · · 0
0 · · · 1 z · · · 0
...

. . .
...

0 · · · · · · 1


.

Given a positive braid word β = σi1 · · ·σir ∈ Br+
n and z1, . . . , zr complex variables, we define the

braid matrix Bβ(z1, . . . , zr) ∈ GL(n,C[z1, . . . , zr]) to be the product

Bβ(z1, . . . , zr) = Bi1(z1) · · ·Bir (zr).

�

For instance, it follows from Definition 2.1 that Bβ(0, . . . , 0) is simply the permutation matrix as-
sociated to the Coxeter projection π(β) ∈ Sn. Thus, in a sense, braid matrices are deformations of
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permutation matrices. It is a simple computation to verify the two relations:

(2.2) Bi(z1)Bi+1(z2)Bi(z3) = Bi+1(z3)Bi(z2 − z1z3)Bi+1(z1), ∀i ∈ [1, n− 2],

and Bi(z1)Bj(z2) = Bj(z2)Bi(z1), for |i− j| ≥ 2. Here is a first pair of useful examples:

Example 2.2. Consider the positive braid word ∆ = (σ1σ2 · · ·σn−1)(σ1 · · ·σn−2) · · · (σ1σ2)σ1, which
represents a half-twist. Its associated braid matrix is

B∆

(
z1, . . . , z(n2)

)
=


0 0 . . . 1
0 . . . 1 z1

... · · · · · · zn−2

1 z(n2)
· · · zn−1

 .

Let ∆′ ∈ Br+
n be any positive braid lift of the longest element w0 of Sn. It then follows from the braid

relation (2.2) that

B∆′

(
z1, . . . , z(n2)

)
=


0 0 . . . 1
0 . . . 1 z2,n

... · · · · · · zn−1,n

1 zn,2 · · · znn

 ,

where the zi,j are algebraically independent polynomials in C[z1, . . . , z(n2)
]. �

Lemma 2.3. Let ∆2 ∈ Br+
n represent the full-twist braid, i.e. the square of the positive braid lift of

w0 ∈ Sn to the braid group. Then its braid matrix can be decomposed as

B∆2

(
z1, . . . , z(n2)

, w1, . . . w(n2)

)
= LU =


1 0 . . . 0
c21 1 . . . 0
... · · ·

. . . 0
cn1 · · · · · · 1




1 u12 . . . u1n

0 1 . . . u2n

0 · · ·
. . . un−1,n

0 · · · · · · 1

 ,

where cij ∈ C[z1, . . . , z(n2)
] and uij ∈ C[w1, . . . , w(n2)

] are algebraically independent.

Proof. By Example 2.2, B∆ = Lw0 = w0U . Hence B∆2 = B∆B∆ = Lw0w0U = LU . �

Let us now use braid matrices to define the central object of interest in this manuscript:

Definition 2.4. Let β = σi1 · · ·σir ∈ Br+
n be a positive braid word. The braid variety X0(β) ⊆ Cr

associated to β is the affine closed subvariety given by

X0(β) := {(z1, . . . , zr) : Bβ(z1, . . . , zr) is upper-triangular} ⊆ Cr.
Let π ∈ Sn be considered as a permutation matrix. We define the braid variety X0(β;π) ⊆ Cr as

X0(β;π) := {(z1, . . . , zr) : Bβ(z1, . . . , zr)π is upper-triangular} ⊆ Cr.
It follows from the braid relation (2.2) that different presentations of the same braid [β] ∈ Brn yield
algebraically isomorphic braid varieties. �

Let us give some simple examples of braid varieties.

Example 2.5. Consider the positive braid associated to the full twist β = ∆2. Lemma 2.3 implies that

X0(∆2) is given by the equations cij = 0, and thus the braid variety is the affine space X0(∆2) ∼= C(n2).
Similarly, Example 2.2 implies that the braid variety X0(∆;w0) = {pt} is a point. �

In fact, the computation in Example 2.2 shows that X0(β;w0) admits a closed embedding into X0(β ·
∆), and the image is given by the equations zij = 0. In general, if Π ∈ Br+

n is a positive lift of a
permutation π ∈ Sn then X0(β;π) embeds into X0(β ·Π). Let us now establish the general dimension
and smoothness for braid varieties:

Theorem 2.6. Let β ∈ Br+
n be a positive braid of length `(β). Then, the braid varieties X0(β ·∆;w0)

and X0(β ·∆2) are smooth of dimension `(β) and `(β) +
(
n
2

)
, respectively. In addition, X0(β ·∆2) '

X0(β ·∆;w0)× C(n2).
8



Proof. The variety X0(β ·∆2) is defined by the condition that Bβ·∆2 is an upper triangular matrix.
By Lemma 2.3, we get

Bβ·∆2 = BβB∆2 = BβLU = Bβ·∆w0U.

This is upper-triangular if and only if Bβ·∆w0 is upper-triangular, which is precisely the condition

defining X0(β ·∆;w0). Therefore, X0(β ·∆2) ' X0(β ·∆;w0)×C(n2), with C(n2) being the coordinates
on the upper uni-triangular matrix U . Next, note that Bβ·∆w0 = BβL and we can write BβL = U ′,
then

B−1
β = L(U ′)−1.

Note that the existence of an LU decomposition M = LU ′′ is an open condition on M , namely the
non-vanishing of principal minors; also, if an LU decomposition exists, it is unique provided that L
has 1s on the diagonal. Therefore X0(β ·∆;w0) is isomorphic to an open subset in the affine space
C`(β). Hence, it is smooth of dimension dimX0(β ·∆;w0) = `(β), and X0(β ·∆2) is also smooth of
dimension dimX0(β ·∆2) = `(β) +

(
n
2

)
, as required. �

Note that a similar smoothness result was proved in [84, Theorem 2.30]. The braid varieties associated
to 2-stranded braids β ∈ Br+

2 are smooth varieties whose equations closely relate to Euler’s continuants
[33]. Let us consider the following instance:

Example 2.7. (Trefoil Knot) Consider β = σ3
1 ∈ Br+

2 , whose (−1)-framed closure yields the (max-tb)
right-handed trefoil knot. The braid variety X0(σ5

1) = X0(σ3
1 ·∆2) is defined by the equation:

B(z1)B(z2)B(z3)B(z4)B(z5) is upper-triangular.

This condition can written as

B(z1)B(z2)B(z3)

(
1 0
z4 1

)(
1 z5

0 1

)
is upper-triangular,

and equivalently

B(z1)B(z2)B(z3)

(
1 0
z4 1

)
=

(
z2 + (z2z3 + 1)z4 z2z3 + 1

z1z2 + (z1 + (z1z2 + 1)z3)z4 + 1 z1 + (z1z2 + 1)z3

)
upper-triangular.

Note that we have (
1 0
z4 1

)
=

(
0 1
1 z4

)(
0 1
1 0

)
=

(
0 1
1 z4

)
w0,

and thus the condition above, in the coordinates (z1, z2, z3, z4) ∈ C4, is in fact the equation for X0(σ3
1 ·

∆;w0). This readily implies that X0(σ3
1 · ∆2) is isomorphic to X0(σ3

1 · ∆;w0) times an affine line
C = Spec(C[z5]), as generally proven in Theorem 2.6. It thus suffices to understand X0(σ3

1 ·∆;w0).
For that, consider the equation above:

(2.3) X0(σ3
1 ·∆;w0) = {(z1, z2, z3, z4) ∈ C4 : 1 + z1z2 + z4(z1 + z3 + z1z2z3) = 0} ⊆ C4,

which cuts out a hypersurface, and should be smooth according to Theorem 2.6. Indeed, note that we
must have z1 + z3 + z1z2z3 6= 0, otherwise the defining Equation 2.3 would imply 1 + z1z2 = 0, and
in these constraints z1 = z1 + z3(z1z2 + 1) = z1 + z3 + z1z2z3 = 0. This is a contradiction; thus,
z1 +z3 +z1z2z3 6= 0 in X0(σ3

1 ·∆;w0). In consequence, X0(σ3
1 ·∆;w0) is isomorphic to the open subset

X0(σ3
1 ·∆;w0) = {(z1, z2, z3) ∈ C3 : (z1 + z3 + z1z2z3) 6= 0} ⊆ C3,

since the coordinate z4 can be obtained uniquely from any points (z1, z2, z3) ∈ C3 in this subset. This
shows that X0(σ3

1 ·∆;w0) is smooth.

In fact, this provides a rather simple description for this braid variety: it is the open set foliated by the
smooth hypersurfaces (z1 + z3 + z1z2z3) = a, a ∈ C∗, which are (in)famous for a variety of reasons,
including their appearance in the isomonodromic problem for Painlevé I with a 5/2-singularity at
infinity, the study of the augmentation variety for the trefoil, and mirror symmetry for the 2-torus
with two transversal Lagrangian 2-disks attached [15, 18], being an instance of a self-mirror affine
surface. In particular, an arboreal Lagrangian 3-skeleton for the Stein 3-manifold X0(σ3

1 · ∆;w0) is
depicted in Figure 2. �
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Figure 2. An arboreal Lagrangian 3-skeleton for the Stein structure of the (complex)
3-dimensional braid variety X0(σ3

1 · ∆;w0) associated to the trefoil braid β = σ3
1 ∈

Br+
2 . The skeleton consists of a circle S1 times a 2-torus T2 with two 2-disks attached

to it along the curves (1, 0), (0, 1) ∈ H1(T2,Z).

Remark 2.8. In the case of positive braids associated to algebraic knots K ⊆ R3, the braid varieties
can be similarly described symplectically using the arboreal skeleta constructed in [15]. In general,
following the lines of Example 2.7, the braid varieties for (2, n)-torus links can be understood rather
immediately, their computation often reducing to the understanding of a certain hypersurface. �

Note that the braid variety X0(σ3
1 · ∆;w0) in Example 2.7 contains an S1-factor in its Lagrangian

skeleton, and the Stein surface X = {z1 + z3 + z1z2z3 = 1} ⊆ C3 is described by the Lagrangian
2-skeleton given by Figure 2 without the S1-factor. Since we can write

X0(σ3
1 ·∆;w0) ∼= {(z1, z2, z3, t) : (z1 + z3 + z1z2z3)t = 1} ⊆ C3 × C∗,

there exists a C∗-action on X0(σ3
1 · ∆;w0) whose quotient yields the affine surface X. The feature

of admitting certain (complex) torus actions with interesting quotients is a general property of braid
varieties, as we will now see.

2.2. Torus actions on braid varieties. Let [β] ∈ Br+
n be a positive braid with a fixed positive

braid word β. Consider the (Cartan) subgroup T ∼= (C∗)n ⊆ GL(n,C) of diagonal matrices. In this
section we construct an algebraic T -action on the braid variety X0(β). First, we observe that

(2.4)

(
t1 0
0 t2

)(
0 1
1 z

)
=

(
0 1
1 t2

t1
z

)(
t2 0
0 t1

)
.

Let Dt = diag(t1, . . . , tn) ∈ T be a diagonal matrix. In general, we have DtBi(z) = Bi

(
ti+1

ti
z
)
Dsi(t),

for si the Coxeter projection of σi. Thus

(2.5) DtBi1(z1) · · ·Bir (zr) = Bi1(c1z1) · · ·Bir (crzr)Dw(t),

where r = `(β), ck = twk(ik+1)t
−1
wk(ik), wk = si1 · · · sik−1

and w = wr+1 is the permutation correspond-

ing to β. The torus actions we study are defined as follows:

Definition 2.9. Let β be a positive n-braid word of length r = `(β). The torus T-action of T ∼= (C∗)n
on affine space C`(β) is given by

t.(z1, . . . , zr) := (c1z1, . . . , crzr), t ∈ T, (z1, . . . , zr) ∈ Cr,

where ci are defined as above, i ∈ [1, r]. Note that this torus T-action preserves the braid variety
X0(β) ⊆ Cr thanks to relation 2.5.

By definition, the T -torus action T ×X0(β) −→ X0(β) on the braid variety X0(β) is the quotient of
the restriction of the above T-action to X0(β) by the diagonal subtorus C∗ ⊆ T, i.e. T := T/C∗diag ∼=
(C∗)n/C∗ ∼= (C∗)n−1. The T-action descends to the T -action quotient since the diagonal subtorus
(t, . . . , t) ⊆ T acts trivially on X0(β). �

The torus action on Cr in Definition 2.9 depends on the choice of braid word β. Nevertheless, if β and
β′ are two positive presentations of the same braid, [β] = [β′] ∈ Br+

n , then there exists an algebraic
isomorphism X0(β) ∼= X0(β′) which is equivariant with respect to this torus action. In addition, the
T -action preserves the product decomposition

X0(β ·∆2) ∼= X0(β ·∆;w0)× C(n2)
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established in Theorem 2.6. Let us study this T -action on braid varieties X0(β).

Let c(β) be the number of cycles in the cycle decomposition of the Coxeter projection π(β) ∈ Sn, i.e.
the number of cycles of β understood as a permutation. The braid [β] ∈ Brn closes up3 to a knot in
R3 if and only if c(β) = 1, and there are (n−1)! such permutations π(β) ∈ Sn. For a braid associated
to a knot, we have the following result:

Lemma 2.10. Let β be a positive braid word, [β] ∈ Br+
n , with c(β) = 1. Then the torus T -action of

T ∼= (C∗)n−1 on the braid variety X0(β) is free.

Proof. Let (z1, . . . , zr) ∈ X0(β) and assume t.(z1, . . . , zr) = (z1, . . . , zr) for some t ∈ (C∗)n. In
particular, we have that Bβ(z) = Bβ(t.z). Thanks to Equality (2.5), we have that DtBβ(z)D−1

w(t) =

Bβ(z). Since z ∈ X0(β), the matrix Bβ(z) is upper triangular, and therefore its diagonal entries must
be nonzero, as det(Bβ(z)) = ±1. From the equation

DtBβ(z)D−1
w(t) = Bβ(z),

it follows that tit
−1
w(i) = 1 for every i = 1, . . . , n. Given that c(β) = 1, we must have that ti = tj for

all i, j and the result follows. �

Corollary 2.11. Let β be a positive braid word, [β] ∈ Br+
n , with c(β) = 1. Then the quotients of the

braid varieties X0(β · ∆2)/T and X0(β · ∆;w0)/T are smooth and of dimension `(β) +
(
n
2

)
− n + 1

and `(β)− n+ 1, respectively. �

The hypothesis c(β) = 1 in Lemma 2.10 is needed, as the T -actions on the braid varieties will in
general fail to be free. For instance, consider the 2-stranded braid β = σ4

1 , associated to the Hopf link
under the (−1)-framed closure, and its braid variety

X0(β) ∼= {(z1, z2, z3, z4) ∈ C4 : z1 + z3(1 + z1z2) = 0}.
The torus T -action scales z1 and z3 by t ∈ T ∼= C∗, and scales z2 and z4 by t−1. Hence, it has a fixed
point (z1, z2, z3, z4) = (0, 0, 0, 0) ∈ X0(β). The following remark explains how to proceed in the case
that c(β) 6= 1.

Remark 2.12. Consider a positive braid word β such that [β] ∈ Br+
n closes up to a link with k

connected components, i.e. c(β) = k. Then, we can construct several subtori of T that act freely
on X0(β) as follows. Let O1, . . . , Ok be the orbits for the action of w on {1, . . . , n}, where w is the
permutation associated to β. Choose a representative jm ∈ Om for every m = 1, . . . , k. Let T ′ ⊆ T
be the torus defined by the extra equations tj1 = tj2 = · · · = tjk , noting that T ′ ∼= (C∗)n−k. The same
argument as in the proof of Lemma 2.10 shows that T ′ acts freely on X0(β). Note that we obtain
that the quotient braid variety X0(β ·∆;w0)/T ′ is a smooth variety of dimension `(β)− n+ k, and a
similar result holds for the quotient X0(β ·∆2)/T ′. �

This concludes the discussion on the torus T -action on X0(β). The geometric structures discussed
during the article, e.g. stratifications and holomorphic symplectic structures, are compatible with
these torus T -actions, and will be studied for the braid varieties X0(β) and their quotients X0(β)/T .

2.3. Toric charts in braid varieties. In this subsection, we construct a codimension-0 toric chart
Tτ(β) ⊆ X0(β ·∆;w0) associated to an (arbitrary) ordering τ(β) ∈ Sl(β) of the crossings of the positive
braid word β. For that, consider two n-braid words

β = σi1σi2 · . . . · σik−1
σikσik+1

· . . . · σil , β′ = σi1σi2 · . . . · σik−1
σik+1

· . . . · σil ,
i.e. β′ is obtained from β by removing the kth crossing σik . We will construct a rational map
X0(β ·∆2) 99K X0(β′ ·∆2)×C∗ that identifies the latter variety with an explicit open set in X0(β ·∆2).

First, we start with the following simple:

Lemma 2.13. Let L and U be two invertible lower- and upper-triangular matrices, respectively. Then

there exist lower- and upper-triangular matrices L̃ and Ũ such that

Bi(z)U = ŨBi

(
ui+1,i+1z + ui,i+1

ui,i

)
, LBi(z) = Bi

(
ui+1,i+1z + li+1,i

li,i

)
L̃.

3Either through the rainbow or (−1)-framed closure.
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Moreover, ũi,i+1 = l̃i+1,i = 0 and ũk,k = usi(k),si(k) for every k.

Proof. We prove the statement for the upper-triangulation matrix U , the case of L is proven analo-
gously. By setting ũi,i+1 = 0, one obtains the system of equations:

ũj,i = uj,i+1, ũj,i + ũj,i+1(z + ui,i+1) = uj,i+1, (j < i),

ũi,j = ui+1,j , ũi+1,j = ui,j + zui+1,j , (j > i+ 1).

This system can be readily solved. Indeed, we first deduce that ũk,k = uk,k if k 6= i, i + 1. From
the equations ui,i + zui+1,i = ũi+1,i+1, we obtain ũi+1,i+1 = ui,i. Finally, one concludes that ũi,i =
ui+1,i+1. �

They key algebraic equality that incarnates opening a crossing σi in a positive braid word, in terms
of braid matrices, reads

(2.6) Bi(z) = Ui(z)Di(z)Li(z),

where the variable z ∈ C∗ associated to that crossing σi is now assumed to be non-zero. In this
equation, we have used the matrices

Ui(z) :=

(
1 z−1

0 1

)
, Di(z) :=

(
−z−1 0

0 z

)
, Li(z) :=

(
1 0
z−1 1

)
,

understood as being the (2 × 2)-block matrices placed in i-th and (i + 1)-st row and column. Let
us now illustrate how the process of opening a crossing occurs at the level of general braid matrices,
as follows. Consider the positive braid word β = β1σiβ2 and the braid word β′ = β1β2 obtained by
opening (i.e. removing) the explicit crossing σi between β1, β2. In order to apply Equation 2.6 we
must assume that the variable z associated to the crossing σi is non-vanishing, and we always do so.
Then we write

Bβ = Bβ1
(z1, . . . , zr−1)Bi(z)Bβ2

(zr+1, . . . , z`) = Bβ1
Ui(z)Di(z)Li(z)Bβ2

,

and use both Equation (2.4) and Lemma 2.13 to slide the middle matrices to the sides, U,D to the
left and L to the right. This results in a decomposition of the form

Bβ = U ′D′Bβ1(z′1, . . . , z
′
r−1)Bβ2(z′r+1, . . . , z

′
`)L
′ = U ′D′Bβ′(z

′
1, . . . , z

′
r−1, z

′
r+1, . . . , z

′
`)L
′

where U ′, L′ and D′ are some explicit upper (lower) uni-triangular and diagonal matrices, respectively,
and z′1, . . . , z

′
r−1, z

′
r+1, . . . , z

′
` are polynomial functions on z1, . . . , zr−1, z

±1
r , zr+1, . . . , z`. Note that

Bβ(z)L1 is upper-triangular for some lower-triangular matrix L1 if and only if Bβ′(z
′)L′L1 is upper-

triangular. These are the first ingredients for the construction of the rational map Ωσi : X0(β∆2) 99K
X0(β′∆2)× C∗.
For the second ingredient, we consider a point (z1, . . . , z`, cij) ∈ X0(β · ∆2). By Theorem 2.6, this
is equivalent to Bβ(z)L(cij) being upper triangular. Now we open a crossing, so we assume zi 6= 0
is non-vanishing: using the decomposition above we obtained that Bβ′(z

′
1, . . . , z

′
r−1)L′L(cij) is upper

triangular. Since L′L(cij) is lower triangular with 1’s in the diagonal, we can write L′L(cij) = L(c′ij),

where c′ij are polynomial functions on z−1
r , zr+1, . . . , z`, cij . These polynomial functions are the second

ingredient. In summary, we obtain:

Definition 2.14. Consider the positive braid word β = β1σiβ2 of length ` = l(β), β′ = β1β2, and
suppose that the complex variable zi associated to the (middle) crossing σi is non-vanishing. By
definition, the rational map Ωσi associated to opening the crossing σi is

Ωσi : X0(β∆2) 99K X0(β′∆2)× C∗, (z1, . . . , z`, cij) 7→ (z′1, . . . , z
′
r−1, z

′
r+1, . . . , z

′
`, c
′
ij , z

−1
r ),

where z′i ∈ C[z1, . . . , zr−1, z
±
r , zr+1, . . . , z`], c

′
ij ∈ C[z−1

r , zr+1, . . . , z`, cij ] are the polynomial functions
defined as above. �

In the same notation and hypothesis as above, we have that:

Lemma 2.15. The rational map

Ωσi : X0(β∆2) 99K X0(β′∆2)× C∗

restricts to an isomorphism between the open locus {zr 6= 0} ⊆ X0(β ·∆2) and X0(β′ ·∆2)× C∗.
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Proof. From the construction, see e.g. Lemma 2.13, if we know z′1, . . . , z
′
r−1, z′r+1, . . . , z

′
` and zr then

we can reconstruct z1, . . . , z`, provided zr 6= 0. It remains to show that, if we also know c′ij then
we can reconstruct cij as well. For that, we just notice that we can reconstruct L′, and we have the
equation L(cij) = (L′)−1L(c′ij). �

There are two fundamental properties of these rational maps Ωσi : they can be iterated, and they are
compatible with the torus T -action. This is summarized in the following

Proposition 2.16. Let β be a positive n-braid word. For each ordering τ(β) ∈ S`(β) of the crossings

of β, there exists an open set Tτ(β) ⊆ X0(β ·∆2) such that:

(i) Tτ(β)
∼= (C∗)`(β) ×X0(∆2) = (C∗)`(β) × C(n2).

(ii) Tτ(β) is given by the nonvanishing of Laurent polynomials in zr1 , z
′
r2 , z

′′
r3 , . . . , z

(`−1)
r` ; these lat-

ter variables can be taken as coordinates of the (C∗)`(β)-factor.

(iii) Tτ(β) is stable under the torus (C∗)n−1-action on X0(β ·∆2).

Proof. Given the discussion prior to the statement, the only assertion that needs a proof is the

stability under the torus action. For that, we need to show that zr1 , z
′
r2 , . . . , z

(`−1)
r` are all homogeneous

under the (C×)n−1-action. This will be proven in Lemma 2.22 and Lemma 2.23 below4, and their
corresponding analogues in the case of lower-triangular matrices. �

Proposition 2.16 and the relation between the braid varieties X0(β ·∆2) and X0(β ·∆;w0), as estab-
lished in Theorem 2.6, readily imply the following result:

Corollary 2.17. Let β be a positive n-braid word. For each ordering τ(β) ∈ S`(β) of the crossings of

β, there exists an open set Tτ(β) ⊆ X0(β ·∆;w0) which is isomorphic to a torus Tτ(β)
∼= (C∗)`(β) and

stable under the torus (C∗)n−1-action X0(β ·∆;w0). �

The union of the toric charts Tτ(β) in Corollary 2.17, as τ(β) ∈ S`(β) ranges through all the possible
orderings, does not necessarily cover the entire variety X0(β ·∆;w0). Fortunately, we can show that
it does cover up to codimension-2:

Theorem 2.18. Let β be a positive braid word. The complement

X0(β ·∆;w0) \

 ⋃
τ(β)∈S`(β)

Tτ(β)

 ⊆ X0(β ·∆;w0)

has codimension at least 2.

Proof. Let us prove this by induction on the length `(β) ∈ N. The base case, `(β) = 0 holds, as
X0(∆;w0) = {pt}, see Example 2.5. Note that for the case `(β) = 1, β = σi for some i ∈ [1, n − 1],
and X0(β∆;w0) is defined by the condition that Bi(z)

−1 admits an LU -decomposition. (See the proof
of Theorem 2.6.) This is equivalent to the non-vanishing z 6= 0 and thus X0(β ·∆;w0) = C∗; thus the
statement also holds.

For the induction step, we assume the statement to be true for length l ∈ N and suppose that
`(β) = ` + 1. Let U1 := {z1 6= 0} and U2 := {z2 6= 0} and let β′, β′′ be the braids we obtain by
opening the first and second crossings of β, respectively. In particular, U1 = X0(β′ ·∆;w0)×C∗ and
U2 = X0(β′′ ·∆;w0)×C∗. By the induction assumption, U1 and U2 can be covered up to codimension-2
by opening crossings in the positive braids β′, β′′, respectively. Moreover, the complement of U1 ∪U2

is {z1 = 0} ∩ {z2 = 0}, which has codimension 2, and the required result follows. �

The toric charts Tτ(β) ⊆ X0(β · ∆;w0) used in Corollary 2.17 and Theorem 2.18 are constructed in
Proposition 2.16, whose proof we now complete.

4Both lemmas are independent of the intervening material.
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2.4. Proof of Proposition 2.16. Let us state and prove Lemma 2.22 and Lemma 2.23, which will
conclude Proposition 2.16. For that, we use of the following notion:

Definition 2.19. Let T be the torus (C∗)n−1 = (C∗)n/C∗, and identify its character lattice with
X(T ) = {(a1, . . . , an) ∈ Zn |

∑
ai = 0}. Assume that T acts rationally on a domain R, and let

U = (ua,k) ∈ Mn(R), w ∈ Sn. By definition, a matrix U is said to be w-admissible if ua,k is
homogeneous of weight

wt(ua,k) = ew(a) − ew(k)

for every a, k ≤ n. �

Remark 2.20. (Characterization of w-admissibility) Note that we have three natural actions of the
torus T on Mn(R):

(1) Component-wise: (t.U)a,k = t.ua,k. (This is an algebra action.)
(2) By left multiplication: (tU)a,k = ta.ua,k.
(3) By right multiplication: (Ut)a,k = tk.ua,k.

Then, U is w-admissible if and only if t.U = twU(tw)−1. �

Before we proceed with Lemma 2.22, here is an example of a w-admissible matrix:

Example 2.21. Let w ∈ Sn be any permutation and assume z0 is an invertible element of weight
wt(z0) = ew(i+1) − ew(i). Then the matrix Ui(z0) = Id+ z−1

0 Ei,i+1 is w-admissible. �

Consider a w-admissible matrix U ∈ Mn(R) and z an element of weight wt(z) = ew(a) − ew(b) +
ew(m) − ew(k) for some a, b,m, k = 1, . . . , n. Then the element ua,k + zub,m is homogeneous. The
salient property of admissible matrices, which motivates their definition, is that they allow us to
construct homogeneous elements for the torus action, as the following result shows.

Lemma 2.22. Let w ∈ Sn be a permutation, U0 be an invertible upper-triangular w-admissible matrix,
and β = σi` · · ·σi1 a positive braid word. Consider algebraically independent variables z`, . . . , z1 with
weights

wt(zk) = −ewk−1(ik+1) + ewk−1(ik).

where wd = wsi1 · · · sid , and inductively define5 the upper triangular matrices U1, . . . U ` and elements
z′`, . . . , z

′
1 ∈ R[z`, . . . , z1] by the equation

Bid+1
(zd+1)Ud = Ud+1Bid+1

(z′d+1),

Then the following two facts holds:

(a) The elements z′1, . . . , z
′
`+1 are all homogeneous with respect to the torus T -action and, more-

over, wt(z′d) = wt(zd) for every d = 1, . . . , `.

(b) For every d = 0, . . . , `, the matrix Ud is invertible, upper triangular, wd-admissible and has
entries in the polynomial ring R[zd−1, . . . , z1].

Proof. The matrices U0, . . . , U ` are readily invertible upper triangular. In order to prove the remaining
claims, we induct on the length `, with the base ` = 0 holding by assumption.

For the inductive step, suppose that the statement holds for positive braids of length `, and consider
a positive braid β = σi`+1

σi` · · ·σi1 of length ` + 1. Note that the matrices U0, U1, . . . , U ` and the
elements z′1, . . . , z

′
` coincide with those for the braid σi` · · ·σi1 , so we only need to show that the

element z′`+1 is homogeneous of the same weight as z`+1, and that the matrix U `+1 is wsi1 · · · si`+1
-

admissible. To ease the notation, we will write i := i`+1.

By the comment preceding the lemma, each of the entries of the matrix Bi(z`+1)U ` is homogeneous.
The (i+ 1, i+ 1)-entry of this matrix is u`i+1,i+1z`+1 + u`i,i+1. Dividing by u`i,i we obtain that

z′`+1 =
u`i+1,i+1z`+1 + u`i,i+1

u`i,i

5See Lemma 2.13.

14



is homogeneous. Since the diagonal entries of U ` have weight 0 and every entry of U ` is algebraically
independent with z`+1, we obtain that z′`+1 is homogeneous of the same weight as z`+1. Moreover,

using again the w`-admissibility assumption for U ` we have that every entry of the matrix U `B−1(z′`+1)
is homogeneous.

Now U `+1 = Bi(z`+1)U `B−1
i (z′`+1). We check that this matrix is w`+1 = w`si-admissible. Indeed,

computing (tw`+1)U `+1(tw`+1)−1 we have

twsiBi(z`+1)U `B−1
i (z′`+1)(twsi)−1 = (t.Bi(z`+1))twU `(tw)−1(t.B−1

i (z′`+1))
= (t.Bi(z`+1))(t.U `)(t.B−1

i (z′`+1))
= t.(U `+1)

where the first equality follows from (2.4). This concludes the proof thanks to Remark 2.20. �

The proof of the following result is similar to that of Lemma 2.22 and left to the reader:

Lemma 2.23. Let U ∈ Mn(R) be a w-admissible upper-triangular matrix and z0 ∈ R homogeneous
and invertible with weight wt(z0) = −ew(i+1) + ew(i). Then the matrix U ′ = Di(z0)UD−1

i (z0) is
wsi-admissible. �

This concludes the necessary ingredients for Proposition 2.16, and thus completes our argument for
Corollary 2.17 and Theorem 2.18. The following three subsections relate the results and constructions
of Subsections 2.1, 2.2 and 2.3 to character varieties, through the work of A. Mellit [68], augmentation
varieties, as featured in [53, 54], and open Bott-Samelson cells, according to [84, 86].

2.5. Mellit’s chart. In this subsection we recast a construction by A. Mellit in the light of braid
varieties, in particular defining a certain toric chart in X0(β∆, w0), which we refer to as the Mellit
chart. The main result of the subsection is that the Mellit chart can be obtained by our opening-
crossing procedure from Subsection 2.3 above. In order to connect to [68], we need the following
preliminary discussion.

Let w ∈ Sn be a permutation and Cw = BwB ⊆ GL(n,C) the Bruhat cell corresponding to w, where
B ⊆ GL(n,C) is the Borel subgroup of upper-triangular matrices. Recall that the product of any two
matrices in Cu and Cv belongs to Cuv if `(uv) = `(u)+`(v). Consequently, for any reduced expression
u = si1 · · · si` , the associated braid matrix Bu(z1, . . . , z`) belongs to the Bruhat cell Cu.6

Proposition 2.24. Let u = si1 · · · si` be a reduced expression and suppose that `(usi) = `(u) − 1.
Then there exists k ∈ N such that:

(a) The matrix Bu(z1, . . . , z`)Bi(z) belongs to the Bruhat cell Cu if and only if zk 6= 0,

(b) In case zk 6= 0, we can uniquely write Bu(z1, . . . , z`)Bi(z) = UBu(z′1, . . . , z
′
`) for a certain

upper-triangular matrix U .

Proof. Since `(usi) = `(u) − 1, there exists k ∈ N such that usi = si1 · · · ŝik · · · si` .7 That is, we can
write u = u1siku2 such that siku2 = u2si, and thus usi = u1siku2si = u1siksiku2 = u1u2. This
implies the following equation for the braid matrices:

Bu(z1, . . . , z`)Bi(z) = Bu1
(z1, . . . , zk−1)Bik(zk)Bik(z′)Bu2

(z′k+1, . . . , z
′
`),

where z′, z′k+1, . . . , z
′
` are some functions of z, zk+1, . . . , z`. If zk 6= 0, then we can further write

Bik(zk)Bik(z′) = UBik(z′′), so

Bu(z1, . . . , z`)Bi(z) = ŨBu1
(z′1, . . . , z

′
k−1)Bik(z′′)Bu2

(z′k+1, . . . , z
′
`) = ŨBu(z′1, . . . , z

′
k−1, z

′′, z′k+1, . . . , z
′
`)

and the result is in the Bruhat cell Cu. If instead zk = 0, then Bik(zk)Bik(z′) is upper-triangular,
and Bu(z1, . . . , z`)Bi(z) is in the Bruhat cell Cu1u2

, which is disjoint from Cu. �

6Recall that we interchangeably use the notation si and σi for the Artin generators of the braid group, which is

particularly well-suited when comparing to the notation used in [68].
7This is known as exchange property for the Coxeter group Sn.
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Example 2.25. Consider β1 = s1s2s1s1 and β2 = s1s2s1s2. Then the braid matrix Bβ1
(z1, z2, z3, z4)

is in the Bruhat cell Cs1s2s1 if and only if z3 6= 0. In contrast, the braid matrix Bβ2
(z1, z2, z3, z4) is

in the Bruhat cell Cs1s2s1 if and only if z1 6= 0. In both cases the reduced expression is u = s1s2s1.�

Remark 2.26. The index k ∈ N from Proposition 2.24 is unique and can be described geometrically,
as follows. Draw a braid diagram for u, labeling the strands 1 to n on the right. Since `(usi) = `(u)−1,
the i-th and (i + 1)-st strands intersect somewhere in the diagram for u. Given that u is reduced,
they intersect exactly once. The index k corresponds to this intersection point. �

Let us now compare our construction to A. Mellit’s [68], with β∆ = si1 · · · si
`+(n2)

a positive braid. In

[68, Section 5.4], A. Mellit defines a sequence of permutations p0 = 1, p1, . . . , p`+(n2)
by the rules:

(a) If `(pk−1sik) = `(pk−1) + 1 then pk = pk−1sik ,
(b) If `(pk−1sik) = `(pk−1)− 1 then pk = pk−1.

In his terminology, this sequence is a walk which never goes down. Let us now describe the toric chart
used in [68]:

Definition 2.27 (Mellit Chart). Let β be a positive n-braid word, the Mellit chart M ⊆ X0(β∆, w0)
is defined as the locus of z1, . . . , zs such that

(2.7) Bi1(z1) · · ·Bis(zs) ∈ Cps for all s ≤ `+

(
n

2

)
.

Note that M ⊆ X0(β∆, w0) is codimension-0 and Zariski open in X0(β∆, w0) . �

At this stage, our Corollary 2.17 provides many toric charts Tτ(β) for X0(β∆, w0), (surjectively)
indexed by orderings τ(β) ∈ S`(β) of the crossings. The toric chart M introduced in Definition 2.27
is also a subset of X0(β∆, w0), and it is thus natural to ask whether M is of the form Tτ(β) and, if
so, for which ordering τ(β) this is the case. This is answered in our next result (and its proof):

Theorem 2.28. Let β be a positive braid word. Then there exists an ordering τ(β) ∈ S`(β) of the
crossings such that Tτ(β) ⊆ X0(β∆, w0) coincides with the Mellit chart M ⊆ X0(β∆, w0).

Proof. The ordering τ(β) in which we open the crossings is as follows. First, we find the smallest j such
that pj−1 = pj . This means that pj−1 = si1 · · · sij−1 is a reduced word and `(pj−1sij ) = `(pj−1)− 1.
The condition (2.7) holds automatically for s < j, and for s = j we can apply Proposition 2.24: there
exists some k < j such that Bi1(z1) · · ·Bij (zj) ∈ Cpj if and only if zk 6= 0.

It follows from Remark 2.26 that the crossing with index k is in the braid β, and never in ∆. We
can open this crossing and obtain a new braid β′∆. By Proposition 2.24, a point in X0(β∆, w0) is in
the Mellit chart if and only if the corresponding point in X0(β′∆, w0) is in the respective chart. This
process can be continued iteratively. Eventually, all crossings in β will be exhausted, and we reach a
reduced expression ∆, which satisfies the defining inclusion (2.7) automatically. �

Example 2.29. Consider the positive 3-braid β = σ1σ2σ1, and thus β∆ = σ1σ2σ1σ1σ2σ1. By opening
the third crossing σ1, from the left, we reach the braid word σ1σ2σ1σ2σ1. Then we open the first
(leftmost) σ1 crossing and obtain 2121. Finally, opening again the first (leftmost) crossing σ1 in the
resulting braid (which corresponds to the second crossing in the original braid) we reach the positive
braid word ∆ = σ1σ2σ1. This sequence of crossings τ(β) yields a toric chart Tτ(β) ⊆ X0(β∆, w0)
which coincides with the Mellit chart M ⊆ X0(β∆, w0). �

This concludes our discussion on the Mellit chart and the relation between our Corollary 2.17 and
[68, Section 5]. Let us shift our focus towards an class of algebraic varieties which are central to the
study of Legendrian links in contact 3-manifolds, augmentation varieties.

2.6. Augmentation varieties as quotient braid varieties. In this subsection, we establish a con-
nection between braid varieties and augmentation varieties. The latter are a class of varieties that
feature saliently in the study of Floer-theoretic invariants associated to Legendrian links Λ ⊆ (R3, ξst).
The reader is referred to [38] for the basics of 3-dimensional contact topology, [70] for an excellent
survey on Floer-theoretic invariants of Legendrian knots, and [23, 53, 54] for further details.
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Let β ∈ Br+
n be a positive braid word, and Λ(β) ⊆ (R3, ξst) the Legendrian links associated to the

(−1)-framed closure of the braid β, see [16, 20]. Let us also choose a collection of marked (base)
points t ⊆ β on the Legendrian links, following [71, 72]. In our case, the two choices for marked points
that we use are: a choice of one marked point per strand of the braid β, this collection of marked
points will be denoted by ts; a choice of one marked point per component of the Legendrian link
Λ(β) ⊆ (R3, ξst), this collection will be denoted by tc. By convention, we place any marked points on
the strands and to the right of all crossings in β.8

Let A(β, t) be the Legendrian Contact DGA of the Legendrian link Λ(β) ⊆ (R3, ξst), also known as the
Chekanov-Eliashberg DGA. This differential graded algebra (DGA) is an invariant of the Legendrian
link Λ(β) ⊆ (R3, ξst) (with marked points) up to Legendrian isotopy. It was defined by Y. Chekanov
[23] over Z2-coefficients, and latter lifted to Z-coefficients and marked points [71, 72], see [70] for a
survey. The differential A(β, t) is given by a Floer-theoretical count of (pseudo)holomorphic strips
whose asymptotics are governed by the Legendrian link Λ ⊆ (R3, ξst). By definition, the augmentation
variety Aug(β, t) associated to (β, t) is the affine algebraic variety Aug(β, t) := Homdg(A(β, t),C) of

all DGA morphisms from A(β, t) to the DGA C, the latter being concentrated in degree 0 and with
trivial differential.

In the case of Legendrian links Λ ⊆ (R3, ξst) associated to positive braids, Λ ' Λ(β), augmentation
varieties Aug(β, t) are closely related braid varieties. This will follow rather simply from the work of
T. Kálmán [54], and it is the content of the following:

Theorem 2.30. Let β be a positive braid word, [β] ∈ Br+
n . The following two statements hold:

(i) There exists an algebraic isomorphism Aug(β, ts) ∼= X0(β ·∆;w0).

(ii) Let T ⊆ (C∗)n be the algebraic torus determined by tw−1(i) = 1 if the ith strand of the braid
β has a marked point in tc. Then, there exists an algebraic isomorphism

Aug(β, tc) ∼= X0(β ·∆;w0)/T.

Proof. Let us use the following characterization by T. Kálmán [53, 54] (see also [20]): if β is a positive
braid word and i1, . . . , is are strands that carry a marked point (to the right of every crossing) then

the augmentation variety is the affine subvariety of C`(β)+(n2) × (C∗)s given by the equation

(2.8) Bβ(z)


1 0 · · · 0
c21 1 · · · 0
...

...
. . .

...
cn1 cn2 · · · 1

 diag(t1, . . . , tn) is upper triangular with a prescribed diagonal

where the notation follows the convention that in diag(t1, . . . , tn) we have ti = 1 if i 6= i1, . . . , is.
For the choice of marked points ts, this reduces to Bβ(z)B∆(u)w0 being upper triangular, which is
precisely the definition of X0(β ·∆;w0). This establishes the statement in (i). For the choice of marked
points tc, as in (ii), Equation (2.8) reduces to Bβ(z)B∆(u)w0 being upper triangular with a prescribed
diagonal outside of the strands carrying marked points. Since the action of T on X0(β ·∆;w0) is free
(see Remark 2.12) the quotient map X0(β · ∆;w0) → X0(β · ∆;w0)/T is a principal T -bundle. In
consequence, X0(β ·∆;w0)/T is equivalent to the closed subvariety of X0(β ·∆;w0) given by prescribing
the diagonal elements in Bβ·∆w0 at entries corresponding to strands not carrying marked points. �

In contact geometry, opening a crossing from β = β1σiβ2 to β′ = β1β2 can be realized9 by an
embedded exact Lagrangian cobordism Li ⊆ (R3 × Rt, d(etα)) in the symplectization of (R3, ξst),
with ∂Li = ∂−Li ∪ ∂+Li and ∂−Li = Λ(β′) and ∂+Li = Λ(β) [1, 10]. It follows from the Floer-
theoretic functoriality proven in [27, 75] that such a Lagrangian cobordism induces a map ΦLi :
Aug(β′, t) −→ Aug(β, t) between augmentation varieties. It follows from [20, 27] that the (Z-lifted)

8Though not essential, this convention will be useful in simplifying some statements. Note also that tc technically
depends on a choice of strand per component of Λ(β), but for the sake of readability we prefer to not include this into
our notation.

9This is correct in the case that the positive braid has a half-twist remaining [20, 27], which will always be the case

in our context.
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Floer-theoretical map ΦLi agrees with the (quotient of the) map Ωσi we constructed in Subsection
2.3.

The toric charts we constructed in Corollary 5.5, using Proposition 2.16, can now be used to stratify
the augmentation varieties in Theorem 2.30, as follows:

Corollary 2.31. Let β be a positive braid word, [β] ∈ Br+
n , with c(β) = k.10 For each ordering

τ(β) ∈ S`(β) of the crossings of β there exists codimension-0 toric charts T cτ(β) ⊆ Aug(β, tc) and

T sτ(β) ⊆ Aug(β, ts), with T cτ(β)
∼= (C∗)`(β)−n+k and T sτ(β)

∼= (C∗)`(β). In both cases, the complements

Aug(β, tc) \

 ⋃
τ(β)∈S`(β)

T cτ(β)

 ⊆ Aug(β, tc), Aug(β, ts) \

 ⋃
τ(β)∈S`(β)

T sτ(β)

 ⊆ Aug(β, ts)

have codimension at least 2.

Proof. In view of Theorem 2.30, only the statements for Aug(β, tc) remain unproven, but these follow
from the T -stability of the toric charts on the braid variety X0(β ·∆;w0), cf. Corollary 2.17. �

2.7. Open Bott-Samelson varieties. This section is not required for the rest of the manuscript: it
is provided here for contextual completeness with respect to the articles [16, 37, 84, 85]. The purpose
of this section is to relate the braid variety X0(β) to the (diagonal) open Bott-Samelson variety
OBS(β) associated to the braid β. This is achieved in Theorem 2.34 below, after a brief reminder on
Bott-Samelson varieties.

Consider G := GL(n,C), B ⊆ G the Borel subgroup of upper-triangular matrices and the flag variety
F` := G/B. The projective variety F` is the moduli space of complete flags of subspaces in Cn: an
element F ∈ F` is a flag F = (F1 ⊆ · · · ⊆ Fn) where dimFi = i. Given a flag F ∈ F`, we can choose
a basis (v1, . . . , vn) of Cn such that Fj = 〈v1, . . . , vj〉 for j = 1, . . . , n; we denote by VF ∈ G the
matrix whose columns are the vectors vi expressed in the standard basis. Conversely, given a matrix
V ∈ G, we can consider a flag FV = (F1 ⊆ · · · ⊆ Fn) where Fj is the span of the first j columns

of the matrix V . In this correspondence, two flags are equal FV = FV ′ if and only if their matrices
V, V ′ are related by an upper triangular matrix, i.e. V = V ′U for some U ∈ B.

By definition, two flags F ,F ′ ∈ F` are in relative position si, i ∈ [1, n− 1], if Fj = F ′j for j 6= i and

Fi 6= F ′i . In terms their matrices, the flags FV ,FV ′ are in relative position si if and only if there
exist upper-triangular matrices A1 and A2 such that V ′ = V A1siA2, where si is understood as a
permutation matrix.

Remark 2.32. Since the permutation matrix si = Bi(0) is a braid matrix with the variable set to

zero, it follows from Lemma 2.13 that the flags FV and FV ′ are in relative position πi if and only if
there exist an upper-triangular matrix U and z ∈ C such that V ′ = V UBi(z). �

Building on the articles [11, 25], and the subsequent developments [16, 84, 85, 86], we introduce the
two algebraic varieties OBS(β) and OBS′(β), as follows:

Definition 2.33. Let β = σi1 · · ·σi` be a positive braid word.

(i) The open Bott-Samelson variety OBS(β) ⊆ F``+1 associated to β is the moduli space of
(`+1)-tuples of flags (F0, . . . ,F`) such that consecutive flags Fk−1,Fk are in relative position
sik , for each k ∈ [1, `].

(ii) The diagonal open Bott-Samelson variety OBS′(β) ⊆ OBS(β) is the closed subvariety defined
by the additional condition that F0 = F`. �

The diagonal open Bott-Samelson variety OBS′(β) will be related to the braid variety, as we now
explain. First, let us construct a map π : G × X0(β) → OBS′(β) as follows. Consider a point
(z1, . . . , z`) ∈ X0(β) and a matrix V ∈ G, and define Vk := V Bi1(z1) · · ·Bik(zk) ∈ G. The map π is
then defined by:

π : G×X0(β) −→ OBS′(β), π(V, z1, . . . , z`) := (FV ,FV1 , . . . ,FV`).

10Geometrically, the Legendrian link has Λ(β) has k connected components.
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It follows from Remark 2.32 that π(V, z1, . . . , z`) ∈ OBS(β) and since V` = V Bβ(z1, . . . , z`), and
(z1, . . . , z`) ∈ X0(β), we actually have that π(V, z1, . . . , z`) ∈ OBS′(β). Thus the image of π belongs
to OBS′(β) ⊆ OBS(β), as written above. This map is, in general, not an isomorphism. Nevertheless,
we will now construct a right B-action on the product G×X0(β), and π will descend to an isomorphism
on the quotient.

Indeed, consider an upper-triangular matrix U = U0 ∈ B and define z′1, . . . , z
′
` and U1, . . . , U ` ∈ B

inductively via the equation

(2.9) Bi`−k(z`−k)Uk = Uk+1Bi`−k(z′`−k).

It follows from the equation U `Bβ(z1, . . . , z`) = Bβ(z′1, . . . , z
′
`)U

0 that (z1, . . . , z`) ∈ X0(β) if and only
if (z′1, . . . , z

′
`) ∈ X0(β). For each (V, z1, . . . , z`) ∈ G×X0(β) and upper-triangular matrix U = U0 ∈ B,

we define its (right) action by:

(V, z1, . . . , z`) · U := (V U `, z′1, . . . , z
′
`).

The usefulness of this right action is manifest in the main result of this subsection:

Theorem 2.34. Let β be a positive braid word, G = GL(n,C) and B ⊆ G the Borel subgroup of
upper-triangular matrices. Then

(i) The right B-action on G×X0(β) defined above is free.

(ii) The map π : G×X0(β) −→ OBS′(β) induces an isomorphism (G×X0(β))/B ∼= OBS′(β).

Proof. Let us first prove the freeness of the right B-action. Indeed, suppose that there exists a fixed
point, i.e. there exist U ∈ B and (V, z1, . . . , z`) ∈ G×X0(β) such that

(V, z1, . . . , z`) · U = (V, z1, . . . , z`).

Since z′j = zj for every j ∈ [1, `], it follows from Equation (2.9) that the matrices U,U1, . . . , U `

are pair-wise conjugate. In particular, the initial upper-triangular matrix U is conjugate to U `.
Nevertheless, the condition V U ` = V implies that U ` = Id, and thus no fixed point may exist. The
action is thus free.

Second, let us show that the map π is surjective, onto the diagonal open Bott-Samelson variety
OBS′(β). For that, consider a point (F0, . . . ,F`) ∈ OBS′(β) and let V ∈ G be any matrix such that
FV = F0. Thanks to Remark 2.32, we have that there exist upper-triangular matrices U1, . . . , U `

and z1, . . . , z` ∈ C such that

Fk = FV U1Bi1 (z1)···UkBik (zk).

Now, use Lemma 2.13 to slide all the upper triangular matrices U2, . . . , U` to the right; this yields
obtain upper-triangular matrices U ′1 = U1, U

′
2, . . . , U

′
` and ẑ1, . . . , ẑ′` with the property that

V U ′1 · · ·U ′`Bi1(ẑ1) · · ·Bik(ẑk) = V U1Bi1(ẑ1) · · ·UkBik(ẑk)Û ,

where Û is an upper-triangular matrix depending on k. This implies that π(V U ′1 · · ·U ′`, ẑ1, . . . , ẑ`) =
(F0, . . . ,F`). It remains to show that (ẑ1, . . . , ẑ`) ∈ X0(β), that is, the matrix Bβ(ẑ1, . . . , ẑ`) is upper-
triangular. Since F0 = F`, the matrices V and V U ′1 · · ·U ′`B`(ẑ1, . . . , ẑ`) differ by an upper-triangular
matrix. Since U ′1, . . . , U

′
` are upper-triangular, the result follows and π is surjective.

Third, let us prove that the map π is B-invariant; we need to check that for every k the matrices
V Bi1(z1) · · ·Bik(zk) and V U `Bi1(z′1) · · ·Bik(z′k) differ by an upper-triangular matrix. That said, it
follows from Equation (2.9) that this matrix is precisely U `−k, which proves B-invariance.

Finally, we must show that if π(V, z1, . . . , z`) = π(V ′, z′1, . . . , z
′
`) then there exist an upper triangular

matrix U such that (V ′, z′1, . . . , z
′
`) = (V, z1, . . . , z`) · U . For that, note that FV = FV ′ implies that

there exist an upper-triangular matrix, say U `, such that V ′ = V U `. Since FV Bi1 (z1) = FV
′B′i1

(z′1),
there also exist an upper-triangular matrix, say U `−1 such that V ′B′i1(z′1) = V Bi1(z1)U `−1. In

consequence, we obtain the equality V U `Bi1(z′1) = V Bi1(z1)U `−1, and thus U `Bi1(z′1) = Bi1(z1)U `−1.
Note that this is precisely Equation (2.9). We iterate this procedure until we find U0, which is the
required upper-triangular matrix. This concludes the proof of the statement. �
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The concludes our discussion relating braid varieties to open Bott-Samelson varieties. Let us now
move to the construction of a holomorphic symplectic structure on braid varieties X0(β).

Remark 2.35. As a side note, the homotopy types of the varieties X0(β) and OBS′(β) appear to be
related to the spectra constructed in [58]. This remains to be explored. �

3. Holomorphic Symplectic Structure

This section constructs a holomorphic symplectic structure on the (quotient) braid varietiesX0(β∆;w0)/T ,
establishing the remainder of Theorem 1.1.(iii). In particular, Theorem 2.30 will imply that the aug-
mentation variety associated to a Legendrian link Λ(β), β a positive braid (word), is holomorphic
symplectic. In addition, the toric charts we built in Corollary 2.17 will actually be (exponential) Dar-
boux charts for this holomorphic symplectic structure. The construction we present draws from the
literature on character varieties, where the holomorphic symplectic structures on character varieties
have a central role, starting with the Atiyah-Bott-Goldman structures [3, 39] and continuing with,
e.g., the work of P. Boalch and L. Jeffrey [6, 7, 52, 68].

3.1. Construction of a 2-form. First, let us review the construction of a 2-form on the braid variety
X0(β) according to [52, 68], often referred to as the tautological 2-form. For that, let θ := f−1df and
θR := dff−1 denote respectively the left- and right-invariant algebraic 1-forms on the (complex) Lie
group G = GL(n,C); these 1-forms are valued in the Lie algebra g = gl(n), and θ is referred to as the
Maurer-Cartan form. The following two facts can be readily verified:

(a) The 3-form Ω := Tr(θ[θ, θ]) is closed and represents a class in H3(G). This class is in fact
dual to the fundamental class of (a copy of) S3 ' SU(2) ⊂ GL(n,C).

(b) There is a 2-form (f |g) := Tr(π∗1θ ∧ π∗2θR) = Tr(f−1df ∧ dgg−1) on G × G satisfying the
following two “cocycle conditions”:

(3.1) d(f |g) = π∗1Ω−m∗Ω + π∗2Ω,

(3.2) (g|h)− (fg|h) + (f |gh)− (f |g) = 0,

where π1, π2,m : G×G→ G are the two projections and the Lie group multiplication map.

Let X be an arbitrary algebraic variety. By definition, a map f : X → G is Ω-trivial if f∗Ω = dω for
some 2-form ω on X. Now, suppose that two maps f : X → G and g : Y → G are Ω-trivial, then the
product

f · g : X × Y f×g−−−→ G×G m−→ G

is also Ω-trivial. Indeed, if f∗Ω = dωX and g∗Ω = dωY then (3.1) implies

(f · g)∗Ω = d(ωX + ωY + (f |g)).

In general, if fi : Xi → G, i ∈ [1, r] are Ω-trivial maps then we can define the form

ω =
∑

ωXi + (f1|f2) + (f1f2|f3) + . . .+ (f1 · · · fr−1|fr) =∑
ωXi + (f1|f2| · · · |fr).

The condition (3.2) implies that this operation defines an associative convolution (f1|f2| · · · |fr) on
collections of Ω-trivial maps. The following identity will be useful for us, and follows immediately
from the definition:

(3.3) (f1| · · · |fr) = (f1| · · · |fjfj+1| · · · |fr) + (fj |fj+1).

This summarizes the necessary ingredients. Consider a positive braid word β, with length r = `(β)
and let us apply this construction to our braid varieties X0(β), as follows. The first key fact is that
the maps Bi(z) : C → G given by the braid matrices are Ω-trivial with vanishing primitive 2-form
ω = 0. Hence, the map Bβ : Cr → G is also Ω-trivial with primitive being the 2-form

(3.4) ωβ = (Bi1(z1)|Bi2(z2)) + (Bi1(z1)Bi2(z2)|Bi3(z3)) + . . .+ (Bi1(z1) · · ·Bik−1
(zk−1)|Bik(zk)).

Lemma 3.1. The restriction of the 2-form ωβ to the braid variety X0(β) is closed.
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Proof. Note that the map Bβ : X0(β) −→ G lands in the subgroup of upper-triangular matrices, and
the restriction of the 3-form Ω to the space of upper-triangular matrices vanishes. Therefore, since d
commutes with pull-back, we have

dωβ = B∗βΩ = 0,

i.e. ωβ is a closed 2-form. �

The following example will prove useful:

Example 3.2. Let ∆ ∈ Br+
n be the positive braid (word) associated to the half-twist; then we have

that the 2-form ω∆ = 0 vanishes. (Thus, it is closed.) Following Lemma 2.3, we can write

B∆2 = B∆(c)B∆(u) = Lw0 · w0U = LU,

where two copies of B∆ depend on two sets of independent variables cij and uij. The 2-form associated
to ∆2 then reads:

ω∆2 = ω∆(c) + (B∆(c)|B∆(u)) + ω∆(u) = (B∆(c)|B∆(u)) =

(Lw0|w0U) = (L|w0|w0|U) = (L|w0w0|U) = (L|U).

�

Consider now the toric charts Tτ(β) ⊆ X0(β ·∆2) constructed in Corollary 2.17.

Lemma 3.3. Let β be a positive braid (word) and τ(β) ∈ S`(β). The restriction of 2-form ωβ·∆2 to

any toric chart Tτ(β) ⊆ X0(β ·∆2) has constant coefficients in the canonical coordinates (associated
to the Di matrices).

Proof. By Lemma 2.3, we can write

Bβ·∆2 = BβB∆2 = Bi1(z1) · · ·Bir (zr)LU.

By Example 3.2, we can also write

ωβ·∆2 = ωβ + (Bβ |B∆2) + ω∆2 =

ωβ + (Bβ |LU) + (L|U) = (Bi1(z1)| · · · |Bir (zr)|L|U).

Next, we need to understand the behavior of the 2-form under opening the crossings according to
τ(β), as this determines the construction of the toric chart Tτ(β). By using the decomposition in
Equation 2.6, we can write

(· · · |Bis(zs)| · · · ) =

(· · · |Uis(zs)|Di(zs)|Li(zs)| · · · )− (Uis(zs)|Di(zs)|Li(zs)),
and clearly (Uis(zs)|Di(zs)|Li(zs)) = 0. Next, assume that U is an upper uni-triangular matrix, then

(· · · |Bi(z)|U | · · · ) = (· · · |Bi(z)U | · · · ) + (Bi(z)|U) =

(· · · |ŨBi(z′)| · · · ) + (Bi(z)|U) = (· · · |Ũ |Bi(z′)| · · · ) + (Bi(z)|U)− (Ũ |Bi(z′)).
The terms (Bi(z)|U), (Ũ |Bi(z′)) in fact vanish. Indeed, observe that

B−1
i (z)dBi(z) =

(
−z 1
1 0

)(
0 0
0 dz

)
=

(
0 dz
0 0

)
,

while dU · U−1 is upper-triangular, so (Bi(z)|U) = 0. Similarly,

dBi(z
′) ·Bi(z′)−1 =

(
0 0
0 dz′

)(
−z′ 1
1 0

)
=

(
0 0
dz′ 0

)
,

while Ũi,i+1 = 0 and hence (Ũ |Bi(z′)) = 0. We conclude that

(· · · |Bi(z)|U | · · · ) = (· · · |Ũ |Bi(z′)| · · · ),

and similarly (· · · |Di(z)|U | · · · ) = (· · · |Ũ |Di(z)| · · · ). The conclusion from this computation is that
the 2-form ωβ·∆2 does not change as we move U to the left. (Similarly, it does not change as we move
lower-triangular matrices to the right.) In conclusion, we are left with several upper uni-triangular
matrices, followed by several diagonal matrices and by several lower uni-triangular matrices. Since
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(U |U ′) = (L|L′) for any pair of upper (resp. lower) uni-triangular matrices, we can consolidate all
upper and all lower uni-triangular matrices and write

ωβ·∆2 = (Ũ |D1| · · · |Dk|L̃|U).

Since ŨD1 · · ·DkL̃U is upper-triangular, we get L̃ = 1. Thus

ωβ·∆2 = (Ũ |D1| · · · |Dk|U) = (D1| · · · |Dk) =
∑
i<j

Tr(d log(Di) ∧ d log(Dj)).

and the result follows. �

The proof of Lemma 3.3 actually shows that the entries of the Di matrices associated to (opening
the crossings for) β are quite close to (exponential) Darboux-like coordinates11, only differing from
an exponential Darboux-like chart by a linear change in constant coefficients. We have now discussed
closedness of the 2-form ωβ·∆2 and its expression in the toric charts Tτ(β). In order to show that
ωβ·∆2 induces an holomorphic symplectic structure, as stated in Theorem 1.1.(iii), it suffices to show
non-degeneracy, which we now address.

3.2. Non-degeneracy of ωβ·∆2 . Let us consider the Mellit chart M, as constructed in Theorem

2.28, and ωM its corresponding 2-form.12 In this subsection, we will first show that ωM/Tπ is non-
degenerate, and thus (holomorphic) symplectic. Then we prove, in Theorem 3.5, that ω induces the
holomorphic symplectic structure according to Theorem 1.1.(iii).

Following [68, Section 6], we can construct a topological avatar for this torus, as follows. Consider
a labeled marked surface (S, A,B), i.e. an oriented surface S with boundary ∂S and two sets A :=
{1, 2, . . . , n}, B := {1′, 2′, . . . , n′} ⊆ ∂S such that:

- Each connected component of S has a boundary component.
- Each boundary component intersects both A and B.
- The elements of A and B in each boundary component alternate.

Let us denote the two Abelian groups Λ := H1(S, A) and Λ′ := H1(S, B). Since A and B are
alternating, there is a perfect pairing · : Λ ⊗ Λ′ −→ Z. There is also a map rot : Λ −→ Λ′, that
is induced from the map that, up to homotopy, rotates the boundary components clockwise. This
induces a bilinear form ω̃ on the first homology Λ, given by ω̃(γ, γ′) = γ · rot(γ′), and we also consider
its anti-symmetrization ω. In order to prove the symplecticity of ωβ·∆2 stated in Theorem 1.1, we use
the following result:

Lemma 3.4 ([68]). There exists a marked surface (S, A,B) such that Λ is identified with the co-
character lattice of M, and the induced form on the co-character lattice of M is identified with ω.

Note that the surface S is homeomorphic to the spectral curve constructed in [19], see Section 5.6 for
details. Now, we need two more properties of (S, A,B), which follow from the construction in [68,
Section 6.5]:

- The connected components of ∂S correspond to the cycles of π = π(β), i.e. to the components
of the closure of the braid β.

- Let C be the connected component of ∂S corresponding to the cycle (a1 . . . ak). Then, the
elements of A = {1, . . . , n} appearing in C are precisely a1, . . . , ak, and they appear in the
same order as in the cycle.

Let us denote by C1, . . . , Ck the connected components of ∂S. The cycle associated to Cj will be
denoted by (aj,1 . . . aj,`j ). We will now decompose Λ = H1(S, A), as follows. First, we have the exact
sequence in relative homology

0→ H1(S)→ H1(S, A)
∂→ H0(A) = ZA → H0(S)→ 0,

where the image of ∂ is spanned by elements of the form a − b, where a, b ∈ A belong to the same
connected component of S. For each such a, b, we choose a path from a to b in S, and we let K be

11The term Darboux-like is used here as the form might not be symplectic at this stage.
12Note that the torus (M, ωM) has already appeared in the work of Mellit [68, Section 6].

22



the span of the classes of these paths in homology. This gives a splitting

H1(S, A) = H1(S)⊕K
We construct a basis of K as follows. For simplicity, we will assume that S is connected, the general
case follows similarly. For each connected component Cj of ∂S, we take the path from aj,i to aj,i+1

following Cj , j ∈ [1, `j −1]. We also take a path γj from aj,`j to aj+1,1, j ∈ [1, k−1]. Then we obtain
the basis of K, see Figure 3:

K = Z{aj,iaj,i+1, γj′ | j ∈ [1, k], i ∈ [1, `j − 1], j′ ∈ [1, k − 1]}.

...

...

Figure 3. The surface S, with the marked points in the boundary. Points of A are
colored white, and points of B are colored black. For the sake of readability we do
not label the paths along the boundary for two consecutive points of A.

We can further split H1(S) as follows. We let S̄ be the surface obtained from S by attaching disks
along the boundary components. We have an exact sequence

0→ H2(S̄)→ H1(∂S)→ H1(S)→ H1(S̄)→ 0

so that H1(S) = H1(S̄) ⊕ (H1(∂S)/H2(S̄)). Note that a spanning set for H1(∂S)/H2(S̄) is given
by Ci − Cj , where Ci and Cj are boundary components of the same connected component of S.
Since we are assuming S is connected, a basis is given by Ci − Ci+1, i ∈ [1, k − 1]. Moreover, since
the elements in H1(S) are rot-invariant, the form on H1(S) is given by the intersection form. This
implies that ω|H1(S̄) is the intersection form on S̄, and therefore is non-degenerate. In addition,

ω(H1(S̄), H1(∂S)/H2(S̄)) = 0 and ω(H1(S̄),K) = 0. Thus, using the decomposition

H1(S, A) = H1(S̄)⊕ (H1(∂S)/H2(S̄))⊕K,
the form ω has the following form

ω =

ω|H1(S̄) 0 0
0 0 ∗
0 ∗ ∗

 .

We will not find the remaining terms * for ω, we will only do so after passing to the quotient by the
action of a torus, as this is all that suffices. We have a map ψ : ZA → H1(S, A) that to each point
a ∈ A associates the path that follows the boundary component containing a from a to rot2(a). In
other words, it sends aj,i to a path aj,iaj,i+1, where aj,`j+1 = aj,1.

Now let Tπ ⊆ (C∗)n/C∗ be the torus given by the equations ta1,`1 = ta2,`2 = · · · = tak,`k . We recall,
see Remark 2.12 and Corollary 2.17, that Tπ acts freely on the Mellit chart M. The torus Tπ is
the fixed torus for the action of the element σ = (a1,`1a2,`2 · · · ak,`k). According to [68], to find the
co-character lattice of M/Tπ we need to mod out by the image of ψ on σ-invariant elements of A.
Thus, the co-character lattice of M/Tπ can be identified with

H1(S̄)⊕ (H1(∂S)/H2(S̄))⊕ Z{γ1, . . . , γk−1}.
In addition, note that we can identify Ci = ai,`iai,1. Thus, Ci−Ci+1 = ai,`iai,1−ai+1,`i+1

ai+1,1. Note
also that ω(γi, γj) = 0 as γi ·rot(γj) = 0 for every i 6= j. Moreover, γi ·rot(ai,`iai,1−ai+1,`i+1ai+1,1) = 0
while (ai,`iai,1 − ai+1,`i+1ai+1,1) · γi = 2. Thus, ω(γi, ai,`iai,1 − ai+1,`i+1ai+1,1) = 2. Similarly, we
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can see that ω(γi, ai−1,`i−1
ai−1,1 − ai,`iai,1) = 1 and ω(γi, ai+1,`i+1

ai+1,1 − ai+2,`i+2
ai+2,1) = −1. It

follows that the form ωM/Tπ is given by the following matrix

ωM/Tπ =

ω|H1(S̄) 0 0
0 0 −P
0 P 0

 ,

where P is the (k − 1)× (k − 1)-matrix

P =


2 −1 0 · · · 0
−1 2 −1 · · · 0
0 −1 2 · · · 0
...

...
...

. . .
...

0 0 0 · · · 2

 .

This implies that the 2-form ωM/Tπ is non-degenerate and thus the chart M/Tπ is (holomorphic)
symplectic. Let us now use the above discussion, and this result for the Mellit chart, to conclude
Theorem 1.1.(iii).

Theorem 3.5. Let β ∈ Br+
n be a positive braid (word). Then, the 2-form on ωβ·∆2 induces a 2-form

on the augmentation variety Aug(β, tc) that has maximal rank at every point. Thus, the augmentation
variety of any positive braid is holomorphic symplectic.

Proof. The augmentation variety Aug(β, tc) can be identified with X0(β ·∆;w0)/Tπ, up to the choice
of marked points tc. The coefficients of the form ωβ·∆2 are regular functions on X0(β · ∆2), and it
is readily verified that the form is T -equivariant. Thus, we have an induced closed 2-form ωβ on the
augmentation variety, and it is non-degenerate if and only if its determinant does not vanish anywhere.
Let us first prove that it is non-degenerate on all toric charts. Thanks to the discussion above on
the Mellit chart, the form ωβ is non-degenerate on the (quotient) toric chart M/Tπ; recall that M
is the toric chart obtained from opening the crossings in the order given by (the proof of) Theorem
2.28. By Lemma 3.3, the 2-form has constant coefficients in canonical coordinates in any other chart
M′/Tπ and, by the above, it is non-degenerate on the intersection with M/Tπ. Thus, the 2-form is
non-degenerate on the entire (other) chart M′/Tπ. Finally, by Theorem 2.18, the toric charts cover
Aug(β, tc) up to codimension 2. Hence, the determinant of ωβ is non-zero outside of codimension 2
locus and hence it is non-zero everywhere. �

This concludes the proof of Theorem 1.1 and establishes that the augmentation variety associated to
a positive braid is holomorphic symplectic. This subsection also concludes the first part of the article,
and we now move forward to discuss correspondences between braid varieties and the diagrammatic
calculus we develop for their study.

4. The Combinatorics of Algebraic Weaves

This section introduces algebraic weaves, a diagrammatic calculus to study the braid varieties X0(β).
The present section focuses on the combinatorial aspects of these diagrams; in particular, this for-
malizes the weave category Wn discussed in Section 1. We use these algebraic weaves in Section 5,
where we prove that a weave between two positive braid β1 and β2 yields a correspondence between
the braid varieties X0(β1) and X0(β2) (as stated in Theorem 1.4). We refer the reader to [19] for the
contact and symplectic geometry motivation behind algebraic weaves.

4.1. Algebraic weaves. Algebraic weaves are planar diagrams introduced in the work of the first
author and E. Zaslow [19]. In appearance, these are similar to the planar diagrams appearing in
Soergel calculus [30, 31]; there are nevertheless key distinctions, and we refer to our diagrams as
weaves, following the symplectic constructions in [19].

Definition 4.1. Let β1, β2 be two positive n-braid words. A weave of degree n is the image of a
continuous map
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Figure 4. A 3-weave from β2 = (σ1σ2)4σ1 ∈ Br+
3 to β1 = σ2σ1σ2 ∈ Br+

3 (Left).
The blue color indicates a transposition label s1 ∈ S3 and the red color indicates the
transposition label s2 ∈ S3. A 2-weave from β2 = σ16

1 ∈ Br+
2 to β1 = σ2

1 ∈ Br+
2 , all

black edges are labeled with the unique transposition s1 ∈ S2.

w :

n−1⋃
i=1

Gi −→ [1, 2]× R,

where each Gi, i ∈ [1, n− 1] is a trivalent graph and the following conditions are satisfied:

(i) The restriction w|Gi : Gi −→ [1, 2]×R is a topological embedding for all i ∈ [1, n− 1], which
is a smooth embedding away from the trivalent vertices of the graph Gi.

(ii) The images w(Gi) and w(Gi+1) are only allowed to intersect at trivalent vertices, i ∈ [1, n−2],
and the planar edges around this intersection point must alternatingly belong to Gi and Gi+1.
In addition, intersections between w(Gi) and w(Gj), |i− j| ≥ 2 are transverse.

(iii) In a neighborhood of {j}×R ⊆ [1, 2]×R, j = 1, 2, the image im(w) is given by l(βj) vertical

lines, such that the kth line belongs to G
σ
(j)
ik

, where σ
(j)
ik

is the kth crossing of βj . �

Figure 5. The six local models for an algebraic n-weave, where j, k ∈ [1, n − 1],
except in (b) where k ∈ [1, n− 2], and |j − k| ≥ 2. The inverse of the local model in
(b), with sk+1sksk+1 on top and sksk+1sk on the bottom, is also allowed.

25



Definition 4.1 is precise, but admittedly obtuse; see Figure 4 for two explicit examples with n = 2, 3.
Intuitively, we start with β2 being represented by a collection of points in {2}×R, e.g. (2, k) ∈ {2}×R,
k ∈ [1, `(β2)] where we label the kth point with the transposition sk ∈ S`(β2) associated to the kth
crossing of β2. Then we start drawing lines going down, towards {1} × R, from each of the points
(2, k), which are the crossings of β2. Each of these lines, which we will call edges, are labeled by the
same transposition sk as their starting (highest) point. As we keep drawing the edges downwards,
one of the following six situations, depicted in Figure 5, might occur:

(a) Two consecutive edges labeled with the same transposition sk come together, and continue
moving down as one unique edge, also labeled with sk, k ∈ [1, n− 1]. This is referred to as a
trivalent vertex, and correspond to the model around (the image of) a trivalent vertex of the
graph Gk in Definition 4.1. Algebraically, we represent this local model by sksk → sk.

(b) Three consecutive edges labeled by sk, sk+1, sk come together, and continue moving down as
three edges but now labeled sk+1, sk, sk+1. This is referred to as a hexavalent vertex, and corre-
spond to the model around an intersection point of the (images of the) graphs w(Gk)∩w(Gk+1)
in Definition 4.1. Algebraically, we represent this local model by sksk+1sk → sk+1sksk+1.
In addition, we also allow the same move, but reversed: sk+1sksk+1 → sksk+1sk, with
sk+1sksk+1 on top and sksk+1sk at the bottom.

(c) Two consecutive edges labeled with two different transpositions sk, sj , with |j − k| ≥ 2,
come together, and continue moving down as two edges, now labeled by sj , sk. This is re-
ferred to as a 4-valent vertex, and correspond to the model around a (transverse) intersection
point of w(Gk) and w(Gj) in Definition 4.1. Algebraically, we represent this local model by
sksj → sjsk.

(d) Two consecutive edges labeled with the same transposition sk come together, merge and there
is no edge continuing down. This is referred to as a cup, and we represent this local model by
sksk → 1.

(e) The inverse of the move in (d), where two consecutive edges are created as moving downwards
from the empty set. This is referred to as a cap, and we represent this local model by 1→ sksk.

(f) There is an edge labeled by sk and it continues moving down as the same edge labeled by sk,
i.e. nothing occurs. This local model is represented algebraically by sk → sk.

Figure 6. Local models for weaves with yellow segments.

In the six models (a)-(f) above, the algebraic representation is merely the result of taking horizontal
cross-sections along the weave (or local model) and reading the permutations sk (or braid group gen-
erators σk), left to right, that label the edges intersecting the cross-section. For instance, four-valent
and hexavalent vertices represent (the Coxeter projection of the) braid relations. In the course of the
manuscript, we will also use yellow segments in order to keep track of certain variables, corresponding
to the zi-variables in the braid variety. In addition, we also consider particular types of weaves. This
is the content of the following:

Definition 4.2. An algebraic weave is a weave such that:
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- The edges have been oriented downwards, with the models according to Figure 6 for cups and
caps. By convention, diagrams are oriented from top to bottom, from {2}×R down to {1}×R.

- Trivalent vertices, cups and caps are decorated with yellow segments to the left.13 See Figure
6 for a depiction of these yellow segments. Near another vertex, we allow a yellow line to
intersect either all incoming or all outgoing edges.

The following two are special types of weaves that we will use:

(ii) A simplifying weave is an algebraic weave with no caps; thus the only allowed local models
are (a),(b),(c),(d) and (f), not (e).

(ii) A Demazure weave is an algebraic weave with no cups nor caps; thus the only allowed local
models are (a),(b),(c) and (f), not (d),(e).

It is readily seen that an algebraic weave is simplifying if and only if the length of a braid word is not
increasing as we scan down the weave with horizontal cross-sections. The reasons behind the choice
of the name “Demazure weaves” will be explained in Section 4.3. �

Note that upside-down trivalent vertices, i.e. the horizontal flip of model (a), given by sk → sksk, can
be constructed using the above trivalent vertices and caps. In fact, an upside-down trivalent vertex
can be created in at least the following ways:

In the Subsection 4.2, these different ways of drawing upside-down vertices are declared to be equiv-
alent. Finally, an (algebraic) n-weave Σ will almost always be considered through its horizontal
cross-sections, and thus we will typically refer to it as being a sequence of (consecutively distinct)
positive braid words

βj(Σ) = s
(j)
i1
s

(j)
i2
· · · s(j)

i`(βj)
∈ Br+

n , j ∈ [0, `(Σ)],

where the only changes are the ones specified in the local models (a)-(f) above. In this case, we use
the notation

Σ = β0(Σ)→ β1(Σ)→ · · · → β`(Σ)(Σ).

The initial braid word β0(Σ) being read at the horizontal cross-section {2} × R, and the last braid
word β`(Σ)(Σ) is read at the horizontal cross-section {1} × R. The number `(Σ) ∈ N will be referred
to as the length of the weave Σ, the initial braid word β0(Σ) as the convex end of the weave, and the
last braid word β`(Σ)(Σ) as the concave end of the weave. The convexity and concavity notation aims
at agreeing with the contact topological framework developed in [19].

4.2. Equivalence of weaves. In this section, we impose certain equivalences between two algebraic
weaves Σ1,Σ2 whose convex and concave ends coincide, i.e. β0(Σ1) = β0(Σ2) and β`(Σ1)(Σ1) =
β`(Σ2)(Σ2). These equivalences Σ1 ' Σ2 are the result of imposing a Hamiltonian isotopy equivalence

to the (exact) Lagrangian surfaces obtained by projecting to (T ∗([1, 2] × R2), dλst) the Legendrian
lifts of these weaves Σ1,Σ2 in the standard contact 5-dimensional Darboux chart (J1([1, 2]×R2), ξst).
The geometric proofs are explained in detail in [19, Section 4]. In the present article, we directly
write the diagrammatic equivalences, which can be understood as moves between braid isotopies (also
known as movies moves).

Remark 4.3. These equivalences are chosen as dictated by contact topology but can be now taken
to be diagrammatic. The remarkable algebraic properties of these equivalences that we list below is
that the braid matrices that we will associate to the weaves in Section 5 will in fact preserve these
equivalences. In particular, an algebraic reason not to declare the mutated weaves equivalent is that
they will not preserve these braid matrix relations. �

13These yellow segments are not considered part of the graph, and in particular they are not edges, i.e. a trivalent
vertex is still considered trivalent even if there is a yellow segment from it.
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Each of the following items represents an equivalence between weaves. The majority of equivalences
we describe compare two local models, and an equivalence between two different weaves Σ1,Σ2 will
be obtained by applying several of the local equivalences listed here.

4.2.1. Planar isotopies. A weave is, in particular, a planar diagram: we declare planar isotopic dia-
grams to define equivalent weaves. As a first consequence, the two ways to declare an upside down
trivalent vertex are the same, and we have the following additional relations:

These planar isotopies do include canceling pairs of caps and cup, as depicted above. For instance,
the weave Σ1 = sk → sksksk → sk · 1 = sk, where first a cap creates 1 → (sksk) to the left of the
initial sk, and then a cup erases the rightmost to sk via (sksk) → 1, is equivalent to the constant
weave Σ2 = sk.

4.2.2. Canceling pairs of 4- and 6-valent vertices. The following weaves are declared to be equivalent:

From the algebraic perspective, i.e. studying the braids in the horizontal cross-sections, this the
diagrammatic incarnation of the fact that the two moves sksk+1sk → sk+1sksk+1 and sk+1sksk+1 →
sksk+1sk, and the two moves sisj → sjsi and sjsi → sisj , |i − j| ≥ 2, are inverse to each other.
That is, performing a Reidemeister III move and then its inverse is considered to be (equivalent to)
the trivial weave. Similarly, performing a commutation move in the braid group, and then the same
move in reverse, is also considered to be (equivalent to) the trivial weave. In the notation above, we
are declaring the weave Σ1 = sk+1sksk+1 → sksk+1sk → sk+1sksk+1 to be equivalent to the constant
weave Σ2 = sk+1sksk+1, and the weave Σ1 = sisj → sjsi → sisj to be equivalent to the constant
weave Σ2 = sisj .

4.2.3. Commutation with distant colors. We declare that an edge of the weave labeled with a color
(i.e. a transposition) which is distant to the rest of the colors at a given vertex can be moved past
this vertex. That is, we declare that the following weaves are equivalent:
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Similarly, we declare that three lines with pairwise distant colors can be rearranged according to the
weave equivalence depicted above. As illustrated in the equivalences above, the particular sequences
of braid moves that we are declaring to be equivalent are readily read from taking horizontal cross-
sections in the above diagrams; we will thus not indicate them any longer.

4.2.4. 1212- and 2121-relations. We require that the following two ways of getting from σ1σ2σ1σ2,
denoted 1212 for simplicity, to σ1σ2σ1, i.e. 121, are equivalent:

Note that we interpret the same pentagon, on the left of the above figure, in several different ways.
Namely, this requirement also means that the two ways of getting from 1121 to 212 are equivalent,
and that the two ways of getting from 2212 to 121 are equivalent, and so forth. The equivalence of the
two ways of getting from 1121 to 212 corresponds to the equivalence of the following two simplifying
weaves:

We also require that the two ways of getting from 1211 to 212 are equivalent, which is the same as
requiring that the two ways of getting from 2121 to 212 are equivalent and so on. The weaves are
obtained from the ones above by the symmetry along the vertical line:

There are also similar relations where adjacent colors are interchanged (e.g. black and red), and for
any pair of adjacent colors, which we do not draw them here.

4.2.5. Cycles for 12121. As an example for the previous relation, we observe that there are many paths
in the Demazure graph from 12121 to 212, related by consecutive application of the 1212-relation:
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(A) 12121→ 21221→ 2121→ 2212→ 212

(B) 12121→ 11211→ 1211→ 2121→ 2112→ 212

(C) 12121→ 11211→ 1211→ 121→ 212 ∼ 12121→ 11211→ 1121→ 121→ 212

(D) 12121→ 11211→ 1121→ 1212→ 2122→ 212

(E) 12121→ 12212→ 1212→ 2122→ 212

4.2.6. Zamolodchikov relation. Diagrammatically, the Zamolodchikov relation is the equivalence of
the following diagrams, relating various braid words for the longest element w0 ∈ S4:

4.2.7. More moves with cups. By rotating the above relations, we obtain many interesting relations
with cups and caps. We include just a few here:

Note that these two pictures, as planar graphs, are similar to the ones that we already considered
(cancellation 121 → 212 → 121 and 1212-move), but in this case they are drawn differently. The
following relations corresponds to different ways to a look at a single 6-valent vertex:
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4.2.8. Mutations. In contrast with Soergel calculus, we do not declare two ways of getting from sisisi
to si via sisi to be equivalent. They are related by the following special type of move, which we call
a weave mutation:

This concludes the list of diagrammatic equivalences (4.2.1)-(4.2.6), and the mutation non-equivalence
(4.2.8).

4.3. Demazure product and Demazure weaves. The NilHecke algebra NHn is defined by gen-
erators e1, . . . , en−1 and relations e2

i = ei and

eiei+1ei = ei+1eiei+1, eiej = ejei, |i− j| ≥ 2.

We have a natural homomorphism from the braid group to NHn which we will denote by δ following
[60]. We will denote by ew the image of the positive reduced braid lift of w ∈ Sn under δ. It is
clear that for any braid β there exists w such that δ(β) = ew. By abuse of notation, we will write
δ(β) = w and call w the Demazure product of β. This terminology is used by Knutson and Miller
[60], but the notion goes back at least to Demazure [26]. Given two permutations u, v ∈ Sn, we define
u ? v = δ(uv). By construction, we have

(u ? v) ? w = δ(uvw) = u ? (v ? w).

We will call the star product of the Coxeter generators corresponding to the letters in a positive braid
word the Demazure product of the word. For a braid word σi1σi1 . . . σil(β) for a positive braid β, we
have

ei1 ? ei2 ? . . . ? eil(β) = δ(β).

In other words, the Demazure product of a braid word for β equals δ(β). In particular, it does not
depend on the choice of a word for β.

Example 4.4. It is readily verified that w ? si = wsi if `(wsi) = `(w) + 1 and w ? si = w if
`(wsi) = `(w)− 1. The Demazure power is simply si ? si ? . . . ? si = si, for any number of multiples,
and we also have the equality w ? w0 = w0. �

The NilHecke algebra NHn is the monoid algebra of the monoid defined by the same generators and
relations, whose multiplication is given by the Demazure product. For this reason, the latter is also
known as the 0-Hecke product ; the monoid is called Coxeter monoid [89], 0−Hecke monoid [34, 48],
or Richardson-Springer monoid by different authors. Richardson and Springer studied its action on
the set of orbits of the flag variety under the action of the fixed point subgroup of an involution on
the algebraic group [80, 81]. The elements of this monoid are precisely {ew|w ∈ Sn}, i.e. we have a
bijection between the set Sn and the underlying set of the monoid (this was proved by Norton [73]).
As the examples above show, the multiplication in the monoid is quite different from the one in the
permutation group. More generally, given a positive braid β, δ(β) does not coincide with the image
of β under the canonical surjection onto Sn. A first relation to the weaves introduced above is given
in the following simple:

Lemma 4.5. Let Σ be a Demazure weave. Then the Demazure product of the associated braid words
βj(Σ), j ∈ [0, l(Σ)], remains unchanged, i.e. δ(β0(Σ)) = δ(βj(Σ)).
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Proof. By the arguments above, the Demazure product is invariant under braid moves in a word, so
6- and 4-valent vertices do not change it. Example 4.4 shows that 3-valent vertices also preserve the
Demazure product. �

Lemma 4.5 shows that Demazure weaves provide a transparent diagrammatic interpretation of the
Demazure product and of the 0−Hecke monoid. This motivated our nomenclature.

4.4. Classification of algebraic weaves. We call two algebraic weaves equivalent if they are related
by a sequence of elementary equivalence moves from the previous section (with no mutations), and
mutation equivalent if they are related by a sequence of equivalence moves and mutations.

Theorem 4.6. (a) Let Σ1,Σ2 be two algebraic weaves with the same source and target braids. If
Σ1,Σ2 only have 6- and 4- valent vertices, then Σ1,Σ2 are equivalent.

(b) Let Σ1,Σ2 be two Demazure algebraic weaves with the same source and target. If the target is
reduced, then Σ1,Σ2 are mutation equivalent.

Proof. The theorem follows from the main result of [29], which we briefly recall. For part (a), consider
the graph where vertices correspond to braid words and edges to braid moves (that is, 6- or 4-valent
vertices). Then the cycles in this graph are generated by commutation with distant colors and
Zamolodchikov relations, hence any two paths in this graph are equivalent.

For (b), consider the Hecke-type algebra with generators Ti and relations

T 2
i = αTi + β, TiTi+1Ti = Ti+1TiTi+1 + lower order terms, TiTj = TjTi, (|i− j| > 1).

Using these relations, it is easy to see that every product of Ti can be written as a linear combination
of reduced expressions, possibly in a non-unique way. This non-uniqueness appears from ambiguities:
applying the relations in different order could yield a different results.

B. Elias proved in [29, Proposition 5.5] that (modulo commutation with distant colors) there are
exactly 5 types of potential abmiguities that one needs to consider: iii, ii(i+1)i, i(i+1)ii, i(i+1)i(i+
1)i, i(i+ 1)(i+ 2)i(i+ 1)i, which are nothing but the trivial move, the 5-cycles corresponding to 1121
and 1211 from 4.2.4, the cycle from 4.2.5 for the word 12121, and the Zamolodchikov relation. Note
that the ambiguity iii corresponds to different ways of getting from iii to i. There are two such ways
without cups, and they are related by the first mutation from Section 4.2.8. �

Remark 4.7. The assumption in (b) that the target is reduced is important. Indeed, the two trivalent
vertices (ss)s→ ss and s(ss)→ ss are not mutation equivalent.

Remark 4.8. Note that by Theorem 4.6(a), any two simplifying weaves relating two braid words for
the same braid are equivalent. Thus, we will not specify such a weave.

Let us continue studying conditions for equivalences, it is indeed useful to have different criteria when
verifying that two weaves are equivalent (or mutation equivalent). Suppose that a braid word β
contains a piece siusj . Following [47], the pair of crossings (si, sj) is said to be a deletion pair if
siu = usj .

14 Let us define a relation ≺ on the crossings of the braid β according to si ≺ sj if (si, sj)
form a deletion pair. The following two lemmas are used in the proof of the criterion Theorem 4.11
below:

Lemma 4.9. (i) The relation ≺ is a partial order on the set of crossings of β.
(ii) The set of crossings of β is a disjoint union of linearly ordered sets.

Proof. Assume that we have a piece of a braid siusjvsk and (si, sj) and (sj , sk) are deletion pairs so
that siu = usj , sjv = vsk. Then

si · usjv = usjsjv = usjv · sk,
and (si, sk) is a deletion pair. This proves (i). To prove (ii), assume (si, sj) and (si, sk) are deletion
pairs, and assume wlog that sj is to the left of sk. We must show that (sj , sk) is a deletion pair. We
have

siu = usj , siusjv = usjvsk

14Note that unlike [47], we do not require u to be a reduced word.
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and siusjv = siuvsk, hence sjv = vsk and (sj , sk) is a deletion pair. The case when (si, sk) and
(sj , sk) are deletion pairs is analogous. �

We call a deletion pair (si, sj) close if si ≺ sj is a cover relation, i.e. no crossing in-between si and sj
forms a deletion pair with si or sj .

Lemma 4.10. Suppose that (si, sj) is a close deletion pair, then the following Demazure weaves are
equivalent:

siusj → sisiu→ siu→ usj ∼ siusj → usjsj → usj .

Note that the condition that the deletion pair is close is necessary, see Remark 4.7.

Proof. We prove the statement by induction by the length of u. If u is empty, the statement is clear.
Otherwise, by definition of deletion pair we get siu = usj . If u ends with sj then we do not have a
close pair, contradiction. Otherwise we need to apply some braid relation to usj which involves sj .
We have the following cases:

1) If u = vsk and |k − j| > 1 then usj = vsksj = vsjsk while siu = sivsk, so vsj = siv. By the
assumption of induction, two Demazure weaves corresponding to sivsjsk are equivalent, and we get
the following diagram:

sivsksj vsjsksj vsksjsj

sivsjsk vsjsjsk vsksj

sisivsk sivsk vsjsk

The top square is an isotopy, and the pentagon on the right is commutation with distant colors.

2) If u = vsjsj+1 then usj = vsjsj+1sj = vsj+1sjsj+1 while siu = sivsjsj+1, so siv = vsj+1. By the
assumption of induction, two Demazure weaves corresponding to sivsj+1 are equivalent, and we get
the following diagram:

sivsjsj+1sj vsj+1sjsj+1sj vsjsj+1sjsj

sivsj+1sjsj+1 vsj+1sj+1sjsj+1 vsjsj+1sj

sisivsjsj+1 sivsjsj+1 vsj+1sjsj+1

The top square is an isotopy, and the pentagon on the right is 5-cycle from Section 4.2.4. The case
when u = vsjsj−1 is analogous. �

Given a Demazure weave Σ, we have an injection ιΣ from the set of crossings in the target to the set
of crossings in the top: for a 6-valent vertex it is a bijection which exchanges left and right crossings,
for a 4-valent vertex it is a bijection exchanging crossings, and for a 3-valent vertex the injection
sends the crossing in the target to the right crossing in the source. We refer to the crossings not
in the image of ιΣ as missing. The following result is a characterization of the equivalence between
Demazure weaves:

Theorem 4.11. Suppose that `(β1) = `(β0) − 1. Then two Demazure weaves from β0 to β1 are
equivalent if and only if they have the same missing crossing in β0.

Proof. Since `(β1) = `(β0)− 1, any Demazure weave between β0 and β1 has one trivalent vertex. Let
us prove that equivalent weaves have the same missing crossing. It is easy to see that commutations
with distant colors and Zamolodchikov relations induce the same bijections between crossings, so
any two weaves with the same source and target and only 6- and 4-valent vertices induce the same
bijection. Finally, for the 5-cycle from Section 4.2.4 we observe that in either weave for 1121 the first
crossing is missing, while in either weave for 1211 the third crossing is missing.
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Conversely, assume that the Demazure weaves Σ1,Σ2 : β0 → β1 have the same missing crossing. It is
sufficient to prove that they can be related by a sequence of cycles from Lemma 4.10 and equivalences.
Note that a trivalent vertex corresponds to a close deletion pair. We have the following cases, where
the deletion pair is underlined:

1) Assume that (si, sj) is a close deletion pair and we apply a 4-valent vertex to sj :

siusjsk = siusksj , |k − j| > 1,

then (si, sj) is a close deletion pair in the resulting braid, and Lemma 4.10 applies.
2) Assume that we apply a 6-valent vertex with sj on the left:

siusjsj+1sj = siusj+1sjsj+1

then (si, sj+1) is a close deletion pair in the resulting braid, and Lemma 4.10 applies.
3) Assume that we apply a 6-valent vertex with sj on the right:

siusjsj+1sj = siusj+1sjsj+1

Note that siusjsj+1 = usjsj+1sj = usj+1sjsj+1 implies siu = usj+1, and (si, sj+1) is again
a close deletion pair.

4) Finally, assume that we apply a 6-valent vertex with sj in the middle, then we no longer get
a deletion pair. Instead, u = vsj+1 and sivsj+1 = vsj+1sj . By considering possible braid
moves, we can write v = wsj , then

siwsjsj+1 = wsjsj+1sj = wsj+1sjsj+1,

hence siw = wsj+1.We get the following diagram:

siwsjsj+1sjsj+1 siwsjsjsj+1sj wsj+1sjsjsj+1sj

siwsj+1sjsj+1sj+1 wsj+1sjsj+1sjsj+1 wsjsj+1sjsjsj+1

wsj+1sj+1sjsj+1sj+1 wsj+1sjsj+1sj+1 wsjsj+1sjsj+1

Here the squares are isotopies and 5-cycle is an equivalence from Section 4.2.4.

By combining all these cases (and the ones obtained by changing j + 1 to j − 1, or applying braid
moves to si), we can find equivalent weaves Σ1 ∼ Σ′′1 ◦ Σ′1 and Σ2 ∼ Σ′′2 ◦ Σ′2 where

• Σ′1,Σ
′
2 : β0 → β′ are weaves between equivalent braid words.

• Σ′′1 ,Σ
′′
2 : β′ → β1 are weaves obtained by finding a close deletion pair in β′ and applying either

weave from Lemma 4.10, followed by a sequence of braid moves.

Note that Σ′1 ∼ Σ′2, so it is enough to check that Σ′′1 ∼ Σ′′2 . Since Σ1,Σ2 have the same missing
crossing in β0, Σ′′1 and Σ′′2 have the same missing crossing in β′. Thus, Σ′′1 and Σ′′2 use the same close
deletion pair in β′, so the result now follows from Lemma 4.10. �

Remark 4.12. Although it is natural to consider the above injection and missing crossings for more
general weaves, these notions are not invariant under the equivalence relation. Indeed, one can check
that the two paths in the 5-cycle for 1121 yield two different injections on crossings (with the same
image), and the different paths for 12121 have different missing vertices. �

For a positive braid word β, we define the mutation graph of β to be a graph with vertices given by the
equivalence classes of Demazure weaves Σ ∈ HomWn(β∆,∆), and edges corresponding to mutations.
As we discuss below, the equivalence classes of such weaves are expected to correspond to clusters
of a certain cluster algebra, and (weave) mutations to correspond to (cluster) mutations. Thus, the
mutation graph of β is expected to correspond to the exchange graph for this cluster algebra. Note
that, by Theorem 4.6(b), any two equivalence classes of Demazure weaves in HomWn

(β∆,∆) are
related by mutations. Let us formulate the following

Conjecture 4.13. Suppose we oriented each mutation in the direction (ss)s→ s(ss). For any positive
braid β, this orientation descends on the mutation graph of β. With this orientation, the mutation
graph has no oriented cycles. �
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The conjecture is motivated by [13], where a similar statement was proven for the exchange graphs
for quivers and cluster algebras; see also [14].

4.5. Examples. Let us study two explicit examples in detail, illustrating the material and results
presented above.

Example 4.14. 2-strand braids. A braid on two strands is an element of Br2: we denote by σ the
unique Artin generator of this group, and by s the corresponding Coxeter generator (12) ∈ S2. Each
positive braid β ∈ Br2 has a unique braid word, which has the form σl, l ≥ 0, and note that ∆ = σ.
By abuse of notation, we will also write this word as sl. We refer to the braid σl as the (2, l)-torus
braid, since its (rainbow) closure is the (2, l)-torus link.

We have no braid moves in Br2, so each weave Σ ∈ HomW2(β, β′) contains only trivalent vertices,
cups and caps (and no 6- or 4-valent vertices). Each Demazure weave contains only trivalent vertices.
As a planar trivalent graph, it is an acyclic graph, and so it is a disjoint union of binary trees. Each
Demazure weave Σ ∈ HomW2

(β · ∆,∆) is naturally a rooted binary tree. By construction, all such
binary trees with l(β) + 1 leaves are mutualy non-equivalent, but they are all related by mutations.
If we orient each mutation (ss)s→ s(ss), the oriented mutation graph will coincide with the classical
Hasse graph of the Tamari lattice. It is known to be the 1-skeleton of a combinatorial polytope: the
(l(β)− 1)-dimensional associahedron, see e.g. [79]. To summarize, we have the following

Lemma 4.15. The mutation graph of the (2, l) torus braid is the 1-skeleton of the (l−1)-dimensional
associahedron. �

We can also understand each Demazure weave Σ ∈ HomW2
(sl · ∆,∆) as a sequence of openings of

crossings in the braid sl ·∆ = sl+1. As we understand trivalent vertices ss→ s as openings of the left
crossing, Σ is actually a sequence of openings of crossings in β; the only crossing of ∆ is the crossing of
the concave end of Σ. Naturally, the sequence of crossings being opened can be seen as a permutation
in Sl. The Tamari lattice is known to be both a sublattice and a lattice quotient of the weak order
on permutations, see [79]. Note that a permutation is the same as a maximal chain in the Boolean
lattice 2[l] of the subsets of the set of crossing of β.

Finally, another elegant way to look at Demazure weaves Σ ∈ HomW2
(sl ·∆,∆) is to consider them

as monotone paths along the edges in the l−dimensional cube, with 2−dimensional faces representing
elementary moves (equivalences or mutations) between weaves. We illustrate this on the example
of the (2, 3)-torus braid β = sss in Figure 7. Each edge of the cube is oriented downwards and
corresponds to one trivalent vertex in a weave. Equivalently, it corresponds to opening a single
crossing in β. Each vertex represents a horizontal cross-section away from the vertices of a Demazure
weave Σ ∈ HomW2

(ssss, s); equivalently, it corresponds to a braid word obtained from β by the
opening of some crossings. The underlined letters represent crossings that have been opened. For
each edge of the weave in a horizontal slice, we can trace back its parents in ssss; these parents are in
parentheses. The cube has the unique top vertex representing the braid ssss, and the unique bottom
vertex representing s. Each Demazure weave can be seen as a monotone path along the edges from
the top vertex to the bottom vertex.

The yellow face in the cube in Figure 7 illustrates the weave mutation given by

((s (s s)) s) (s ((s s) s))
oo //

The blue face is the only face that does not represent a mutation. Two monotone paths related by
the flip in this face correspond to two different possibilities to draw the same weave in such a way
that each horizontal cross-section contains at most one trivalent vertex:

((s s) (s s)) ((s s) (s s))
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(ssss)

(ss)(ss)

(sss)s

s(sss)

(ss)ss

ss(ss)

ssss

s(ss)s

opening crossings

mutations

Figure 7. The Hasse graph of the Boolean lattice 2[3]. The top vertex is the initial
braid word β · ∆ = s3 · s = s4, the bottom vertex represents ∆ = s. Demazure
weaves Σ ∈ HomW2(ssss, s) correspond to monotone paths from the top vertex to
the bottom vertex.

(((s s) s) s)

((s (s s)) s) (s ((s s) s))

((s s) (s s))

(s (s (s s)))

77

))

//

$$

55

Figure 8. The mutation graph of the (2, 3) torus braid sss. All mutations are
oriented in the direction (ss)s → s(ss). It coincides with the Hasse graph of the
Tamari lattice.

Two weaves are related by a single mutation if they are related by a polyonal flip in a non-blue face.
In Figure7, mutations (ss)s → s(ss) correspond to replacements of two “left” sides of a square by
its two “right” sides. The mutation graph is the 1-skeleton of 2-dimensional associahedron, that is,
a pentagon. It is drawn on Figure 8 as the Hasse graph of the Tamari lattice of rooted binary trees
with 4 leaves.

This concludes this example, focused on 2-stranded braids. The study of n-stranded braids and their
weaves is, in general, much more elaborate (and thus interesting as well). This is illustrated in the
next example. �

Example 4.16. The (3, 2) torus braid. Consider the (3, 2) torus braid β = σ1σ2σ1σ2 = 1212.
Figure 9 illustrates Demazure weaves 1212 · ∆ = 1212121 → 212 and relations between them. In
Figure 9, we allow weaves with trivalent vertices 11 → 1, 22 → 2 and 6-valent vertices represeting
braid moves only in one direction: 121→ 212. Edges of the graph in Figure 9 represent single moves.
We assume that each weave is drawn in such a way that each horizontal cross-section contains at
most one vertex. Each vertex on Figure 9 represents a horizontal cross-section without vertices of
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an (a priori, not unique) weave. All edges are oriented downward. The weaves then correspond to
monotone paths from the top vertex to the bottom vertex on the figure.

1221221

121221 122121

2121 1212

1212121

2122121

212121

221221

22121

22212

2212

212

2122212

212212

21212

22122

2212

212212

1212212

121212

122122

12122

21222

2122

2122

12212

212221

21221

12121

21221

122212

12212

Figure 9. The top vertex is the initial braid word β · ∆ = s1s2s1s2 · s1s2s1, the
bottom vertex represents s2s1s2. Demazure weaves β · ∆ → ∆ with only 6-valent
vertices s1s2s1 → s2s1s2 and 3-valent vertices allowed correspond to monotone paths
from the top vertex to the bottom vertex.

It appears that there is a way to draw the graph as a 1−skeleton of a 3−dimensional polytope with 21
facets, although we did not try to find an explicit polytopal realization. The 2-dimensional (polygonal)
faces correspond to the elementary moves between the paths. All the 2-dimensional faces are 4- or
8-gons:

(1) Yellow quadrilaterals correspond to mutations between the pairs of paths from sss to s.
(2) Other quadrilatelars correspond to some mutually independent distant operations. They

represent two different possibilities to draw the same weave in such a way that each horizontal
cross-section contains at most one trivalent vertex.

(3) Octagons correspond to the outer octagons in Section 4.2.5, they are formed by paths (A)
and (E). Note that the inner vertices and paths do not appear since the moves 212→ 121 are
not allowed.

We have no words containing 1121 or 1211 in our example, so the pentagons from 4.2.4 do not appear.
In order to cover all Demazure weaves, we should allow the moves 212→ 121. In Figure 9, we should
then replace each octagonal face by 5 faces from 4.2.5.
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Two weaves are equivalent if the corresponding paths are separated by several white faces, and related
by a single mutation if they are separated by one yellow face and several white faces. If we start from
some monotone path, go by 2-dimensional faces and make the 360 degrees turn around the vertical
axis, we go by all edges of the mutation graph of equivalence classes of paths exactly once. The
mutation graph is a pentagon.

Each Demazure weave Σ : 1212121 = β · ∆ → ∆ = 121 is equivalent to a Demazure weave Σ′ :
β ·∆→ 212 concatenated with a single 6−valent vertex 212→ 121. Indeed, if the last vertex in Σ is a
6−valent vertex β`(Σ)−1(Σ) = 212→ 121 = β`(Σ)(Σ), then we define Σ′ to be Σ with this vertex being
removed. By construction, Σ is then the concatenation of Σ′ with this vertex β`(Σ)−1(Σ)→ β`(Σ)(Σ).
Otherwise, we define Σ′ to be Σ concatenated with a vertex 121 → 212. Then Σ is equivalent to Σ′

concatenated with a vertex 212 → 121 via a cancellation move from Section 4.2.2. These arguments
show that the mutation graph of Demazure weaves β ·∆→ ∆ is isomorphic to the mutation graph of
Demazure weaves β ·∆→ 212. Thus, the former, i.e. the mutation graph of β, is also a pentagon.

The appearance of the pentagon is not completely unexpected. Indeed, it coincides with the mutation
graph of the torus braid (2, 3). As we will see in Section 6, simplifying weaves β·∆→ ∆, as well as their
equivalences and mutations, are related to augmentation varieties Aug(Λ(β)). Since Λ(3, 2) = Λ(2, 3),
the fact that the mutations graphs of Demazure weaves of these two braids are isomorphic to each
other is to be expected. �

Let us conclude this subsection on examples with two conjectures. First, given the Legendrian link
equivalence between the (2, n)- and (n, 2)-torus links, and Lemma 4.15, we state the following:

Conjecture 4.17. For the (n, 2) torus braid β, the mutation graph of Demazure weaves β ·∆ → ∆
is the 1-skeleton of the (n− 1)-dimensional associahedron. �

Our conjectural 3-dimensional polytope on Figure 9 is similar to polytopes from [67, Figure 1] where
the vertices encode equivalence classes of reduced expressions of elements in the braid group and
edges correspond to braid moves (also oriented from sisi+1si to si+1sisi+1). Reduced expressions
are considered to be equivalent if they are related by a sequence of moves sisj → sjsi, |i − j| ≥ 2.
This equivalence relation is trivial in our 3−strand case. It would be interesting to construct such
polytopes for other braids.

Remark 4.18. The polytopes in [67] are the Hasse graphs of second higher Bruhat orders introduced
by Manin and Shekhtman [65, 66], see also [90]. Given an arbitrary braid β, we can consider a similar
oriented graph Dβ . First, we associate a vertex to the braid β. We draw edges corresponding to moves
ss→ s, sisi+1si → si+1sisi+1, and sisj → sjsi, |i− j| ≥ 2. We then contract all edges corresponding
to moves sisj → sjsi, |i − j| ≥ 2. This defines a poset with covering relations defined by edges. An
element of the poset is an equivalence class of positive braid words with Demazure product ∆, with
a certain extra decoration. Words are considered to be equivalent if they are related by a sequence
of moves sisj → sjsi, |i − j| ≥ 2. The decoration can be understood in terms of subsets of the set
of crossings of the braid β; however, it is nontrivial to give a precise definition because of the issue
discussed in Remark 4.12. We can also define the decoration in a non-combinatorial way by using
variables from Section 5.3.

If we forget the decoration, this poset becomes a poset on the set of words with Demazure product
∆. Its analogue for all expressions of ∆ and covering relations ss→ s replaced by ss→ e was defined
by Elias [29] as an extension of the second higher Bruhat order to necessarily reduced words. It was
used in the proof of the main result of the work [29], which we translated to our language as Theorem
4.6. Our weaves thus resemble saturated chains in the secong higher Bruhat order, which in turn can
be seen as elements of the third higher Bruhat order. However, our equivalence relations differ from
the one considered by Manin and Schechtmann. Note also that Thomas [88] defined the 0th Bruhat
order to be the Boolean lattice. As we discussed in Example 4.14, Demazure weaves in W2 can be
seen as maximal chains in the 0th Bruhat order. In the present article, we will not explore the link
between weaves and the theory of higher Bruhat orders further.

The graph Dβ is not always a 1-skeleton of a polytope: e.g. D12122 is only a 1-skeleton of a union of
two quadrilaterals. However, we have the following expectation:

Conjecture 4.19. For an arbitrary positive braid word β, the poset complex of the oriented graph
Dβ is either a sphere or a ball. If it is a sphere, it admits a polytopal realization. �
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4.6. Triangulations and weaves. This subsection provides an interesting construction of weaves, by
using certain labeled triangulations. It provides a systematic diagrammatic algorithm to produce exact
Lagrangian fillings of the Legendrian link Λ(β) which are embedded and, in general, non-Hamiltonian
isotopic.

Given a positive braid word β, let us write the letters (crossings) of β ·∆2 on the sides of a (`(β) +
2`(w0))−gon. We will consider various labeled triangulations of this polygon. The easiest class of
triangulations was defined by Mellit in [68, 69] as follows. We allow arbitrary many vertices inside
the triangle, orient all edges and label them by the elements of Sn. If we change the orientation of an
edge, we change the corresponding permutation to its inverse. We also require that all triangles have
one of two types:

- All three sides are labeled by the same simple reflection si.
- The sides are labeled by permutations u, v and u · v such that `(u · v) = `(u) + `(v).

si si

si

u v

uv

We will call such triangulations admissible. Given an admissible triangulation, we can algorithmically
construct a weave, as follows. Choose a reduced expression for the permutation on every edge, then for
triangles of the second type we can concatenate the reduced expressions for u and v and get a reduced
expression for uv, which is possibly different from the one we chose. The two reduced expressions
are related by a sequence of braid moves, which are translated to 6- and 4-valent vertices for weaves.
The triangles of the first type corresponds to the trivalent vertices. Up to equivalence, this gives a
well-defined weave, cf. Remark 4.8. Note that the weaves we obtain do not have caps or cups.

We can encode some of the moves between weaves in terms of triangulations. Given three permutations
u, v and w such that `(uvw) = `(u) + `(v) + `(w), we can make the following moves, which clearly do
not change the weave:

u

v

w

uvw

uv ∼ u

v

w

uvw

vw

u vw

uvw

v

uv w

∼ u vw

uvw

For unlabeled triangulations, these are precisely the Pachner moves (also known as bistellar flips)
in dimension 2. The result of Pachner [74] states that all triangulations of a polygon are related by
such moves (the general version of this result holds for piecewise linear manifolds and bistellar flips
in higher dimensions).

If we have four permutations u, v, w, t such that uv = tw, then t−1u = wv−1. Assuming that all these
products are reduced, we have a move
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u

v

w

t

uv = tw ∼ u

v

w

t

t−1u = wv−1

Note that in this case we get the equations

`(u) + `(v) = `(t) + `(w), `(u) + `(t) = `(v) + `(w)

which imply
`(u) = `(w), `(v) = `(t).

Example 4.20. The weave corresponding to either of the following diagrams is a single 6-valent
vertex. The choice of a reduced expression (121 or 212) on the diagonal determines the triangle
containing this 6-valent vertex.

1211

21

2

21

∼ 1211

21

2

21

Finally, we can encode the 1212-move from Section 4.2.4 as the following move between triangulations:

1

21

121

2

1

1

21

121

∼ 1

21

121

2

21 2

121 2

Conversely, given a weave, we can consider the dual planar graph. It has triangular regions corre-
sponding to 3-valent vertices in the weave, hexagonal regions corresponding to 6-valent vertices, and
quadrilateral regions corresponding to 4-valent vertices. By choosing any admissible triangulation
of each hexagon and quadrilateral, we get a triangulation of the whole polygon. The choice of the
triangulation does not matter - for example, for the hexagon with sides labeled 1,2,1,2,1,2 there are
14 triangulations and 12 of them (those that do not contain triangles formed by three diagonals) are
admissible. It is easy to see (using Example 4.20) that any two of them can be related by a sequence
of the above moves, and correspond to the equivalent weaves.

Remark 4.21. In conclusion, we get a map from weaves to triangulations and from triangulations to
weaves, but neither of them is a bijection. For future work, it would be interesting to find a complete
set of moves between triangulations such that the corresponding equivalence classes are in bijection
with the equivalence classes of weaves. �

4.7. Demazure triangulations. The correspondence between weaves and triangulations in Subsec-
tion 4.6 above is clear combinatorially. Nevertheless, it has a disadvantage: given a triangulation, it is
unclear if the corresponding weave is simplifying or Demazure or, geometrically, if the corresponding
Lagrangian surface is embedded in R4 (instead of merely immersed). In order to resolve this issue,
we now introduce a special class of triangulations – with slightly more general labeling rules – which
we refer to as Demazure triangulations.
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Let us fix a reduced expression ∆ of the longest element w0 as in Example 2.2. Given a braid β, we
consider an (`(β) +

(
n
2

)
+ 1)-gon, and we label the vertices with integers from 0 to N := r +

(
n
2

)
. We

label the first `(β) +
(
n
2

)
sides clockwise by the letters of β∆, and we label the last side (connecting

0 and N) by w0. Given a diagonal in this polygon, we can label it by δ(β′) where β′ is the piece of
β enclosed by this diagonal and δ is the Demazure product. By definition, a Demazure triangulation
for a braid β is any triangulation of the (`(β) +

(
n
2

)
+ 1)-gon with sides and diagonals labeled with

the above rules. A Demazure triangle is a triangle (with labeled sides) in a Demazure triangulation.

We can consider all possible triangulations of this polygon by diagonals (that is, there are no internal
vertices). For any triangle in this picture, its three edges are labeled by u, v and u ? v for some u and
v. Note that the diagonals are labeled by elements of the symmetric group and not by braid words.

Definition 4.22. Let 4 be a triangle with sides u, v and u ? v. The defect of 4 is def(4) =
`(u) + `(v)− `(u ? v). �

The following fact is rather immediate:

Lemma 4.23. In a Demazure triangulation for β, we must have
∑
4 def(4) = r, where r = `(β) is

the length of the braid word β.

Proof. We prove a more general statement: suppose that a diagonal (or the side with vertices 0 and
N) encloses a braid β′ with k crossings, and carries the label u = δ(β′). Then, we will show that
the sum of defects of the triangles above this diagonal equals k − `(u). The statement of the Lemma
follows by setting u = w0 and then we get r + `(w0) − `(w0) = r. To prove this general statement,
we use induction in k ∈ N. Consider the triangle adjacent to the diagonal with u, its other sides
are labeled v and w such that v ? w = u. By the assumption of induction, sum of defects above v
equals k1 − `(v) and the sum of defects above w equals k2 − `(w), so the total sum of defects equals
k1 − `(v) + k2 − `(w) + `(v) + `(w)− `(u) = k − `(u). �

Demazure triangulations relate to Subsection 4.6 as follows:

Proposition 4.24. Any Demazure triangulation can be subdivided to an admissible triangulation.

Proof. Consider a triangle with sides u, v and u ? v = δ(uv). If u ? v = uv, then this triangle is
admissible. Otherwise, we use induction in `(v). Let v1 be the longest prefix of v such that uv1 is
reduced. Then we can write v = v1sv2 such that `(uv1) = `(u) + `(v1) but `(uv1s) < `(u) + `(v1) + 1.
Therefore we can find a reduced expression w such that uv1 = ws, and draw the following diagram:

u v

w
s

s s

v1

v2

u ? v

The unmarked edges are labeled by ws = uv1, ws and sv2. Now

u ? v = u ? v1 ? s ? v2 = w ? s ? s ? v2 = ws ? v2,

and by the assumption of induction we can subdivide the marked triangle with sides ws and v2 into
admissible ones. �

The next result justifies the chosen nomenclature for a Demazure triangulation.

Corollary 4.25. To each Demazure triangulation we can associate a Demazure weave
Σ ∈ HomWn(β · ∆, ∆).
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Figure 10. Possible algebraic weaves in triangles of a Demazure triangulation with
only two colors. Note that fourth (i.e. the first in the second row) and seventh
diagrams coincide as (pieces of) weaves; and the same is true for the sixth, ninth and
fourteenth diagrams.

Proof. Given a Demazure triangulation, we can subdivide it to an admissible triangulation by Propo-
sition 4.24. By results in Subsection 4.6, we can associate to this admissible triangulation a weave.
This weave can be seen as a simplifying weave Σ ∈ HomWn(β ·∆,∆). Indeed, outside of the marked
triangle it consists of several 6- and 4-valent vertices on the left encoding the relation uv1 = ws, and
a (correctly oriented) trivalent vertex at the center. Since we never use cups, this simplifying weave
is Demazure. �

In Figure 10 we depict possible pieces of algebraic weaves that can appear in triangles of a Demazure
triangulation with only 2 colors.

Remark 4.26. From the perspective of contact geometry, embedded exact Lagrangian fillings for
the (−1)-framed closure of β can also be constructed by expanding the ∆ side to its

(
n
2

)
sides. Thus

the triangulation is that of an (`(β) + 2
(
n
2

)
)-gon, instead of an (`(β) +

(
n
2

)
+ 1)-gon. The Demazure

labeling rule work in the same way: we start with sides labeled and complete the interior by always
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assigning the Demazure product to the remaining edge of a triangle. Figure 11 gives an example of
these more general Demazure triangulation and a possible associated weave. �

1

2

1

2
2

2

2
1

1

1

1

1

1

2

12

21

21

1212

12

Dem(211)

Dem(12211)
Dem(2112)

Dem(12121)

Dem(1212)

1

2

1

2
2

2

2
1

1

1

1

1

1

2

12

21

21

12

12

12

21

121

121

121

121

Figure 11. (Left) An extended Demazure triangulation as in Remark 4.26. (Right)
The associated weave, which yields an embedded exact Lagrangian filling of the
rainbow closure of β = σ1σ2σ2σ1σ1σ2σ1σ1.

Finally, note that there are several ways to fill a triangle by a weave (for example with sides
121,121,121), and these might be related by a mutation. Nevertheless, it follows from Theorem
4.11 that all ways to fill a triangle with defect 0 or 1 with a weave must be equivalent.

5. Algebraic Weaves, Morphisms, and Correspondences

This section develops the relative geometry of braid varieties, studying morphisms and correspon-
dences between them. These correspondences are defined using weaves, and provide a functor from
the category of algebraic weaves to the category of algebraic varieties and their correspondences.

5.1. Correspondences. Consider an algebraic weave Σ with braid words β0 on the bottom and β1 on
the top. We now construct a correspondence between the two braid varieties X0(β0), X0(β1). To each
segment of an edge labeled by i we associate a variable z and the braid matrix Bi(z); and the segments
separated by a vertex or an intersection point with the yellow line carry different variables. In addition,
each segment of a yellow line carries an undetermined upper uni-triangular matrix. All these variables

and matrices can be considered as coordinates in the affine space AΣ = Csegments×(C(n2))yellow segments.
The correspondence is then defined as follows:

Definition 5.1. Let Σ be a weave and τ ⊆ [1, 2] × R a path on the plane transverse to Σ. The
monodromy of the weave Σ along τ , also referred to as the monodromy of τ , is the ordered product
of the following matrices:

(i) Bi(z), if the path crosses an edge labeled by i with variable z from left to right,
(ii) Bi(z)

−1, if the path crosses an edge labeled by i with variable z from right to left,
(iii) U , if the path crosses a yellow line colored by U downwards,
(iv) U−1, if the path crosses a yellow line colored by U upwards.

By definition, the correspondence variety M(Σ) associated to the weave Σ is the affine algebraic
subvariety of AΣ cut out by the conditions that the monodromy around a closed loop around every
vertex (or intersection point with a yellow line) is trivial. �
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Note that Definition 5.1 implies that the monodromy around any closed loop is trivial. In particular,
the monodromy around the loop encircling the whole weave with β0 on the bottom and β1 on the top

equals B(β1)B(β0)−1Ũ−1, where Ũ is the product of the upper-triangular matrices assigned to yellow

lines on the left, so B(β1) = ŨB(β0). This implies the following:

Proposition 5.2. Given π ∈ Sn, assume that B(β0)π is upper-triangular. Then B(β1)π is upper-
triangular, and M(Σ) defines a correspondence M(Σ, π) between X0(β0;π) and X0(β1;π).

Note that when π = 1 we obtain a correspondence M(Σ, 1) between the braid varieties X0(β0) and
X0(β1). In general, M(Σ, 1) does not coincide with the variety M(Σ). Now, the composition of
weaves is defined by vertical stacking, and corresponds to the following diagram:

M(Σ, π)

M(Σ1, π) M(Σ2, π)

X(β0;π) X(β1;π) X(β2;π),

where Σ1 is a weave from β0 to β1, Σ2 is a weave from β1 to β2, Σ is a weave from β0 to β2 obtained
by concatenation of Σ1 and Σ2, and it is easy to see that the middle square is Cartesian. In other
words, M(Σ, π) is a convolution of correspondences M(Σ1, π) and M(Σ2, π). Also, it is clear that
flipping a weave upside down corresponds to switching β0 and β1 and transposing the correspondence.

Therefore, to understand these correspondences, it is sufficient to describe them for the elementary
weaves. These are described as follows:

(1) For s trivalent vertex colored by i, the correspondence M(Σ, π) embeds into X(β1;π) as the
open locus {z1 6= 0} and projects onto X(β0;π) with fibers P1 \ {0,∞} = C∗. In terms of
matrices, we have the identity

Bi(z1)Bi(z2) =

(
−z−1

1 1
0 z1

)
Bi(z2 + z−1

1 ).

(2) For 6-valent and 4-valent vertices, the corresponding character varieties X(β0;π) and X(β1;π)
are isomorphic, andM(Σ, π) realizes this isomorphism. In terms of matrices, this corresponds
to the identities

Bi(z1)Bi+1(z2)Bi(z3) = Bi+1(z3)Bi(z2 − z1z3)Bi+1(z1),

Bi(z1)Bj(z2) = Bj(z2)Bi(z1) (|i− j| > 1).

(3) For a cup colored by i, the correspondenceM(Σ, π) embeds into X(β1;π) as the closed locus
{z1 = 0} and projects onto X(β0;π) with fibers P1 \ {∞} = C. In terms of matrices, we have
the identity

Bi(0)Bi(z) =

(
1 z
0 1

)
.

For a cap, we just use the transposed correspondence.
(4) The intersection of an edge and the yellow line corresponds to the identity

Bi(z)U = ŨBi(z
′)

from Lemma 2.13.

These four rules are justified by the following result:

Proposition 5.3. In the construction of the correspondence variety M(Σ):

(a) The triangular matrices on yellow lines are uniquely determined by the variables on the edges.
(b) The output variables of each 3-, 6-, or 4-valent vertex are determined by the input variables.
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Proof. It follows from the proof of Lemma 2.13 that the equation Bi(z)U = ŨBi(z
′) uniquely deter-

mines Ũ and z′ for given z and U . Therefore, for (a) it is sufficient to consider the yellow lines near
trivalent vertices, cups, and caps.

For a 6-valent vertex, it is easy to see that Bi(z1)Bi+1(z2)Bi(z3) = Bi+1(w1)Bi(w2)Bi+1(w3) implies
w1 = z3, w2 = z2 − z1z3, w3 = z1, so the output variables are determined by the input ones. The
proof for a 4-valent vertex is similar.

For a 3-valent vertex, we have an equation Bi(z1)Bi(z2) = UBi(w) which can be written as(
1 z2

z1 1 + z1z2

)
=

(
0 1
1 z1

)(
0 1
1 z2

)
=

(
a b
0 c

)(
0 1
1 w

)
=

(
b a+ bw
c cw

)
,

which implies b = 1, c = z1, w = (1 + z1z2)/c = z2 + z−1
1 and a = z2 − bw = −z−1

1 .

For a cup, we have Bi(z1)Bi(z2) = U and similarly z1 = 0 and U is determined by z2. The case of a
cap follows analogously. �

By combining these facts, we obtain the following results:

Theorem 5.4. Let Σ be a simplifying algebraic weave with m cups and r trivalent vertices. Then

M(Σ, π) ∼= Cm × (C∗)r ×X0(β0;π),

the map to X0(β0, π) is given by the projection to the third factor, and the map to X0(β1;π) is
injective. �

Corollary 5.5. Let Σ be a Demazure weave with r trivalent vertices. Then

M(Σ, π) = (C∗)r ×X(β0;π),

and the map M(Σ, π)→ X(β1;π) is an open embedding. �

Corollary 5.5 follows since we have `(β0) + r = `(β1), and thusM(Σ, π) and X0(β1, π) have the same
dimension. Let us now shift the focus to studying the relation between these correspondences and
opening crossings of a positive braid; the latter having been a crucial ingredient in Section 2.1 and 3.
The first observation, compare also with [37], is the following

Lemma 5.6. Let β be a positive n-braid. For any i ∈ [0, n− 1], opening a crossing σi in the positive
braid β ·∆ can be realized by the composition of the following three weaves:

(a) Move ∆ next to σi and change the braid word for ∆ to one which starts from σi. This only
uses braid relations, or, equivalently, 6- and 4-valent vertices,

(b) Apply the trivalent vertex σiσi → σi,
(c) Move ∆ back to the end.

Proof. By construction, the trivalent vertex σiσi → σi corresponds to opening the left crossing σi. It
is easy to see that opening a crossing commutes with braid relations not involving this crossing, and
the result follows. �

Let us remark that the element ∆ is not central in the braid group, and care is needed in Step (a) of
Lemma 5.6: if β = β1σiβ2 then the procedure in Lemma 5.6 is

β1σiβ2∆→ β1σi∆β
′
2 → β1σi∆

′β′2 → β1∆′β′2 → β1∆β′2 → β1β2∆

where ∆′ is an equivalent braid word to ∆ that starts with σi, the opening of the crossing σi is
performed in the third arrow, and all other arrows only involve braid moves or, equivalently, 4- and
6-valent vertices. Let us now give a concrete example of this procedure.

Example 5.7. Suppose that β = 1212 and we want to open the second crossing in β ·∆ = 1212121.
The above moves have the following form, where we have underlined ∆:

1212121 = 1212121 = 1212121→ 1221221→ 121221→ 112121 = 112121 = 112121.

The corresponding weave has the form
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As a result, opening all crossings in a braid β, in some order, corresponds to a Demazure weave.
Interestingly, the converse is also true, up to equivalence relation on weaves. This is the content of
the following:

Theorem 5.8. Let Σ be a Demazure weave. Then Σ is equivalent to a weave obtained by opening
crossings in some order.

Proof. Similarly to the proof of Theorem 4.11, any Demazure weave between braids β and β′ such
that `(β) = `(β′) + 1 is equivalent to a weave corresponding to opening a crossing in β followed by
some braid moves. Let us prove the statement of the theorem by induction on length. Given a weave
from β∆ to ∆, choose a slice β′ right below the first trivalent vertex. By the above argument the
weave is equivalent to opening a crossing in β (which results in a braid β′′∆) followed by some braid
moves to β′, and followed by the rest of the weave. By the assumption of induction, the weave from
β′′∆ to ∆ is equivalent to opening crossings in β′′ in some order. �

Finally, we now state the invariance of the correspondencesM(Σ) under weave equivalence and deduce
its main corollary, relating weave to the toric charts in Section 2. The invariance reads:

Theorem 5.9. Let Σ1,Σ2 be equivalent Demazure weaves between β0 and β1, i.e. Σ1,Σ2 are related
by a sequence of elementary moves (not mutations). Then, their associated correspondences M(Σ1)
and M(Σ2) are isomorphic.

Remark 5.10. It is shown in [19] that two Legendrian weaves related by an elementary move (or
compositions of thereof) yield Hamiltonian isotopic Lagrangian projections, and also yield the same
maps between the corresponding Legendrian Contact DGAs. Theorem 5.9 is an algebraic analogue
of this statement. �

Theorem 5.9 will be proven momentarily, after we have deduced the following important consequence:

Corollary 5.11. Let Σ be a Demazure weave between β∆ and ∆. Then the open chart M(Σ, w0) ↪→
X0(β∆, w0) coincides with one of the toric charts from Section 2.3.

Proof. By Theorem 5.8 the weave Σ is equivalent to the weave Σ′ obtained by opening crossings in
some order. By Theorem 5.9 the open charts in X0(β∆, w0) corresponding to Σ and Σ′ coincide. �

As a short aside, we could be following [19] and have also defined the following correspondence
MOBS(Σ), called the flag moduli space in [19]. This flag moduli is defined as follows. To each region
of ([1, 2]×R)\Σ we associate a flag in Cn, if Σ goes between n-braids, and two regions separated by a
line colored by i have flags in position si. The flags separated by a yellow line are required to coincide.
There are two natural projectionsMOBS(Σ)→ OBS(β0),MOBS(Σ)→ OBS(β1), so thatMOBS(Σ) is
a correspondence between OBS(β0) and OBS(β1). We can also define MOBS′(Σ) ⊆MOBS(Σ) as the
closed subvariety given by the extra condition that the flag corresponding to the unbounded region
on the far left of the weave coincides with the flag corresponding to the unbounded region on the far
right. The variety MOBS′(Σ) is a correspondence between OBS′(β0) and OBS′(β1). In this setting,
in line with Theorem 2.34, we can conclude the following:

Proposition 5.12. Let G = GL(n) and B ⊆ G the Borel subgroup of upper-triangular matrices.
There is a free action of B on G×M(Σ), this action preserves G×M(Σ, 1) and moreover

MOBS(Σ) = (G×M(Σ))/B, MOBS′(Σ) = (G×M(Σ, 1))/B.

Proof. An element in G = GL(n,C) corresponds to the choice of a basis in one of the regions on the
plane. Given a point inM(Σ), we can define a basis in every other region, and the trivial monodromy
condition ensures that this assignment is well defined. The flags in regions are induced by these
bases. The action of B changes the basis in the rightmost region, but does not affect the flag in it.
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Similarly to the proof of Theorem 2.34, we can propagate this action to the left and prove the desired
isomorphism. �

5.2. Proof of Theorem 5.9. Let us prove Theorem 5.9. In order to do so, we directly check each
elementary move from Section 4.2 separately. Cancellation of 4- and 6-valent vertices and commuting
with distant colors are clear, and we do not include them in the list. Similarly. the various ways to
resolve 12121 are related to each other by a sequence of 1212-moves, so it is sufficient to check the
latter. The list of verifications needed for proving Theorem 5.9 now follows:

5.2.1. Isotopies I: Changing the heights of vertices. Changing the height of vertices does not change
the the graph, but can change the yellow lines . Specifically, we need to understand how to slide
yellow lines past 3-, 4- and 6-valent vertices.

z1

s−1z1 sz2 + k

z2

s(z2 + z−1
1 ) + k

z1 z2

z2 + z−1
1

s(z2 + z−1
1 ) + k

The most interesting case is sliding through 3-valent vertex. In this case we have identity(
0 1
1 z1

)(
0 1
1 z2

)(
a b
0 c

)
=

(
0 1
1 z1

)(
c 0
0 a

)(
0 1

1 b+cz2
a

)
=

(
a 0
0 c

)(
0 1
1 az1

c

)(
0 1

1 b+cz2
a

)
.

Therefore we have a transformation (z1, z2) → (s−1z1, sz2 + k) where s = c
a and k = b

a . Note that

under this transformation we have z2 + z−1
1 → s(z2 + z−1

1 ) + k.

5.2.2. Isotopies II: Cups and Caps. Let us check that the two ways to define an upside down trivalent
vertex in are equivalent. Indeed, the left picture corresponds to the changes of variables

(z)→ (0, u, z)→ (−u, z + u−1)

while the right picture corresponds to

(z)→ (z − w, 0, w)→ ((z − w)−1, w).

Here the cap on the left produces variables (0, u) while the cap on the right produces variables (0, w).
We can idenify the two diagrams by setting w = z + u−1, u = −(z − w)−1.

Next, we compare two ways corresponding to the path 111 → 11 → ∅ (see Section 4.2.1). The left
one corresponds to changes of variables

(z1, z2, z3)→ (z2 + z−1
1 , z3)→ ∅

and the cup is well defined if z2 + z−1
1 = 0, that is, 1 + z1z2 = 0. The right diagram corresponds to

(z1, z2, z3)→ (z1 + z−1
2 , z3 + z−1

2 )→ ∅

and is well defined if z1 + z−1
2 = 0, which leads to the same equation. Note that 1 + z1z2 = 0 implies

that both z1 and z2 are invertible, so that both trivalent vertices are well defined.

Finally, let us check the zigzag relation. On the left we have (z)→ (0, 0, z)→ (z) while on the right
we have

(z)→ (z − u, 0, u)→ (u)

which is well defined if z − u = 0, so that z = u.
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5.2.3. The 1212-relation. We refer to the notations in Section 4.2.4. The path 1212→ 2122→ 212→
121 corresponds to changes of variables

(z1, z2, z3, z4)→ (z3, z2 − z1z3, z1, z4)→ (z2,−z2z
−1
1 + z3, z4 + z−1

1 )→ (z4 + z−1
1 , z3 + z2z4, z2)

Note that the second step corresponds to opening third crossing, which affects all other crossings.
The other path 1212→ 1121→ 121 corresponds to changes of variables

(z1, z2, z3, z4)→ (z1, z4, z3 + z2z4, z2)→ (z4 + z−1
1 , z3 + z2z4, z2).

For completeness, we also include the computation for some of the other diagrams in Section 4.2.4.
For 1121 we get two paths

(z1, z2, z3, z4)→ (z2 + z−1
1 , z3, z4)→ (z4, z3 − z4(z2 + z−1

1 ), z2 + z−1
1 )

and

(z1, z2, z3, z4)→ (z1, z4, z3 − z2z4, z2)→ (z3 − z2z4, z4 − z1(z3 − z2z4), z1, z2)→

(z4,−z−1
1 (z4 − z1(z3 − z2z4)), z2 + z−1

1 )

Note that

−z−1
1 (z4 − z1(z3 − z2z4)) = z3 − z4(z2 + z−1

1 ).

For 1211 we get two paths

(z1, z2, z3, z4)→ (z2 − z1z3, z
−1
3 z2, z4 + z−1

3 )→

(z4 + z−1
3 , z−1

3 z2 − (z4 + z−1
3 )(z2 − z1z3), z2 − z1z3)

and

(z1, z2, z3, z4)→ (z3, z2 − z1z3, z1, z4)→ (z3, z4, z1 − z4(z2 − z1z3), z2 − z1z3)→

(z4 + z−1
3 , z1 − z4(z2 − z1z3), z2 − z1z3).

Note that

z−1
3 z2 − (z4 + z−1

3 )(z2 − z1z3) = z−1
3 z2 − z4z2 + z1z3z4 − z−1

3 z2 + z1 = z1 − z4(z2 − z1z3).

The proof for other pair of adjacent colors is similar.

5.2.4. The Zamolodchikov relation. The left diagram in Section 4.2.6 represents the following path:

123121→ 121321→ 212321→ 213231→ 231213→ 232123→ 323123

which induces the following change of variables:

(z1, z2, z3, z4, z5, z6)→ (z1, z2, z4, z3, z5, z6)→ (z4, z2 − z1z4, z1, z3, z5, z6)→

(z4, z2 − z1z4, z5, z3 − z1z5, z1, z6)→ (z4, z5, z2 − z1z4, z3 − z1z5, z6, z1)→

(z4, z5, z6, z̃3, z2 − z1z4, z1)→ (z6, z5 − z4z6, z4, z̃3, z2 − z1z4, z1).

The right diagram represents the following path:

123121→ 123212→ 132312→ 312132→ 321232→ 321323→ 323123

which induces the following change of variables:

(z1, z2, z3, z4, z5, z6)→ (z1, z2, z3, z6, z5 − z4z6, z4)→ (z1, z6, z3 − z2z6, z2, z5 − z4z6, z4)→

(z6, z1, z3 − z2z6, z5 − z4z6, z2, z4)→ (z6, z5 − z4z6, z̃3, z1, z2, z4)→

(z6, z5 − z4z6, z̃3, z4, z2 − z1z4, z1)→ (z6, z5 − z4z6, z4, z̃3, z2 − z1z4, z1).

Here z̃3 = z3 − z1z5 − z2z6 + z1z4z6.

This concludes the proof of Theorem 5.9, as required. Hence, we have established invariance of the
correspondences M(Σ) under weave equivalence, showing that the functor is well-defined from the
weave category.
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5.3. Mutation equivalence and rational maps. The previous subsections have discussed weave
equivalence thoroughly, let us now address weave mutations. First, note that any Demazure weave Σ
from β0 to β1 defines a rational map ΦΣ from X0(β0, π) to X0(β1, π), that is, the variables associated
to crossings in β1 can be expressed as rational functions in variables associated to crossings in β0. This
rational map ΦΣ is defined on the image of M(Σ, π), but we can extend it to its maximal domain;

we denote such extension by Φ̂Σ.

Example 5.13. The weave (ss)s→ ss corresponds to the rational map (z1, z2, z3) 7→ (z2 + z−1
1 , z3),

while the weave s(ss)→ ss corresponds to the rational map (z1, z2, z3) 7→ (−z2 − z1z
2
2 , z3 + z−1

2 ).

Recall that two weaves are mutation equivalent if they are related by a sequence of equivalences and
mutations. The maps associated to mutation equivalent weaves are related according to the following:

Theorem 5.14. Let Σ,Σ′ be two weaves which are mutation equivalent. Then, the corresponding

maximal extensions of rational functions Φ̂Σ, Φ̂Σ′ coincide.

Proof. By Theorem 5.9 the maps ΦΣ and ΦΣ′ coincide for equivalent weaves even before mutations.
Therefore it is sufficient to check mutations, using Example 5.13. One of the trivalent graphs involved
in a mutation corresponds to the rational map

(z1, z2, z3) 7→ z3 + (z2 + z−1
1 )−1 = z3 +

z1

1 + z1z2

while the other corresponds to the rational map

(z1, z2, z3) 7→ z3 + z−1
2 + (−z2 − z1z

2
2)−1 = z3 +

1

z2
− 1

z2(1 + z1z2)
= z3 +

z1

1 + z1z2
.

Note that in the first case the map ΦΣ is defined on the toric chart {z1 6= 0, 1 + z1z2 6= 0} while in
the second case it is defined on the chart {z2 6= 0, 1 + z1z2 6= 0}, but in both cases it extends to the
locus {1 + z1z2 6= 0} and the extensions agree. �

Remark 5.15. Alternatively, we may state that the rational maps ΦΣ and ΦΣ′ agree on the inter-
section of their corresponding domains, hence their maximal extensions must agree too. �

5.4. Torus actions and augmentation varieties. In this subsection, given a simplifying weave Σ
from β1 to β0, we will construct an action of the torus T = (C∗)n/C∗ on the correspondence variety
M(Σ) so that for every π ∈ Sn both projectionsM(Σ, π)→ X0(βi;π), i = 0, 1, are T -equivariant. In
particular, this allow us to define correspondence between augmentation varieties by Theorem 2.30.

First, we modify the action of T on X0(β;π) defined in Section 2.2 as follows. Take β = σi1 · · ·σi` ∈
Br+

n and let w ∈ Sn be its corresponding permutation. We define an action of T on C` by

(5.1) t.(z1, . . . , z`) = (d1z1, . . . , d`z`)

where dk = twρk(ik)t
−1
wρk(ik+1)

. Here, wρ`−k = si` · · · si`−k+1
= (si`−k+1

· · · si`)−1. Thanks to (2.4) we

have that Bβ(t.z) = D−1
w−1(t)Bβ(z)Dt, so for every permutation π ∈ Sn we have an induced action on

X0(β;π).

Remark 5.16. This torus action on X0(β;π) differs from the the action in Section 2.2 by conjugation
by the permutation matrix w, thus the two actions are equivalent. The action used in Section 2.2
coincides with that considered in [68], while the action used in this section behaves better under
morphisms given by weaves, as we will see below. �

When we want to be explicit, we will write t ·β (z1, . . . , z`) for the action (5.1). Note that this depends
on the presentation of the braid β but it is readily verified that different presentations of β yield
equivalent torus actions:

Lemma 5.17. Let γ1, γ2 ∈ Br+
n and denote r := `(γ1).

(1) Let β1 = γ1σiσi+1σiγ2 and β0 = γ1σi+1σiσi+1γ2. Then, the map

f : C`(β1) → C`(β0), f(z) = (z1, . . . , zr, zr+3, zr+2 − zr+1zr+2, zr+1, zr+4, . . . , z`)

satisfies f(t ·β1
z) = t ·β0

f(z).
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(2) Let β1 = γ1σiσjγ2 and β0 = γ1σjσiγ2, where |i− j| > 1. Then, the map

f : C`(β1) → C`(β0), f(z) = (z1, . . . , zr, zr+2, zr+1, zr+3, · · · , z`)
satisfies f(t ·β1

z) = t ·β0
f(z). �

LetD = diag(a1, . . . , an) be a diagonal matrix and w ∈ Sn, and let is write wD := diag(aw−1(1), . . . , aw−1(n)).
The following lemma will be used to construct a (well-defined) torus action:

Lemma 5.18. Let w be a permutation and z a variable of weight ew(j) − ew(j+1) for some j =
1, . . . , n− 1. Let z0 be a variable of weight ei+1 − ei and define z′ by the equation

Bj(z)
wDi(z0) = wsjDi(z0)Bj(z

′),

see (2.4). Then, the weight of z′ is wt(z′) = esiw(j) − esiw(j+1).

Proof. First, note that z having weight ew(j) − ew(j+1) is equivalent to saying that for any t ∈ T :

t.Bj(z) = Dwsj(t)Bj(z)D
−1
w(t),

cf. Remark 2.20. Also, since Di(z0) = diag(1, . . . ,−z−1
0 , z0, 1, . . . , 1), where −z−1

0 is in the i-th place,
it is easy to see that t.wDi(z0) = Dw(t)

wDi(z0)D−1
siw(t). Now we compute

t.Bj(z
′) = (t.wsjDi(z0)−1)(t.Bj(z))(t.

wDi(z0))
= (Dsiwsj(t)

wsjDi(z0)−1D−1
wsj(t)

)(Dwsj(t)Bj(z)D
−1
w(t))(Dw(t)

wDi(z0)D−1
siw(t))

= Dsiwsj(t)Bj(z
′)D−1

siw(t)

and the result follows. �

Finally, the desired statement regarding torus actions on our correspondences reads:

Proposition 5.19. Let Σ be a simplifying algebraic weave from β1 to β0. Then, there is an action
of an algebraic torus T on M(Σ) such that for every permutation π ∈ Sn:

(1) T preserves the correspondence variety M(Σ, π).
(2) The projections M(Σ, π)→ X0(β1;π), M(Σ, π)→ X0(β0;π) are equivariant.

Proof. Thanks to Proposition 5.3 we haveM(Σ) ⊆ C`(β1), and we have an action of T on C`(β1) given
by (5.1). Again by Proposition 5.3, this induces an action on M(Σ).

Note that, more generally, we have projections M(Σ) → C`(β1), M(Σ) → C`(β0). We will show
that both of these maps are T -equivariant. This implies (1) and (2) above. By the definition of
the T -action, the map M(Σ) → C`(β1) is T -equivariant. To show that the map M(Σ) → C`(β0) is
T -equivariant, it suffices to do it for elementary weaves. For four and six-valent vertices, the result
follows from Lemma 5.17 and Proposition 5.3.

Now we move on to three-valent vertices; we have β1 = γ1σiσiγ2 and β0 = γ1σiγ2. By Proposition
5.3 the mapM(Σ)→ C`(β0) is given by z 7→ (z′1, . . . , z

′
r, zr+1 + z−1

r , zr+2, . . . , z`), where z′1, . . . , z
′
r are

determined by the equations

Bir−d(zr−d)U
d = Ud+1Bir−d(z′r−d), U0 = Ui(zr)Di(zr).

Note that the weights of zr+2, . . . , z` are clearly preserved under the projection, so for simplicity we
may assume that γ2 = 1. We split this into a two-step process. We define z̃1, . . . , z̃r via

Bir−d(zr−d)Ũ
d = Ũd+1Bir−d(z̃r−d), Ũ0 = Ui(zr),

so that we have
Bir−d(z̃r−d)Ū

d = Ūd+1Bir−d(z′r−d), Ū0 = Di(zr).

Since Ui(zr) is uni-triangular, it follows from Lemma 2.22 that the T -weight of z̃r−d coincides with
that of zr−d for d = 0, . . . , r − 1. Now the result follows from Lemma 5.18.

Finally, we check cups: we have β1 = γ1σiσiγ2 and β0 = γ2. The map M(Σ) → C`(β0) is given by
z 7→ (z1, . . . , zr, zr+3, . . . , z`). Now, since sisi = 1, the result follows. �
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Thanks to Proposition 5.19, we are able to define correspondences between certain augmentation
varieties. Let β0, β1 be braid words, and let t be a set of marked points on the strands 1, . . . , n
satisfying the following conditions:

(i) There is at most one marked point per strand and, by convention, it is placed to the right of
all crossings in both β0 and β1,

(ii) Each component of both β0 and β1 contains at least one marked point.

For example, we can choose t = ts as in Section 2.6. We can then form the augmentation varieties
Aug(β1, t) and Aug(β0, t). Now let Tt ⊆ T be the torus defined by the equations ti = 1 if the i-
th strand has a marked point. Thanks to (a straightforward generalization of) Theorem 2.30, we
have Aug(β1, t) = X0(β1 · ∆;w0)/Tt and Aug(β0, t) = X0(β0 · ∆;w0)/Tt. In combination with the
correspondences above, we then obtain the following result:

Corollary 5.20. Let Σ be a simplifying algebraic weave from β1 ·∆ to β0 ·∆. Then, Tt acts freely
on M(Σ) and M(Σ, w0)/Tt defines a correspondence between Aug(β1, t) and Aug(β0, t).

5.5. Weaves and stratifications. In this concluding subsection, we explain how algebraic weaves
can be used to stratify braid varieties; augmentation varieties can be similarly stratified. For that,
recall that a simplifying weave Σ with a braid β1 on the top and β0 on the bottom defines an injective
map

M(Σ, π) : X0(β0;π)× Ca × (C∗)b ↪→ X0(β1;π),

where a is the number of cups and b is the number of trivalent vertices. Since each cup decreases the
length by 2, and each trivalent vertex by 1, we get the equation 2a+ b = `(β0)− `(β1).

We will be interested in simplifying weaves Σ with some braid γ on the top and the half twist ∆ on
the bottom. Since X0(∆;w0) is a point, see Example 2.5, we obtain an injective map

M(Σ, w0) : Ca × (C∗)b ↪→ X0(γ;w0), 2a+ b = `(γ)−
(
n

2

)
.

By definition, we will say that a collection of simplifying weaves Σ1, . . . ,Σk stratifies the braid variety
X0(γ,w0) if the images of M(Σi) do not intersect each other and their union is X0(γ,w0). At this
stage, we can now conclude the following:

Theorem 5.21. (a) Let γ be a positive braid word. Then the braid variety X0(γ,w0) can be
stratified by simplifying weaves from γ to ∆.

(b) Furthermore, given any Demazure weave Σ from γ to ∆, there is a stratification of X0(γ,w0)
by simplifying weaves where the correspondence

M(Σ) ∼= (C∗)`(γ)−(n2)

is the unique stratum of maximal dimension.

Proof. Let us first prove (a) by induction on `(γ) ∈ N. If γ is reduced, then the matrix Bγ(z1, . . . , z`(γ))
contains 1’s corresponding to the permutation matrix for γ and independent variables elsewhere. Then
Bγ(z1, . . . , z`(γ))w0 contains 1′s corresponding to the permutation matrix for γw0, so it is never upper-
triangular unless γw0 = 1. We conclude that X0(γ;w0) is empty for γ 6= ∆ and it is a point for γ = ∆.
In both cases the variety can be obviously stratified.

If γ is not reduced, then after applying some braid moves we get a braid with two crossings σi next
to each other, let z1 and z2 be the corresponding variables. If z1 6= 0, we can apply a trivalent vertex
and get a braid γ′, and if z1 = 0, we can apply a cup and get a braid γ′′. By the assumption of
induction, we can stratify X0(γ′;w0) and X0(γ′′;w0) by simplifying weaves.

For (b), let us decompose Σ into elementary weaves: Σ(1) between γ = γ(0) and γ(1), Σ(2) between
γ(1) and γ(2) etc. Clearly, we can decompose X0(γ) as follows:

X0(γ;w0) =M(Σ) t
(
X0(γ;w0) \ Im M(Σ(1))

)
t
(

Im M(Σ(1)) \ Im M(Σ(1)Σ(2))
)
t . . .

Let us prove that all these pieces can be further stratified by simplifying weaves. Indeed, if Σ(i) is a
6- or 4-valent vertex, then M(Σ(i)) is an isomorphism and

Im M(Σ(1) · · ·Σ(i−1)) = Im M(Σ(1) · · ·Σ(i)).
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If Σ(i) is a trivalent vertex with variables z1 and z2 then

Im M(Σ(1) · · ·Σ(i−1)) \ Im M(Σ(1) · · ·Σ(i)) =M(Σ(1) · · ·Σ(i−1))(Wi)

where Wi is the locus {z1 = 0} ⊂ X0(γ(i−1);w0). In this case we can apply a cup to γ(i−1) and obtain

a new braid γ̃(i). Then Wi as an image of the correspondence for this cup, and by (a) we can stratify

X0(γ̃(i);w0) by simplifying weaves. �

Finally, we obtain the following consequence:

Corollary 5.22. The braid variety X0(γ;w0) is not empty if and only if γ contains some reduced
expression for w0 as a subword, or, equivalently, the Demazure product of γ equals w0. In this case,
X0(γ;w0) is an irreducible complete intersection of dimension `(γ)−

(
n
2

)
.

Proof. By [60, Lemma 3.4] a braid word γ contains some reduced expression for w0 as a subword if
and only if δ(γ) = w0. If δ(γ) = w0 then there is a Demazure weave from γ to w0, so X0(γ;w0) is
not empty. By Theorem 5.21, if X0(γ;w0) is not empty then there is a simplifying weave from γ to
∆, and γ contains some reduced expression for w0 as a subword.

Since X0(γ;π) is cut out by
(
n
2

)
equations in the affine space of dimension `(γ), all its components

have dimension at least `(γ) −
(
n
2

)
. On the other hand, if δ(γ) = w0 then by Theorem 5.21(b) the

braid variety X0(γ;π) has unique stratum of dimension `(γ) −
(
n
2

)
and all other strata have smaller

dimension, therefore this variety is an irreducible complete intersection. �

Remark 5.23. In [68] A. Mellit proved that the complement to his toric chart from Section 2.5 can
be decomposed into stata of the form Ca×(C∗)b with 2a+b = `(β). Similarly to the proof of Theorem
2.28, one can check that these strata (originally defined in terms of Bruhat cells) can be realized by
simplifying weaves. �

The stratifications we presented in Theorem 5.21 are far from unique. However, the number of strata
of given dimension a + b = `(β) − a does not depend of stratification. Indeed, if there are na such
strata then the polynomial ∑

a

naq
a(q − 1)b =

∑
a

naq
a(q − 1)`(β)−2a

counts points in the variety X0(β∆;w0) over a finite field Fq, or the coefficient at 1 in the standard
basis expansion of the Hecke algebra element corresponding to β, or, equivalently, a coefficient in the
HOMFLY-PT polynomial of β of lowest a-degree [55].

5.6. From algebraic weaves to Legendrian weaves. In the article [19], the first author and
E. Zaslow associate to an algebraic weave a Legendrian surface in R5, and its (possibly immersed)
Lagrangian projection to R4. The surface L(Σ) is constructed via its wavefront W (Σ) ⊆ R2×R, which
in turn is obtained by weaving n disjoint disks according to Σ, see [19, Definition 2.6]. The projection
to R2 is a branched n-fold cover of the plane ramified at trivalent vertices, with the weave providing
gluing conditions for the sheets of the cover. Also, we can think of the Lagrangian projection to R4

as an immersed Lagrangian cobordism between the Legendrain links obtained by the closure of the
positive braids on the top and bottom of a weave.

Moreover, up to homeomorphism the surface L(Σ) does not depend on the weave Σ, see [19, Theorem
1.1]. On the other hand, we can see from the proof of Lemma 3.3 that S̄ does not depend on Σ up to
isotopy. So we may assume Σ is the weave obtained by opening the crossings in the order given by
Theorem 2.28. The surface S̄ then can be obtained from the braid word β by following the procedure
described in [68, Section 6.5]. It follows from the definitions that in this case L(Σ) is homeomorphic
to S. The symplectic topology of L(Σ) is more interesting, and provides one of the main motivation
for our weave calculus. For instance, the following is proven in [19].

Theorem 5.24 ([19]). Let Σ1,Σ2 be two algebraic weaves related by a sequence of elementary equiva-
lence moves. Then the corresponding Lagrangian cobordisms L(Σ1), L(Σ2) are Hamiltonian isotopic.

The following simple geometric statement underscores the relevance of Demazure weaves, among all
possible algebraic weaves:
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Theorem 5.25. Let Σ be an algebraic weave which is Demazure, i.e. with no cups or caps. Then
the corresponding exact Lagrangian surface L(Σ) is smoothly embedded in R4.

Proof. Suppose that a braid β1 is obtained from β by opening one crossing. Then by [27] there is an
embedded Lagrangian saddle cobordism between the corresponding Legendrian links. Opening the
crossings in a braid β in some sequence then gives an embedded Lagrangian cobordism as well.

By Theorem 5.8 any Demazure weave is related to the one corresponding to opening crossings by a
sequence of elementary moves from Section 4.2 (no mutations). By Theorem 5.24 each elementary
move corresponds to a Hamiltonian isotopy through embedded Lagrangians, so at every step we get
an embedded Lagrangian. �

Remark 5.26. From a Floer-theoretic viewpoint, we conjecture that the correspondence M(Σ)
induced between two augmentation varieties (of Legendrian links) is related to the augmentation
variety for the Legendrian surface Λ(Σ) ⊂ R5. The latter augmentation variety is studied in the work
of Y. Pan and D. Rutherford [76, 77]. �

Finally, we state the relationship that the Legendrian surface L(Σ) has to the toric charts in the
augmentation variety Aug(β, tc) where, recall, tc is a choice of marked points in β such that each
component of the closure contains a unique marked point. Thanks to Lemma 5.6 and Corollary 5.20,
any toric chart in Aug(β, tc) is obtained by a simplifying weave Σ from β ·∆2 to ∆2 as in Section 5.5.
Recall from Section 3.2 that each toric chart T has the form T = Spec(Z[H1(S̄,Z)]) × S, where S̄ is
a closed surface and S is a symplectic torus that depends only on the number of components of β.
Moreover, ω|Spec(Z[H1(S̄,Z)]) is the intersection form on H1(S̄,Z). In summary, we conclude:

Theorem 5.27. Let Σ be a simplifying weave from β · ∆ to ∆, and assume that the closure of the
braid β has k components. Then, the weave Σ determines an algebraic torus T ⊆ Aug(β, tc), and
this torus is isomorphic to Spec(Z[H1(L(Σ),Z)]) × S, where S is a 2(k − 1)-dimensional symplectic
torus. In addition, the restriction of the symplectic form ω|T to Spec(Z[H1(L(Σ),Z)]) coincides with
the intersection form on H1(L(Σ,Z)).

This concludes the proofs of the main results presented in the introduction. In the following section,
we start exploring the relation between algebraic weaves and cluster algebras through a few examples.

6. Cluster Coordinates from Algebraic Weaves

Consider β ∈ Br+
n and a n-weave Λ : ∆2 � β, i.e. Λ ∈ HomWn(β,∆2), from ∆2 at the concave

end to β in its convex end. The Legendrian link Λ(∆2) is the standard Legendrian n-unlink, and
thus it admits a unique embedded exact Lagrangian filling. In consequence, such a weave Λ defines a
embedded exact Lagrangian filling L(Λ). The associated augmentation

εL(Λ) : A(Λ(β)) −→ Z[H1(L(Λ),Z)]

defines a Z-torus Spec(Z[H1(L(Λ),Z)]) inside the augmentation variety Aug(Λ(β)) of Λ(β), which
complexifies to a toric chart (C∗)b1(L(Λ)) ∼= Spec(C[H1(L(Λ),Z)]) ⊆ Aug(Λ(β)) when considered as
algebraic complex varieties [20]. Complex points in this toric chart are to be understood geometri-
cally as choices for a C∗-local system on the one fixed Lagrangian filling L(Λ), the toric coordinates
specifying the local system. The goal of this section is to obtain cluster A-coordinates in such toric
charts by studying (combinatorial avatars of) holomorphic strips with asymptotic ends in the Reeb
chords of Λ(β). Since cluster A-coordinates readily recover cluster X-coordinates, this yields the first
known Floer-theoretical description of both cluster A- and X-coordinates in terms of the augmented
values of Reeb chords.15

Remark 6.1. We remark that all the weaves Λ : ∆2 � β drawn in this section can also be drawn
as weaves Σ : β ·∆→ ∆ which give toric charts in X0(β ·∆;w0), see Corollary 5.5, and therefore by
Theorem 2.30 also on Aug(Λ(β)). The link between these two perspectives is given by Theorem 5.27
above. �

15The present manuscript will describe the necessary holomorphic strips combinatorially, and the upcoming work
[21] shows that these are indeed legitimate holomorphic strips.
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6.1. The Case of n = 2 Weaves. Consider β = σn+2
1 ∈ Br+

2 and a weave Λ : ∆2 � β. In this case,
the Legendrian link Λ(∆2) is the standard Legendrian 2-unlink and the weave Λ : ∆2 � β defines a
embedded exact Lagrangian filling L(Λ) of the max-tb (2, n)-torus link Λ(β) ⊆ (S3, ξst).

The first step is a computation of the rigid holomorphic strips

u : (D2, ∂D2) −→ (S3 × Rt, d(etαst)), ∂̄Ju = 0, u(∂D2) ⊆ L(Λ)

with exactly one positive puncture at a Reeb chord ρ of Λ(β). The reason these strips are crucial is
that the variable zρ ∈ C associated to a Reeb chord ρ algebraically accounts for the (partial) holonomy
along the boundary of these strips. It is proven in [19, Section 7] that the microlocal monodromies
along absolute 1-cycles γ ∈ H1(L(Λ),Z) are cluster coordinates, and thus we aim at expressing the
microlocal monodromies around γ as a function of the variables zρ associated to Reeb chords ρ of
Λ(β). This is done in three steps:

(i) Choosing an appropriate basis {γi}, i ∈ [1, b1(L(Λ))], for H1(L(Λ),Z) using the 2-weave,
(ii) Computing of the rigid holomorphic strips and their relative homology classes,
(iii) Express each term γi of the basis in (i) in terms of the relative homology classes of the

holomorphic strips in (ii).

Remark 6.2. Throughout this subsection, we will use β = σ9
1 as our running example, so that Λ(β) is

the max-tb Legendrian representative of the (2, 7)-torus knot. Any interesting property of the general
case already appears for such β = σ9

1 . Figure 12 illustrates the first two steps (i), (ii) in this example,
as we momentarily explain. �

The choice of basis in (i) is given by the following elementary, where we use the notation from [19]:

Lemma 6.3. Let Λ : ∆2 � β be a vertical 2-weave and β = σn+2
1 ∈ Br+

2 . Suppose that the trivalent
vertices are labeled v1, . . . , vb1(L), vb1(L)+1 scanning from the top downwards. Then:

(1) For each vi, i ∈ [1, b1(L)], there exists exactly one absolute 1-cycle γi ⊆ L(Λ), i ∈ [1, b1(L)]
which is represented by a short I-cycle starting at vi.

(2) The set of {γi}, i ∈ [1, b1(L(Λ))], is basis of H1(L(Λ),Z) with intersection form

〈γi, γj〉 =


1 if e(i) = e(j),

±1 if i = e(j),

0 else.

where ve(i) denotes the ending vertex of the short I-cycle representing γi. If if i = e(j), then
〈γi, γj〉 = 1 if and only if the I-cycle representing γj is given by the edge at the upper-right of
the trivalent vertex vi. Equivalently, 〈γi, γj〉 = −1 if and only if the I-cycle representing γj is
given by the edge at the upper-left of vi. �

Note that Lemma 6.3 only holds for n = 2 weaves, and Y-cycles are typically needed for N ≥ 3. The
basis {γi} in Lemma 6.3 is depicted in Figure 12 for β = σ9

1 .

The classification of rigid holomorphic strips starting at the Reeb chords and with boundary on L(Λ)
is proven in [21], which geometrizes our previous work [17]. For the case at hand, the core technical
result we need is the following:

Lemma 6.4 ([17, 21]). Let Λ : ∆2 � β be a vertical 2-weave and β = σn+2
1 ∈ Br+

2 . Then

(1) For each Reeb chord ρ there exists a rigid holomorphic strip Ti(ρ
+) with a positive puncture at

ρ, no negative punctures, and ending at a trivalent vertex vi if and only if there exists a contin-
uous path in the complement of the weave R2\G(Λ) which connects vi and (the projection of) ρ.

(2) This rigid holomorphic strip Ti(ρ
+) is unique and the relative cycle ∂Ti(ρ

+) ⊆ (L(Λ),Λ(β))
intersects the basis {γi} according to
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Figure 12. An algebraic 2-weave representing an embedded exact Lagrangian filling
L(Λ) of the max-tb (2, 7)-torus knot Λ(σ9

1). Smoothly, L(Λ) is a once-punctured
genus-3 surface with b1(L(Λ)) = 6. A basis {γi} for H1(L(Λ),Z), represented by
short I-cycles, is drawn in green. The dashed purple lines indicate the Morse flow tree
trajectories associated to the holomorphic strips with asymptotic positive punctures
at zρ. Note that sρ denotes the restriction of the variable zρ to its non-vanishing
stratum {zρ 6= 0} in the augmentation variety Aug(Λ(σ9

1)).

〈∂Ti(ρ+), γj〉 =


1 if i = j,

−1 if i = e(j),

0 else.

The Morse flow trees associated to the rigid holomorphic strips Ti(ρ
+) in Lemma 6.4 are depicted in

Figure 12 as dashed purple lines. The cohomological dual of the relative homology class [∂Ti(ρ
+)] ∈

H1(L(Λ),Λ(β)) of the boundary ∂Ti(ρ
+) is denoted by si. We also identify the restriction of the

complex variable zi ∈ C, associated to a Reeb chord ρi of Λ(β), to its non-vanishing locus {zi 6= 0} ⊆
Aug(Λ(β)) with this si, that is, si = zi|{zi 6=0}.

The third stage is identifying the cluster coordinates, which are given by the microlocal monodromies
along the γi absolute 1-cycles, in terms of the monodromies associated to the relative classes [∂Ti(ρ

+)].
This thus becomes an homological problem: expressing each γi ∈ H1(L(Λ)) in terms of [∂Ti(ρ

+)].
This can be done using the intersection form in Lemma 6.4.(2), as an expression of Poincaré-Lefschetz
duality. For simplicity, we will denote si = [∂Ti(ρ

+)], identifying cap intersections and dual pairing.
A simple computation leads to the following identity:

γi =
∏

ρj∈A(i)

sj ,

where A(i) denotes the set of Reeb chords ρj of Λ(β) which lie above the vertex vi. That is, consider
the binary tree starting at vi growing upwards, then ρj ∈ A(i) if and only if ρj is between the leftmost
and rightmost upper edges of the tree.

Example 6.5. Consider the running example β = σ9
1 as depicted in Figure 12. The expression of

the absolute 1-cycles γi, represented by short I-edge, in terms of the si-variables is

γ1 = s7 = (s1s2s3s4s5s6)−1, γ2 = s1, γ3 = s4,

γ4 = s3s4, γ5 = s1s2s3s4, γ6 = s6s7 = (s1s2s3s4s5)−1,
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where we have used the homological relation s1s2s3s4s5s6s7 = 1, which is the only existing relation,
as Λ(σ9

1) is a knot, and not a link. The expression of the si-variables in terms of the zi-variables is

z1 = s1, z2 = s2−
1

s1
− 1

s3
, z3 = s3−

1

s4
, z4 = s4, z5 = s5−

1

s4
+

1

s3s2
4

− 1

s2s2
3s

2
4

− 1

s6
, z6 = s6−

1

s7
,

z7 = s7, z8 =
1

s6s2
7

− 1

s5s2
6s

2
7

− 1

s7
, z9 = s2s3s4s5s6s7 − s2s

2
3s

2
4s

2
5s

2
6s

2
7 + s5s

2
6s

2
7.

This follows from the fact that, from the perspective of decomposable Lagrangian cobordisms, the
Lagrangian filling associated to Λ is obtained by opening the (contractible) crossings z1, . . . , z9 in the
order (7, 1, 4, 3, 2, 6, 5). In consequence, the cluster A-coordinates Ai := A(γi) = A(γi(s(z))) = A(z)
in the toric chart Spec(C[H1(L(Λ),Z)]) ⊆ Aug(Λ(β)) associated to this Lagrangian filling L(Λ) are

A1 = z7, A2 = z1, A3 = z4, A4 = z3z4+1, A5 = z3z4+z1 (z4 + z2 (z3z4 + 1))+1, A6 = 1+z6z7.

Since the zi-variables related to the Plücker coordinates according to

P79 = B1(z7)2,2 = z7, P13 = B1(z1)2,2 = z1, P46 = B1(z4)2,2 = z4, P36 = (B1(z3)B1(z4))2,2 = z3z4+1,

P16 = (B1(z1)B1(z2)B1(z3)B1(z4))2,2 = z1z2+(z1 + (z1z2 + 1) z3) z4+1, P69 = (B1(z6)B1(z7))2,2 = z6z7+1.

we conclude that this cluster chart C(Λ) is given by the cluster A-coordinates

{P13, P16, P36, P46, P69, P79}.
This corresponds exactly to the diagonals of the triangulation dual to the 2-weave, thus recovering
the classical description of cluster A-coordinates in Type A via Floer-theoretic methods. �

Finally, we emphasize that there is an abundance of regular functions in O(Aug(Λ(β))), the challenge,
which we have thus far solved for 2-weaves, is deciding which regular functions are cluster coordinates
and specify the subsets of them corresponding to a cluster chart. The above discussion explains how
to obtain a cluster chart, with its cluster coordinates, in Aug(Λ(β)) from an exact Lagrangian filling
associated to a 2-weave, and this is done by using counting holomorphic strips and keeping track of
their homology classes. Let us conclude our study of the n = 2 case by comparing two Legendrian
2-weaves, differing exactly by one mutation, and their cluster A-coordinates.

Figure 13. A weave mutation between 2-weaves and the associated intersection
quivers.
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Example 6.6. Consider the Legendrian 2-weave Λ in Example 6.5 above and perform a 2-graph
mutation along the short I-cycle γ4. This yields a new Legendrian 2-weave µγ4(Λ). These two 2-
weaves and the mutation are depicted in Figure 13. Let s′i, i ∈ [1, 7] and γ′i, i ∈ [1, 6] be the new
(variables associated to) relative and absolute 1-cycles associated to µγ4(Λ), respectively. We want
to compare the cluster charts associated to Λ and µγ4(Λ) by the above procedure, and show that
they indeed differ by exactly one cluster A-mutation. First, the intersection quivers Q(Λ), Q(µγ4(Λ))
associated to {γi}, {γ′i} are drawn in Figure 13, and they indeed differ by a quiver mutation at the
vertex γ4. Second, we need to compare the cluster A-coordinates. For Λ, the cluster chart is given by

C(Λ) = {P13, P16, P36, P46, P69, P79},
as computed in Example 6.5. For µγ4(Λ), the cluster A–coordinates are computed similarly. Indeed,
we first express the absolute 1-cycles {γ′i} in terms of the relative 1-cycles {s′i}:

γ′1 = s′7 = (s′1s
′
2s
′
3s
′
4s
′
5s
′
6)−1, γ′2 = s′1, γ′3 = s′4,

γ′4 = s′1s
′
2, γ′5 = s′1s

′
2s
′
3s
′
4, γ′6 = s′6s

′
7 = (s′1s

′
2s
′
3s
′
4s
′
5)−1.

Then we express our zi-coordinates in terms of the s′i-variables by noticing that the Lagrangian filling
for µγ4(Λ) corresponds to the pinching sequence (7, 1, 4, 2, 3, 6, 5). To ease notation, we write si for
s′i, keeping in mind that these are unrelated to the si-variables in Example 6.5. A computation yields

z1 = s1, z2 = s2 −
1

s1
, z3 = s3 −

1

s2
− 1

s4
, z4 = s4, z5 = s5 −

1

s4
+

1

s3s2
4

− 1

s6
, z6 = s6 −

1

s7
,

z7 = s7, z8 =
s5

(
s6 − s2

6s7

)
− 1

s5s2
6s

2
7

, z9 = s5

(
s2 (s1s2 − 1) s2

3s5s
2
4 + s3s5s

2
4 + 1

)
s2

6s
2
7.

The cluster A-coordinates A′i = A(γ′i) = A(γ′i(s
′(z))) = A(z) then become:

A′1 = z7, A′2 = z1, A′3 = z4, A′4 = z1z2+1, A′5 = z3z4+z1 (z4 + z2 (z3z4 + 1))+1, A′6 = 1+z6z7.

Except for A′4, highlighted in blue, these coincide with the cluster A-coordinates for C(Λ), Ai = A′i,
i ∈ [1, 6], i 6= 4. The cluster A-coordinate that has changed is A4 = z3z4 + 1, which has become
A′4 = z1z2 + 1 6= A4. This concludes that the cluster charts associated to C(Λ) and C(µγ4(Λ))
differ precisely by a cluster A-mutation. Finally, in terms of the Plücker coordinates Pij , the cluster
A-coordinates for C(µγ4(Λ)) are

C(µγ4(Λ)) = {P13, P16, P14, P46, P69, P79},
which readily differ from the previous cluster chart C(Λ) exactly at the coordinate P14, highlighted

in blue. Note that we can consider the cluster mutation of the A-coordinates in C(Λ) at the vertex
γ4, which is associated to P36 = z3z4 +1. From the quiver Q(Λ), we get that all A-coordinates remain
the same except for the function c(γ4) = s3s4 = (z3z4 + 1)|C(Λ) associated to the vertex γ4, which
changes from P36 = c(γ4) to P14. This can also be verified combinatorially: the parallelogram that
contains the (36)-diagonal in the triangulation dual to the 2-weave Λ has vertices {1, 3, 4, 6}, and thus
the other diagonal is (14), which yields P14. This example concludes our study of the n = 2 case. �

6.2. The General Case. The structure for the general case of n-weaves, n ≥ 3, is still given by the
same three steps as in Subsection 6.1. Nevertheless, each of the steps is itself combinatorially more
elaborate due to the presence of Y-cycles. In fact, we presently do not know of an analogue of Lemma
6.3 for a general weave, and thus we will assume a basis {γi}, i ∈ I, of absolute cycles, represented
by (possibly long) I- and Y-cycles is given.16. Following the scheme above, we first trace the (relative)
homology classes given by the boundaries of holomorphic strips, which yields the si-variables, and
then use the intersection pairing to find which monomials in the si-variables are cluster A-coordinates.

Let Λ be an n-weave and {γi}, i ∈ I, a basis I- and Y-cycles. For the first step, we construct a relative
cycle si associated to each trivalent vertex vi ∈ Λ. The relative cycle si is specified by a sequence of
edges of the n-weave, specified by the following three rules:

(i) The path si starts at the upper left segments of the trivalent vertex vi and moves upwards
along that segment.

16This assumption is met in all examples we have studied.
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(ii) If the path si encounters a trivalent vertex as its moves upwards, the it continues upwards
using the right upper edge for the trivalent vertex.

(iii) If the path si encounters a hexavalent vertex as its moves upwards, it passes through it
following the upper segment with the same slope with which the path meets the vertex. That
is, if si enters the hexavalent vertex from the lower right (left) then it moves upwards exiting
from the upper left (right); if si enters the hexavalent vertex from the lower center then it
moves upwards exiting from the upper center.

Examples of such paths are drawn as dashed purples lines in Figure 14.

Figure 14. Two 3-weaves Λ (Left) and µ3(Λ) (Right) representing two distinct La-
grangian fillings of the max-tb Legendrian representative of the (3, 3)-torus link. The
cluster A-coordinates are monomials in the si-coordinates associated to the triva-
lent vertices: the monomials are obtained by computing the intersection numbers
between the absolute 1-cycles γ1, γ2, γ3, γ4 and the relative si-cycles represented by
dashes lines, which is done in Example 6.7. The corresponding intersection quivers
Q(Λ), Q(µγ3(Λ)) are also drawn in the bottom of each 3-weave.

Such a path in the n-weave specifies a unique relative homology class by lifting near vi to the jth and
(j + 1)th sheets [19, Section 2.4], if vi is a trivalent vertex labeled with the permutation (j, j + 1).
A simple generalization of Lemma 6.4 shows that there exists a unique holomorphic strip with one
positive puncture in the homology class si [21, 17]. Finally, for the second step, the intersections
between the si-relative cycles and the γi-absolute cycles are computed according to the rules in [19].
Let us end this section with an explicit example of an algebraic 3-weave and the cluster chart it defines
in the corresponding augmentation variety, which is of cluster D4-type.
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Example 6.7. Consider the positive braid β = (σ1σ2)6, the link Λ(β) is the unique max-tb Legendrian
representative of the (3, 3)-torus link. In this case, the augmentation variety is of type D4 since the
brick quiver for Λ(β) is mutation equivalent to the D4-quiver. Figure 14 depicts two free 3-weave,
Λ (Left) and µγ3(Λ) (Right), with boundary β, which represent thrice-punctured Lagrangian tori
L(Λ), L(µγ3(Λ)) ⊆ (D4, ωst) filling Λ(β) ⊆ (S3, ξst). Let us first focus on Λ: a basis for H1(L(Λ),Z) is
given by the four absolute 1-cycles γi, i ∈ [1, 4], where γ1, γ3 are short Y-cycles and γ2, γ4 are short
I-cycles. The relative 1-cycles si ∈ H1(L(Λ),Λ(β),Z)), i ∈ [1, 5], are shown in dashed purple in Figure
14 (Left). The intersection rules between cycles in a weave [19, Section 2] lead to

s1 = γ1, s2 = γ−1
1 γ2, s3 = γ3, s4 = γ−1

2 γ−1
3 γ4.

Hence, the four cluster A-coordinates in the cluster chart induced by L(Λ) are given by the monomials

A1 = s1, A2 = s1s2, A3 = s3, A4 = s1s2s3s4.

The cluster X-coordinates in this chart can be read by using the intersection quiver Q(Λ) of the {γi},
shown in Figure 14 (Left), which is mutation equivalent to the D4-quiver. Second, let us conclude by
performing a 3-weave mutation to Λ at the short Y-cycle γ3. The resulting 3-weave µγ3(Λ) is depicted
in Figure 14 (Right). In this case the intersections read

s1 = γ1, s2 = γ−1
1 γ2, s3 = γ−1

2 γ3, s4 = γ−1
3 γ4.

In consequence, the cluster A-coordinates in the cluster chart of the associated Lagrangian filling
L(µγ3(Λ)) are

A1 = s1, A2 = s1s2, A3 = s1s2s3, A4 = s1s2s3s4,

which differ from the cluster A-coordinates above exactly at A3, as desired. �

The articles [16, 19] illustrate that the diagrammatic calculus of algebraic weave is able to combina-
torially access infinitely many clusters in many cluster algebras. The above instances show that this
can be done in an algorithmic and explicit manner, and a complete description of a cluster weave
calculus will be the object of future work.

7. Future Directions

Finally, we would like to list a few problems and directions for future research. These are currently
stated in an open-ended manner, we hope that they might be helpful to the interested reader.

7.1. Subword Complexes. First, the combinatorics of weaves appears to be closely related to the
combinatorics of subword complexes and brick polytopes [12, 22, 32, 42, 43, 51, 59, 60, 78]. The faces of
a subword complex for a braid word γ correspond to all possible subwords of γ such that the Demazure
product of their complements equals w0. Subword complexes were introduced by Knutson and Miller
[59, 60] in the context of Gröbner geometry of Schubert polynomials. Knutson and Miller proved
that subword complexes are homeomorphic to balls or spheres. Pilaud and Stump found polytopal
realizations of spherical subword complexes and called them brick polytopes. Escobar [32] related
toric varieties of brick polytopes to Bott-Samelson varieties and to Brion’s resolutions of Richardson
varieties. Results of [42, 43] describe the behavior of subword complexes under braid moves and moves
sisi → si in γ. Ceballos, Labbé and Stump [22] proved that certain brick polytopes are generalized
associahedra, thus relating subword complexes to the theory of cluster algebras. See also more recent
works of Brodsky and Stump [12] and of Jahn, Löwe and Stump [51] further exploring this relation.

In some cases, the collection of all (minimal in an appropriate sense) Demazure weaves between a
given braid word and its Demazure product appears to have a polytope-like structure, see Example
4.16. More precisely, the Hasse graphs of principal down sets of some elements in our version of the
second Bruhat order seem to admit realizations as the 1−skeleta of certain polytopes. We conjecture
that the corresponding simplicial complexes for arbitrary elements are always homeomorphic to balls
or spheres, in analogy to subword complexes. In the spherical case, we conjecture to always have such
polytopal realizations. Note that McConville [67] proved that intervals in the second higher Bruhat
orders are contractible or homotopy equivalent to spheres.

Nevertheless, the combinatorial structures of weaves and of subword complexes are rather different.
For example, for the braid word sn1 on two strands there are Catalan many non-equivalent Demazure
weaves, which correspond to the vertices of the associahedron, while the subword complex is a simplex.
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On the other hand, the associahedron also appears as a subword complex for the n-strand braid
word c∆ where c is the Coxeter element. It would be very interesting to find a precise relation
between the two theories. It would be also interesting to compare the combinatorics of weaves to
cluster structures on Richardson and Schubert varieties constructed in [62, 83]. Note that Leclerc
and Zelevinsky discussed the link between second higher Bruhat orders and wiring diagrams (and
pseudoline arrangements) for reduced braid words in [63].

7.2. Open Soergel Calculus. Second, the relation between our weave category Wn and the Soergel
calculus developed in [30, 31] is not a coincidence. Indeed, the latter describes the morphisms between
the products of Bott-Samelson bimodules Bi in the category of Soergel bimodules. Geometrically,
products of Bott-Samelson bimodules correspond to Bott-Samelson varieties, while our braid varieties
(or open Bott-Samelson varieties in [86]) naturally correspond to the products of Rouquier complexes
Ti = [Bi → R].

It is therefore natural to expect that the weave calculus corresponds to the desciption of the homotopy
category of Soergel bimodules as a monoidal (dg) category generated by the products of Ti. In
particular, 6- and 4-valent vertices correspond to homotopy equivalences [82]

Ti ⊗ Ti+1 ⊗ Ti ' Ti+1 ⊗ Ti ⊗ Ti+1, Ti ⊗ Tj ' Tj ⊗ Ti (|i− j| > 1),

while cups, caps and trivalent vertices correspond to the maps in the skein exact triangle

[T 2
i → R] ' [Ti → Ti].

It is plausible that the equivalence relations from Section 4.2 hold on Soergel side, as they match the
corresponding relations for Bi up to lower order terms.

The main obstacle in developing a diagrammatic calculus for Ti is that they generate a dg category
(while Bi generate an additive category), and one needs to keep track of homotopies and possible
higher A∞ products on morphisms. Still, it is plausible that some of these higher structures are
visible in braid varieties. For example, the variables zi assigned to crossings (or rather 1-forms dzi)
seem to match the dot-sliding homotopies in Soergel calculus, and it was observed in [41] that the
symplectic form on the braid variety corresponds to a certain explicit operator on Rouquier complexes
of homological degree (-2). We plan to investigate the relation between the differential forms on braid
varieties and Rouquier complexes in the future work.

Finally, both subword complexes and Soergel calculus can be defined for any Coxeter group (with a
realization), and it would be also interesting to develop the combinatorics of weaves and braid varieties
for braid groups outside of type A. In particular, the 4- and 6-valent vertices should be replaced by
an 2mij-valent vertex for any Coxeter relation (sisj)

mij = 1, and one needs to generalize the change
of variables (2.2) to this case. Abstractly, the existence of such change of variables is guaranteed by
[84, Section 2.2], but the symplectic and contact geometric meaning of these diagrams remains to be
discovered.
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