
SOLUTIONS TO PROBLEM SET 1

MAT 108

Abstract. These are the solutions to Problem Set 1 for MAT 108 in the Fall Quarter
2020. The problems were posted online on Tuesday Sep 29 and due Friday Oct 9 at
9:00am

Problem 1. Read the following statements and show that they are false by giving a
counter-example.

(a) Let n,m ∈ N be two natural numbers, such that n is even and m is odd. Then
n+m is even.

(b) Let n ∈ N be an even natural number, then there exists an even natural number
m ∈ N such that their sum n+m is odd.

(c) Let a, b, c ∈ N be three non-zero natural numbers such that a2 + b2 = c2. Then
the three numbers must be a = 3, b = 4 and c = 5.

(d) Let α, β, γ ∈ [0, 2π) be the three angles. There exists a unique planar triangle
whose interior angles are α, β and γ.

Solution.

(a) Let n = 2 and m = 3. We then get n+m = 2 + 3 = 5, which is not even.

(b) Let n = 2. If m = 2k where k ∈ N, then n + m = 2 + 2k = 2(1 + k), which is
not odd.

(c) Consider a = 6, b = 8, and c = 10. This satisfies the equation: 62 + 82 =
36 + 64 = 100 = 102.

(d) Let α = 0, β = π
3
, and γ = π

4
. These three angles won’t form a planar triangle

because they don’t add up to π.

Problem 2. Read Sections 1.1 and 1.2 in the textbook, and carefully follow their
proofs of Proposition 1.6 and Proposition 1.9. Prove, using the five Axioms in Section
1.1 (and Prop. 1.6 if need) the following two propositions:

Proposition (Proposition 1.7). If m is an integer, then 0 +m = m and 1 ·m = m.

Proposition (Proposition 1.8). If m is an integer, then (−m) +m = 0.

Solution.

Proposition 1.7. Let m be an integer. By Axiom 1.2, there exists an integer 0 such
that whenever m ∈ Z, m + 0 = m. We rewrite the left hand side using Axiom 1.1(i):
m + 0 = 0 + m = m. To prove the second part of the proposition, we use Axiom 1.3:
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there exists an integer 1 such that 1 6= 0 and whenever m ∈ Z, m · 1 = m. We use
Axiom 1.1(iv) to conclude m · 1 = 1 ·m = m.

Proposition 1.8. Let m be an integer. By Axiom 1.4, for each m ∈ Z, there exists an
integer −m such that m + (−m) = 0. We then use Axiom 1.1(i) to rewrite the left
hand side: m+ (−m) = (−m) +m = 0.

Problem 3. (10+10 pts) Let us take Axioms 1.1 through 1.5 in Section 1.1 as true,
and assume Propositions 1.6 through 1.9 have been proven. Prove the following two
propositions:

Proposition (Proposition 1.10). Let m,x1, x2 ∈ Z. If m,x1, x2 satisfy the equations
m+ x1 = 0 and m+ x2 = 0, then x1 = x2.

Proposition (Proposition 1.12). Let x ∈ Z. If x has the property that for each integer
m, m+ x = m, then x = 0.

Solution.

Proposition 1.10. Let m,x1, x2 ∈ Z. Assume m,x1, x2 satisfy the equations m+x1 = 0
and m + x2 = 0. In words, this proposition is saying every integer m has a unique
additive inverse. Suppose x1 and x2 are additive inverses of m. Then,

x1
Axiom 1.2

= x1 + 0 = x1 + (m+ x2)
Axiom 1.1(ii)

= (x1 +m) + x2 = 0 + x2
Prop 1.7

= x2.

Proposition 1.12. Let x ∈ Z and assume x has the property that for each m ∈ Z,

(0.1) m+ x = m.

By Axiom 1.4, for each m ∈ Z, there exists an integer −m such that

m+ (−m) = 0.

By adding −m to both sides of Equation 0.1, we get

(−m) + (m+ x) = (−m) +m.

The right hand side of the equation is 0 as explained above. For the left hand side, we
have

(−m) + (m+ x)
Axiom 1.1(ii)

= (−m+m) + x = 0 + x
Prop 1.7

= x.

Hence, x = 0.

Problem 4. (20 pts) Discuss the difference between the following two statements and
prove that at least one of them is false.

Statement (1). There exists a natural number a ∈ N such that for all n ∈ N, we have
that n+ a = 7.

Statement (2). For all n ∈ N, there exists a natural number a ∈ N such that we have
that n+ a = 7.

Here 10 points are given for correctly pointing out the difference in the mathematical
content between Statements 1 and 2, and 10 points are given for correctly proving that
one of the statements is wrong.

Solution. Consider the equation n + a = 7. For the first statement, the number a is
fixed and is not dependent of the number n. For the second statement, we are given
any natural number n and are allowed to choose the appropriate number a. In other
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words, a depends on n. We provide a counterexample for the second statement. If
n = 100, then there does not exist a natural number a such that n+ a = 100 + a = 7.

Problem 5. (20 pts) Let us assume the following two axioms, as discussed in class:

A1. The area of a planar rectangle of sides a, b ∈ R is the product a · b.
A2. The area of two planar figures which intersect at most along edges is the sum

of the areas of each of the planar figures.

From the two Axioms A1 and A2 above, deduce that the area of a triangle with height
h ∈ R and base a ∈ R equals the quantity (a · h)/2.
Hint: try to cut the triangle in pieces and reassemble them to get a rectangle, then
apply Axiom 2. Make sure to explain where are you using Axiom 2 in this argument.

Solution. We will proceed in two steps: first, we extend Axiom A1 to the case of
parallelograms, and then we use that extension to proof the desired result.

Step 1 : We claim the following extension of Axiom A1: The area of a planar parallel-
ogram with base a ∈ R and height b ∈ R is the product a · b. To prove this claim, we
will construct a rectangle from any given parallelogram, and then apply Axiom A1.

Therefore, let P be a planar parallelogram with base a and height b. Draw a line
segment in P of length b, perpendicular to the base, splitting P into a right triangle
A and a trapezoid B, shown on the left side of Figure 1.

Figure 1

Notice that A and B intersect only along our drawn edge. Therefore, by Axiom A2,
we have

Area(P ) = Area(A) + Area(B).

Translate the right triangle A so that the hypotenuse s of A coincides with the edge
of P originally opposite to s. Now A and B together form a rectangle R, and again
they intersect only at one edge, s, shown on the right side of Figure 1. So Axiom A2
again gives us

Area(R) = Area(A) + Area(B),

which, along with our first equality, tells us Area(P ) = Area(R).

The sides of R are have lengths a and b by our construction, so by Axiom A1, we have
Area(R) = a · b. Combined with our previous result, we find Area(P ) = a · b, proving
the claim.

Step 2 Let T be a triangle with base length a and height h. We want to prove that T
has area (a · h)/2. Take another copy of T , labeled T ′. Rotate T ′ a full 180◦, and then
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translate T ′ so that it shares a single non-base edge with T . Together, T and T ′ form
a parallelogram Q, shown in Figure 2.

Figure 2

Axiom A2 then gives us

Area(Q) = Area(T ) + Area(T ′).

Since T and T ′ are congruent, we have Area(T ′) = Area(T ), giving

Area(Q) = Area(T ) + Area(T ′)

= Area(T ) + Area(T )

= 2 · Area(T ).

By our construction, the parallelogram Q has base a and height h, so the proven claim
in Step 1 tells us that Q has area a · h. Putting everything together, we have

a · h = Area(Q) = 2 · Area(T ),

from which we conclude that our original triangle T has area (a · h)/2.

Problem 6. (20 pts) Following the Axioms in Problem 5, show that a trapezoid with
height h ∈ R and two horizontal basis of length b1, b2 ∈ R has area h · (b1 + b2)/2.

Solution. Let S be a trapezoid with height h and horizontal base lengths b1 and b2.
If the remaining sides of S are not vertical, then all four vertices of S have distinct
coordinates in the horizontal direction. Take the two vertices which are neither the
leftmost nor the rightmost vertices of S (depending on the sign of the slopes of the
non-horizontal sides of S, each of these vertices may be on the top or the bottom of
S), and draw vertical line segments through S at these locations, as shown in Figure
3.
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Figure 3

We have now split S into two triangles, T1 and T2, and a rectangle R, and by Axiom
A2 we have

Area(S) = Area(T1) + Area(T2) + Area(R).

There are two main cases to consider:

Case 1 : The non-horizontal sides of S have slopes of the same sign. This case is shown
on the left of Figure 3. Referring to the labels in the diagram, we have

Area(S) = Area(T1) + Area(T2) + Area(R)

=
(b2 − a) · h

2
+

(b1 − a) · h
2

+ a · h

=
(b1 + b2) · h

2
.

In the second line, we used the result of Problem 5 to calculate the areas of T1 and T2,
along with Axiom A1 to calculate the area of R.

Case 2 : The non-horizontal sides of S have slopes of opposite sign. This case is shown
on the right of Figure 3. Referring to the labels in the diagram, we have

Area(S) = Area(T1) + Area(T2) + Area(R)

=
r1 · h

2
+
r2 · h

2
+ b1 · h

=
(r1 + r2) · h

2
+ b1 · h

=
(b2 − b1) · h

2
+ b1 · h

=
(b1 + b2) · h

2

In the second line, we used the result of Problem 5 to calculate the areas of T1 and T2,
along with Axiom A1 to calculate the area of R. In the fourth line, we used the fact
that b2 = r2 + b1 + r1, which can be seen from the diagram.
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In the remaining cases where S has one (respectively, two) vertical sides, then we’ll
have only one (respectively, zero) triangles. The calculations are then similar to those
of Case 2, with r1 = 0 and/or r2 = 0.

Figure 4. Setup for the proof of the Phytagorean Theorem as describe
in Problem 7.

Problem 7. (20 pts) Let us prove the Phytagorean Theorem. Let T be a triangle
with sides of length a, b, c ∈ R such that the interior angle between the a-side and the
b-side is 90 degrees (a right angle). An example of such a triangle T is depicted in the
upper-left corner of Figure 4. Your task is to show that

a2 + b2 = c2.

This is called the Phytagorean Theorem. Here are the two steps that you might want
to follow:

Step 1. (5pts) Construct the trapezoid of height (a+b) ∈ R and basis of length a, b ∈ R,
as in the lower left corner of Figure 4. Use the formula from Problem 6 to show
that its area is (a+ b)(a+ b)/2.

Step 2. (10pts) Use the decomposition of this trapezoid as a union of triangles to show
that the area of this trapezoid is also

2 · (ab)/2 + c2/2.

Step 3. (5pts) Using the Axioms A1 and A2, prove that the two areas that you have
computed above must be equal and deduce that

a2 + b2 = c2.

Fun fact: This proof of the Phytagorean Theorem was published in 1876 in the New-
England Journal of Education by James A. Garfield, the 20th President of the United
States. It is different from Phytagoras’ proof, dating back to 500BC.
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Solution. Step 1 : Arrange T as in the upper left image in Figure 4. Make a copy of T ,
labeled T ′, and arrange T ′ as in the next image. That is, rotate T ′ 90◦ clockwise and
translate it so that its leg b extends the leg a of T . Note that leg a of T ′ is parallel to
leg b of T because the perimeter between them includes two right angles. Connecting
the remaining vertices which have acute angles, we have the desired trapezoid R. By
construction, R has height a + b and base lengths a and b. It follows from Problem 6
that

Area(R) =
(a+ b)(a+ b)

2
=
a2 + b2

2
+ ab.

Step 2 : By referencing the vertices indicated in the upper left corner of Figure 4, it is
clear that R is the union of three triangles which intersect only on their edges, triangles
T and T ′, and a gray triangle T ′′. Referring to the labels of the angles in the figure,
note that angle 1 and angle 2 sum to 90◦ (because they are part of a right triangle),
so T ′′ is a right triangle and hence has base c and height c. Therefore, by Axiom A2
and Problem 5,

Area(R) = Area(T ) + Area(T ′) + Area(T ′′)

=
a · b

2
+
a · b

2
+
c · c
2

=
c2

2
+ ab.

Step 3 : Comparing our two expressions for Area(R) found above, we conclude that
(a2 + b2)/2 + ab = c2/2 + ab, which simplifies to a2 + b2 = c2.
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Problem 8. Consider the following sums:

S0 = 0,

S1 =
1

2
,

S2 =
1

2
+

1

4
,

S3 =
1

2
+

1

4
+

1

8
,

S4 =
1

2
+

1

4
+

1

8
+

1

16
,

S5 =
1

2
+

1

4
+

1

8
+

1

16
+

1

32
,

S6 =
1

2
+

1

4
+

1

8
+

1

16
+

1

32
+

1

64
,

where each sum Sn is obtained from the previous one by adding the fraction 1/2n.

Figure 5. This is the Hint for Problem 8.

a. Evaluate the sums S1, S2, . . . , S6, S7, S8 and S9.
What do you observe when you compute these sums ?

b. Make a prediction of the approximate value of S100. How about S10000 ?

Hint: Look at Figure 5.

Solution.

(a) For each n, you should find Sn = (2n − 1)/2n = 1 − 2−n. Note that Sn =
Sn−1 + 2−n.

(b) We predict that S100 = 1− 2−100 = and S1000 = 1− 2−1000.
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Problem 9. (Optional) Explore the world from a scientific lens – on Campus, at
home, wherever you are – and try to describe mathematically something you see and
like. Whatever it is, keep it simple. Examples of things I like are rainbows, doors, how
a baskteball spins, European stock prices or why you see a little cusp in the coffee mug
when the light reflects on the surface of the coffee as in Figure 6. The following three
steps might be helpful:

(1) Formulate a precise statement about the object of study,

(2) Phrase the statement in mathematical terms,

(3) Prove of disprove your statement.

Figure 6. This cusp appears due to the way rays bounce of the surface.


