
SOLUTIONS TO PROBLEM SET 2

MAT 108

Abstract. These are the solutions to Problem Set 1 for MAT 108 in the Fall Quarter
2020. The problems were posted online on Sunday Oct 4 and due Friday Oct 16.

Proofs by Contradiction

Problem 1. Show that there do not exist two integers n,m ∈ Z such that n4−4m = 2.

Hint: Proof by contradiction, i.e. assume that there exist two integers n,m ∈ Z such
that n4 − 4m = 2 and reach a contradiction.

Solution. Suppose there exist integers n,m ∈ Z satisfying n4 − 4m = 2. If n is odd,
then n4 is odd, so n4 − 4m is odd, which contradicts n4 − 4m = 2. If n is even, then
n = 2k for some integer k ∈ Z, and consequently n4 = 16k2. Then

n4 − 4m = 16k2 − 4m = 4(4k2 −m),

which is divisible by 4. But our assumption is that thhis quantity is equal to 2, which
is not divisible by 2. Therefore, we have a contradiction whether n is odd or even, so
we conclude that no such integers exist.

Problem 2. A natural number n ∈ N which is only divisible by 1 and n is said to be
a prime number. Prove that there are infinitely many prime numbers.

Hint: Proof by contradiction, i.e. assume that there exist finitely many primes {p1, p2, . . . pN},
and then try to reach a contradiction. (Clue: Consider the number P = p1·p2·. . .·pN+1.
Is this a prime ?)

Solution. First we prove a Lemma: every natural number greater than 1 has a prime
factor greater than 1. To prove the lemma, we start with a natural number n ∈ N and
find a prime number p > 1 such that n = ap for some integer a. If n is prime, then we
are done. Otherwise, n is divisible by a natural number r1 satisfying 1 < r1 < p and
n = k1r1 for some k1. If r1 is prime, then we are done.

Continue along this process: for each number ri constructed, stop if ri is prime. Other-
wise, ri is divisible by a natural number ri+1 satisfying 1 < ri+1 < ri and ri = ki+1ri+1.
Notice that at each step, we decrease the factor. That is, we have a chain of inequalities

1 < · · · < r3 < r2 < r1 < n.

This process must stop with at most n steps, so we arrive at a prime number rm (for
some final step m) satisfying

n = k1r1 = k1(k2r2) = k1(k2(k3r3)) = · · · = (k1k2 · · · km)rm.
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Therefore, rm is a prime factor of n, satisfying n = ap for a = k1k2 · · · km. Finally,
since each ri was greater than 1 by construction, we have rm > 1, proving the lemma.
In fact, if we apply the lemma to the natural number n

rm
< (which is less than n), we

find another prime factor of n. Continuing in this until we reach a quotient of 1, we
find an even stronger result: every natural number greater than 1 is equal to a product
of primes, each greater than 1.

We proceed with the main proof by contradiction. Assume the result is false, that
there are not infinitely many primes. Then there are only finitely many primes, say N
of them, and we can arrange the primes into a set {p1, p2, . . . , pN}. Form the product

Q = p1p2 · · · pN ,
and define the number P = Q + 1. By the lemma above, P has a prime factor r > 1
satisfying P = ar for some integer a.

Since r is prime, it must be in our list, so r = pi for some i ∈ {1, 2, . . . , N}. Therefore,

Q = p1p2 · · · pi−1pipi+1 . . . pN = (p1p2 · · · pi−1pi+1 . . . pN)pi = br.

Where we define b = p1p2 · · · pi−1pi+1 . . . pN . Recalling the definition of P , P = Q + 1,
we now have the two equations

Q + 1 = ar

Q = br.

Subtracting these two equations, we find 1 = (a− b)r, so 1 is divisible by r. But r > 1,
and 1 is not divisible by any number greater than 1, so we arrive at a contradiction.
Therefore, we conclude that our original assumption was not true, and there are infin-
itely many primes.

Problem 3. (20 pts) Prove that there are infinitely many prime numbers that have
residue 3 when divided by 4. Equivalently, prove that there are infinitely many prime
numbers p of the form p = 4k − 1 for some natural number k ∈ N.

For instance, p = 2 or p = 5 are prime numbers but they are not of the form p = 4k−1
for any k ∈ N. So not every prime number is of the form p = 4k− 1, this problem asks
you to show that there are infinitely many of them.

Hint: Adapt your proof by contradiction in Problem 2 to this case.
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Solution. We again start with a Lemma: For any integers k1, k2, . . . , km, the product
(4k1 − 3)(4k2 − 3) · · · (4km − 3) has residue (meaning, remainder) 1 modulo 4. We
induct on the natural number m ≥ 1. The base case m = 1 is clear, because 4k1 − 3
has residue 1. Now, suppose the result is true for a given value m. This means that

(4k1 − 3)(4k2 − 3) · · · (4km − 3) = 4K − 3

for some integer K. To test the case m + 1, we calculate

(4k1 − 3)(4k2 − 3) · · · (4km − 3)(4km+1 − 3) = (4K − 3)(4km+1 − 3)

= 16 ·K · km+1 − 12(K + km+1) + 9

= 4(4 ·K · km+1 − 3(K + km+1)) + 9

= 4(4 ·K · km+1 − 3(K + km+1) + 3)− 3,

which is the form we want, so the claim is proved.

For the main proof, we again proceed by contradiction. Assume the result is false,
that there are not infinitely many primes of the form 4k − 1. Then there are only
finitely many primes of this form, say N of them, and we can arrange them into the
set {p1, p2, . . . , pN}. As before, form the product

Q = p1p2 · · · pN .
Now define the number P = 4Q − 1. In Problem 2, we showed that every number
greater than 1 can be written as a product of primes. Note that P > 3 (because
3 = 4 · 1− 1 is definitely in our list of primes), so we can use this result.

Since P is odd, it is not divisible by 2, so our result tells us that P is a product of odd
primes. All odd numbers are of the form 4k − 1 or 4k − 3 for some integer k, and we
now want to show that P is divisible by at least one prime of the form 4k − 1 (i.e., a
prime in our set {p1, p2, . . . , pN}). Suppose for the sake of contradiction that P can be
written as a product of primes all of the form 4k − 3. Then we have

(0.1) 4Q− 1 = P = (4k1 − 3)(4k2 − 3) · · · (4km − 3)

for some integers k1, k2, . . . , km (here the factors 4k1− 3, 4k2− 3 etc. are the supposed
prime factors of P ). By our lemma, the right-hand side of Equation (0.1) has residue
1 modulo 4. But the left-hand side clearly has residue 3, so we have a contradiction.
Therefore, we conclude that P must have some prime factor r of the form r = 4k − 1.

The rest of the proof is the same as the proof of Problem 2. Since our prime r has
residue 3 modulo 4, it must be in our set {p1, p2, . . . , pN}. Therefore, r divides Q,
meaning r also divides 4Q. Since r divides 4Q and P , r must divide their difference:
4Q − P = 1. But r is an odd prime number, so r > 1, which means r cannot be a
factor of 1. Therefore, as in Problem 2, we reach a contradiction. We conclude that
the original statement was not true, so there are infinitely many primes of the form
4k − 1.
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Proofs by Induction

Problem 4. (20=5+5+10 pts) (Proposition 2.18 in Textbook) Prove the following
three statements:

(i) For all k ∈ N, k3 + 2k is divisible by 3.

(ii) For all k ∈ N, k4 − 6k3 + 11k2 − 6k is divisible by 4.

(iii) For all k ∈ N, k3 + 5k is divisible by 6.

Hint: In the induction step you might want to use the binomial formulas:

(n + 1)2 = (n + 1)(n + 1) = n2 + 2n + 1,

(n + 1)3 = (n + 1)(n + 1)(n + 1) = n3 + 3n2 + 3n + 1,

(n + 1)4 = (n + 1)(n + 1)(n + 1)(n + 1) = n4 + 4n3 + 6n2 + 4n + 1.

Solution.

(i) For the base case, we check if the statement holds for k = 1. We get 13+2(1) =
3, which is divisible by 3. Now assume n3 + 2n is divisible by 3 and we see if
this still holds for (n + 1)3 + 2(n + 1). Indeed, we get

(n + 1)3 + 2(n + 1) = n3 + 3n2 + 5n + 3

= (n3 + 2n) + (3n2 + 3n + 3)

where the first part in the parenthesis is divisible by 3 by our induction hypoth-
esis. The sum of two numbers, each of which is divisible by 3, is also divisible
by 3, so we are done.

(ii) We have 14 − 6(1)3 + 11(1)2 − 6(1) = 0, which is divisible by 4. Assume
n4 − 6n3 + 11n2 − 6n is divisible by 4. Then,

(n + 1)4 − 6(n + 1)3 + 11(n + 1)2 − 6(n + 1) = n4 − 2n3 − n2 + 2n

= (n4 − 6n3 + 11n2 − 6n) + (4n3 − 12n2 + 4n)

where the first part in the parenthesis is divisible by 4 by our induction hy-
pothesis. The result then follows by a similar reasoning as part (i).

(iii) For k = 1, we get 13 + 5(1) = 6 is divisible by 6, which is true. Now assume
n3 + 5n is divisible by 6. Then,

(n + 1)3 + 5(n + 1) = n3 + 3n2 + 8n + 6

= (n3 + 5n) + (3n2 + 3n + 6)

= (n3 + 5n) + 3n(n + 1) + 6

where the first part in the parenthesis is divisible by 6 by our induction hy-
pothesis. To finish this problem, we show 3n(n + 1) is divisible by 6. First,
notice that n(n+ 1) will always be divisible by 2 because this product consists
of one odd number and one even number. Then, multiplying this product by 3
tells 3n(n + 1) must be divisible by 6.
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Problem 5. (20=10+10 pts) Prove by induction the following two formulas:

(i) For all k ∈ N, we have

1 + 2 + 3 + 4 + . . . + (k − 1) + k =
k(k + 1)

2
.

The left hand side is the sum of all the natural numbers less equal than k, i.e.
from 1 to k, the latter included.

(ii) For all k ∈ N, we have

12 + 22 + 32 + 42 + . . . + (k − 1)2 + k2 =
k(k + 1)(2k + 1)

6
.

The left hand side is the sum of the squares of all the natural numbers less
equal than k, i.e. from 12 to k2, the latter included.

Solution.

(i) If k = 1, then 1 = 1(1+1)
2

, which is true. Now suppose

1 + 2 + · · ·+ (n− 1) + n =
n(n + 1)

2
.

Then,

1 + 2 + · · ·+ (n− 1) + n + (n + 1) =
n(n + 1)

2
+ (n + 1)

=
n2 + n + 2n + 2

2

=
(n + 1)(n + 2)

2

=
(n + 1)((n + 1) + 1)

2
where the first equality follows from our induction hypothesis.

(ii) If k = 1, then 12 = 1(1+1)(2(1)+1)
6

, which is true. Now suppose

12 + 22 + 32 + 42 + . . . + (n− 1)2 + n2 =
n(n + 1)(2n + 1)

6
.

Then,

12 + 22 + 32 + 42 + . . . + (n− 1)2 + n2 + (n + 1)2 =
n(n + 1)(2n + 1)

6
+ (n + 1)2

=
n(n + 1)(2n + 1) + 6(n + 1)2

6

=
(n + 1)(n(2n + 1) + 6(n + 1))

6

=
(n + 1)(2n2 + 7n + 6)

6

=
(n + 1)(n + 2)(2n + 3)

6

=
(n + 1)((n + 1) + 1)(2(n + 1) + 1)

6
where the first equality follows from our induction hypothesis.
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Problem 6. (20 pts) Let k ∈ N be a natural number. Consider a 2k×2k square board
divided into equal square tiles of 1× 1 size, like a chess board. (So the 2k × 2k board
is covered by 22k tiles.) Remove one tile from the 2k × 2k board. Prove by induction
that the remaining part of the board can be covered with triomino pieces, i.e. pieces
made of three unit tiles with an L-shape.

I have depicted in Figure 1 the triomino pieces (Left) and an example of the case
k = 1 (Right), where you can see a board of size 21 × 21 with one tile (the blue one)
removed. It is clear in this case, that the board with one tile removed can be covered
with triomino pieces, in this case, exactly one triomino piece (covering the three white
tiles).

(a) A triomino piece.
(b) The 2k × 2k board with one tile removed
in the case k = 1, where the board is 2× 2.

Figure 1. The art of tiling a board with a missing tile with triominos,
as presented in Problem 6. The goal is to prove that you can always tile
with triominos if a tile is missing in a 2k × 2k board.

Solution. The case k = 1 is covered above. To help us visualize this problem even
more, let’s consider the case k = 2 before our inductive step. If we remove one tile from
a 4× 4 board, then we see that we can cover the rest of the board with five triomino
pieces.

Now assume a 2n×2n square board with one tile removed can be covered with triomino
pieces. Consider a 2n+1 × 2n+1 board, which we can think of as four 2n × 2n boards.
An example for n = 1 is shown below.
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Let the tile we remove be on the top right. Then, by our induction hypothesis, the top
right 2n × 2n board can be covered by triomino pieces. To show the remaining three
2n × 2n boards can be covered by triomino pieces, draw one triomino piece so that it
occupies one space on each board (i.e. draw the piece near the center of the 2n+1×2n+1

board). Then, we can apply our induction hypothesis to each board and we are done.

Problem 7. (20 pts) Let k ∈ N be a natural number. Consider k distinct straight
lines in the plane. These are infinitely long straight lines, and we assume that no two
such lines are parallel and no three such lines every intersect at a single point. Prove
that k such lines divide the plane into (k2 + k + 2)/2 regions.

Figure 2. Six lines dividing the plane in 22 regions. This is the case
k = 6 in Problem 7.

Hint: This can be proven by induction, but it is crucial in this problem that you play
and experiment with this formula first. It will give you an intuition on how to prove
the general case, by adding one line at a time and seeing how new regions appear.

For instance, for one line we have k = 1 and one line divides the plane into (12 + 1 +
2)/2 = 2 regions. By hand, try at least the formula for k = 2, 3 and k = 4. I have
depicted the case k = 6 in Figure 2, where the plane is divided into (k2 + k + 2)/2 =
(62 + 6 + 2)/2 = 22 regions.
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Solution. The case for k = 1 is covered above. The cases k = 2, 3, 4 are depicted
below.

We have (22 + 2 + 2)/2 = 4, (32 + 3 + 2)/2 = 7, and (42 + 4 + 2)/2 = 11. We now
prove the problem. The base cases were handled so we move on to the inductive step.
Assume n lines satisfying our conditions divide the plane into (n2 + n + 2)/2 regions.
We look at what happens when we add one more line. Since this new line cannot be
parallel to the other n lines and no three lines intersect at a single point, we conclude
this line adds n intersection points. In other words, this new line is divided into n + 1
segments so we have n + 1 additional regions. Thus, we have that n + 1 lines divide
the plane into

n2 + n + 2

2
+(n+1) =

n2 + 3n + 4

2
=

(n2 + 2n + 1) + (n + 1) + 2

2
=

(n + 1)2 + (n + 1) + 2

2
regions.


