SOLUTIONS TO PROBLEM SET 4

MAT 108

ABSTRACT. These are the solutions to Problem Set 4 for MAT 108 in the Fall Quar-
ter 2020. The problems were posted online on Wednesday Nov 4 and due Friday Nov
13.

Problem 1. (Proposition 8.53) Prove that every non-empty subset of R that is
bounded below has a greatest lower bound.

Solution. Let A be a nonempty subset of R that is bounded below. Construct a new
set A = {—ala € A}. This set is bounded above because I being a lower bound of A
implies —[ is an upper bound of A. In other words, [ < a for all @ € A and negating
this gives — > —a for all a € A. By the Completeness Axiom, s = sup A exists. We
claim —s = inf(A). By definition, s being a supremum of A implies —a < s for all
a € A. Multiply this inequality by —1 to get a > —s. Hence, —s is a lower bound of
A. Moreover, it has to be our greatest lower bound. If not, then suppose —t is the
infimum of A so —t < a for all a € A. This would imply ¢t > —a, i.e. the supremum of
A is t, a contradiction.

Problem 2. (20 points, 5 each) Find the least upper bound sup(A), and the greatest
lower bound inf(A) of the following subsets of the real numbers R:

(a) A=(-32,7)CRjie. A={reR:-32<zandz <7} CR.
(b) B=(-32,7CRjie. A={z€eR:-32<zandz <7} CR
(¢c) C=(0,00) CRie. A={zeR:0<a} CR

(d) D=(-00,4 CR,ie. A={z eR:2x <4} CR.

Solution. We will make use of the fact that the average of two distinct real numbers
lies strictly between those two numbers. That is, for real numbers a < b, we have

b b b

a+a<a+ < 1 b
a=—-—+-<-=-+4 = -4+ - =
2 2 2 2 2 2 ’
SO

b
(0.1) a<a—£ < b.

(a) We claim that inf(A) = —3.2 and sup(A) = 7. It is clear from the definition
of A that these give a lower bound and upper bound, respectively. Let u be a

lower bound for A, and suppose for the sake of contradiction that u > —3.2.
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Since u is a lower bound for A, we also have
u<0<T7.
Consider the average r := %, which, by 1} satisfies
“32<r<u<",

so r € A. Since r < u, this contradicts the fact that u is a lower bound, so we
conclude that u < —3.2 after all. Therefore, —3.2 is the greatest lower bound
for A, as desired.

Similarly, Let v be an upper bound for A, and suppose for the sake of contra-
diction that v < 7. Since v is an upper bound for A, we also have

v>0>-3.2.
Consider the average r := “I which, by 1} satisfies

2

—32<v<r<i,

so r € A. Since r > v, this contradicts the fact that v is a lower bound, so we
conclude that v > —3.2 after all. Therefore, —3.2 is the least upper bound for
A, as desired.

The proof is nearly identical to Part (a). We claim that inf(B) = —3.2 and
sup(B) = 7. It is clear from the definition of B that these give a lower bound
and upper bound, respectively. Let u be a lower bound for B, and suppose for
the sake of contradiction that v > —3.2. Since u is a lower bound for B, we
also have

u<T.

Consider the average r := %, which, by 1} satisfies
—32<r<u<,

so r € B. Since r < u, this contradicts the fact that u is a lower bound, so we
conclude that v < —3.2 after all. Therefore, —3.2 is the greatest lower bound
for B, as desired.

Similarly, Let v be an upper bound for B, and suppose for the sake of contra-
diction that v < 7. Since v is an upper bound for B, we also have

v>0>-3.2.
Consider the average r := %7 which, by 1} satisfies

2 9

32<uv<r<r,

so r € B. Since r > v, this contradicts the fact that v is a lower bound, so we
conclude that v > —3.2 after all. Therefore, —3.2 is the greatest lower bound
for B, as desired.Alternatively, notice that max(B) = 7, so a Proposition from
Discussion 6 tells us that sup(B) = 7.

We claim that inf(C') = 0 and that C' has no supremum. The proof the the
former is by now standard. It is clear from the definition of C' that 0 is a lower
bound. Let u be a lower bound for C, and suppose for the sake of contradiction

that v > 0. Consider the average r := (”T“, which, by 1) satisfies

0<r<u,
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so r € C'. Since r < u, this contradicts the fact that u is a lower bound, so we
conclude that v < 0 after all. Therefore, 0 is the greatest lower bound for C,
as desired.

To show that C' has no supremum, we show that it has no upper bounds (this
suffices because suprema are, in particular, upper bounds). Indeed, let x € R.
If x <0, then z < 1, but 1 € C, so z is not an upper bound for C'. Otherwise,
x>0, and we have x <z + 1, but x4+ 1> 2 > 0 is in C, so x is again not an
upper bound. Having excluded all possible real numbers as upper bounds, we
conclude that C' has no upper bound.

(d) We claim that sup(D) = 4 and that D has no infimum. The proof the the
former is by now standard. It is clear from the definition of D that 4 is an
upper bound. Let v be an upper bound for D, and suppose for the sake of
contradiction that v < 4. Consider the average r := ”;4, which, by
satisfies

v<r <4,

so r € D. Since r > v, this contradicts the fact that v is a lower bound, so
we conclude that v > 4 after all. Therefore, 4 is the greatest lower bound for
C, as desired.Alternatively, notice that max(D) = 4, so a Proposition from
Discussion 6 tells us that sup(D) = 4.

To show that D has no infimum, we proceed as in Part (c¢) by showing that
it has no lower bound (this suffices because infima are, in particular, lower
bounds). Indeed, let x € R. If x > 4, then—because 4 € D—x is not a lower
bound for D. Otherwise, x < 4, and we have x > x— 1, but r—1 <2 < 4isin
D, so x is again not a lower bound. Having excluded all possible real numbers
as lower bounds, we conclude that D has no lower bound.

Problem 3. (10+10 points) Consider the set of real numbers
1
N:{3——:n€N}.
n

Solution. We claim sup(N) = 3 and inf(N) = 2. Since 3 > 3 — 1 for all n € N, we
know 3 is un upper bound for N. We know for each € > 0, there exists an n € N such
that % < e. Then, 3 —% > 3 —¢€ 50 3 — ¢ is not an upper bound for any € > 0. Thus, 3
must be our least upper bound. Now we prove the infimum is 2. Note that 2 is a lower
bound. Moreover, 3 — n+r1 >3 — L > 2 because n+r1 < % for all n € N. Therefore, 2 is

n
our greatest lower bound.

Find inf(N) and sup(N).
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Problem 4. Consider the two following subsets of the real numbers

s " nenlcr 720227l L enlcer
n+1 n+1

Show that sup(S) = 1, sup(7') = 2 and inf(7") = 3/2. Find inf(S).

Solution. Define
2n+1

RS n+l
Then we have the sequences (S, )nen and (t,)nen. Note that

Sy, and ¢, =

2n+1 n+n+1 n n+1
tn: = _= + :Sn+1,
n+1 n+1 n+1 n+1

so our sets are S = {s, :n € Nand T'= {s,, + 1 : n € N. We show that the sequence
(Sn)nen is monotone. Indeed, for each n € N, we have

n+1 n
Sn+1_8n_n+2_n+1

_(n+1(n+1)=(n+2)n

B (n+2)(n+1)

B 1

C (n+2)(n+1)

>0

)
SO Spi1 > Sp. In particular,

n 1 2n—(n+1) n—1
Sp — S1 = - = = - 207
n+1 2 2(n+1) 2(n+1)

since n > 1, so % = s1 < 8,. Therefore, % € S is a lower bound for S, and hence

inf(S) = % by a Proposition from Discussion 6.
By the proof of the Monotone Convergence Theorem, the limit of (s,),en exists and
is equal to sup(5), so we now prove that lim, ,, s, = 1. Let € > 0, and let ng € N be

such that nio < e. Then, for all n > ny we have

1) — 1
PR P O 4 5

1
_ — = < —<e.
n+1 n+1 n+1 n+17" ng c

Note that in the second equality above we used the fact that n < n+1, which rearranges
to 1 — -2 > 0. This completes the proof that sup(S) = lim,, 0 5, = 1.

The calculations for T follow from those for S. The sequence (t,),en is monotone
because

tn+1 —ty, = (3n+1 + 1) - (Sn + 1) = Sn+1 — Sn >0
for all n € N. In particular,
th—ti=(sp+1)—(s1+1)=s,—5>0

so 2 =t € T is a lower bound for T, and hence inf(T) = 2 by a Proposition from
Discussion 6.
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By the proof of the Monotone Convergence Theorem, the limit of (¢, ),en exists and is
equal to sup(7T), so we now prove that lim, ,,, t, = 2. Let ¢ > 0, and let ng € N be
such that nio < e. Then, for all n > ny we have

12—t =12=(sp+ 1) =1 =5, <e.
This completes the proof that sup(7") = lim,,_, t, = 2.

Problem 5. (10+5+5 points) Find an upper bound for each of the following three sets:

Hint: Consider the following expansion
I\" /)1 <1 1 2 3 k—1
1+—-) = — = —(1—-—=)({1==)(1==)-...- (1= .
(o)~ @w-Za(-0) (-3) 0-0) (-5

Solution.

(i) Let’s look at the expansion:

Sa( D000 (),

In discussion, we proved that as n becomes larger, the value of % becomes
smaller and the infimum of the set {1|n € N} is thus 0. Therefore, each term
in the parenthesis is bounded above by 1 so it suffices to consider

"1
D
k=0

Therefore, we have the following.

( 1>n o

1+—-) < —

n k!
k=0

11 1 1
=gttty tatoto
AR S 1
SLHl4gdggtotgt
ey

k:02
=3

The last equality follows since the sum of the infinite geometric series > -, ik

IS 775 1/2—2
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CONCNE

We know (1 + #)HQ is bounded above by 3 from part (i). (If it’s difficult to see,
replace n? with a new variable z, for instance.) It is enough to then consider
3!/7 Using what we know about the behavior of %, we conclude it is bounded
above by 3.

(ii) Notice that

(iii) We claim that this set has no upper bound. Notice that

) (D))

This is similar to part (ii). By the Binomial Theorem, we have

(0) =2 ()
() ()2 ()

1 " /n\ 1
n Zk:Q k)n
> 2

9

so ¢, > 2". It now suffices to show that the sequence (2"),ecy is unbounded,
which we prove by showing that 2" > n using induction. (This proves it is not
bounded above since the natural numbers is not bounded above.) For the base
case, we have 2! > 1, which is true. Now assume 2* > k. We then have

oL —9oF . 9> k. 2>k+ 1.

The last inequality follows because 2k > k -+ 1 can be rewritten as k > 1, which
is true.

Problem 6. (10+10 points) Consider the subset Cy = [0,1] C R. Recursively, define

the sets
o _C’nu 2+Cn
mHT g 37 3)°

for n > 1, where, if we let A = [a,b], then the notation A/3 describes the interval
[a/3,b/3] and the notation A + 2/3 describe the interval [a +2/3,b + 2/3].

(a) Describe and draw the sets C, Cy, C3 and C4 as a union of explicit intervals.
(b) Show that the intersection N9, is non-empty.

Solution. Here is the extension of the notations ? and A + % for arbitrary sets. Let
X C R be an arbitrary subset, and let ¢ be any real number. Then we define the new
sets

c- X={cx:xzeX}CR and X+c:={r+c:xe X} CR
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For ¢ # 0, we also define % = % - X.

(a) The set C,,41 is obtained from C,, by scaling all of C,, down to fit inside [0, %],

and then repeating this scaled copy in the translation to [%, 1]. It follows that

Ch41 is given by deleting the open middle third of each interval in C,,. Explicitly,

Co = 10,1]
Cl [07 %] U [%7 1]
C2 = [07 %] U [%7%] U [%7 g] U [371

_ 1 2 1 2 7 8 1 2 19 20 7 8 26 1
Ci=0,5]VU s 7Vl sl Vs sl Vs st Vs ﬁ] U [—7 8—] 5 5]

OB BIVIE BIUIZ U H U BIUEL B B U1
These are illustrated in Figure [1| below, taken from
georgcantorbyelithompson.blogspot.com
1
1/3

i ——_ — —
ﬁ — — — — — — —

FIGURE 1. The sets Cy, C1, Cy, C5, and Cy.

(b) We will show that 0 € C,, for all integers n > 0 by induction on n. For our
base case n = 0, we have 0 € [0,1] = Cj (it’s important that we're working
with closed intervals). As our inductive hypothesis, suppose 0 € C,, for some
integer n > 0. Then

0o G,
0:§€?§Cn+1,

so 0 € C,11. We conclude that 0 € C), for all n > 0, so 0 € ﬂzozo C,, and
consequently ﬂzozo (), is not empty.

Note: The set C,, C R is a union of 2" disjoint closed intervals. The above
argument works similarly to show that any of the endpoints of these intervals
persist in the further sets C, 11, Cy12, etc. (and of course, they’re contained in
Ch_1, Cp_o, etc. as well, since Cy D C; D Cy--+).

So each of these 2 - 2" points in the set C,, is in the intersection (.-, C,, and
consequently the set C':= (", C, has infinitely many points! In fact, these
persisting endpoints are the only elements of C. Notice the 2"*! endpoints
from (), can all be written as rational numbers with common denominator 3".

The set C :=(,—, C, is called the Cantor set, and it exhibits a wide variety
of strange phenomena that can occur in the real numbers R.



