SOLUTIONS TO PROBLEM SET 4

MAT 108

Abstract

These are the solutions to Problem Set 4 for MAT 108 in the Fall Quarter 2020. The problems were posted online on Wednesday Nov 4 and due Friday Nov 13.

Problem 1. (Proposition 8.53) Prove that every non-empty subset of \mathbb{R} that is bounded below has a greatest lower bound.

Solution. Let A be a nonempty subset of \mathbb{R} that is bounded below. Construct a new set $\tilde{A}=\{-a \mid a \in A\}$. This set is bounded above because l being a lower bound of A implies $-l$ is an upper bound of \tilde{A}. In other words, $l \leq a$ for all $a \in A$ and negating this gives $-l \geq-a$ for all $a \in A$. By the Completeness Axiom, $s=\sup \tilde{A}$ exists. We claim $-s=\inf (A)$. By definition, s being a supremum of \tilde{A} implies $-a \leq s$ for all $a \in A$. Multiply this inequality by -1 to get $a \geq-s$. Hence, $-s$ is a lower bound of A. Moreover, it has to be our greatest lower bound. If not, then suppose $-t$ is the $i_{\tilde{A}}$ infimum of A so $-t \leq a$ for all $a \in A$. This would imply $t \geq-a$, i.e. the supremum of \tilde{A} is t, a contradiction.

Problem 2. (20 points, 5 each) Find the least upper bound $\sup (A)$, and the greatest lower bound $\inf (A)$ of the following subsets of the real numbers \mathbb{R} :
(a) $A=(-3.2,7) \subseteq \mathbb{R}$, i.e. $A=\{x \in \mathbb{R}:-3.2<x$ and $x<7\} \subseteq \mathbb{R}$.
(b) $B=(-3.2,7] \subseteq \mathbb{R}$, i.e. $A=\{x \in \mathbb{R}:-3.2<x$ and $x \leq 7\} \subseteq \mathbb{R}$.
(c) $C=(0, \infty) \subseteq \mathbb{R}$, i.e. $A=\{x \in \mathbb{R}: 0<x\} \subseteq \mathbb{R}$.
(d) $D=(-\infty, 4] \subseteq \mathbb{R}$, i.e. $A=\{x \in \mathbb{R}: x \leq 4\} \subseteq \mathbb{R}$.

Solution. We will make use of the fact that the average of two distinct real numbers lies strictly between those two numbers. That is, for real numbers $a<b$, we have

$$
a=\frac{a}{2}+\frac{a}{2}<\frac{a}{2}+\frac{b}{2}<\frac{b}{2}+\frac{b}{2}=b,
$$

so

$$
\begin{equation*}
a<\frac{a+b}{2}<b . \tag{0.1}
\end{equation*}
$$

(a) We claim that $\inf (A)=-3.2$ and $\sup (A)=7$. It is clear from the definition of A that these give a lower bound and upper bound, respectively. Let u be a lower bound for A, and suppose for the sake of contradiction that $u>-3.2$.

Since u is a lower bound for A, we also have

$$
u \leq 0<7
$$

Consider the average $r:=\frac{-3.2+u}{2}$, which, by 0.1 satisfies

$$
-3.2<r<u<7,
$$

so $r \in A$. Since $r<u$, this contradicts the fact that u is a lower bound, so we conclude that $u \leq-3.2$ after all. Therefore, -3.2 is the greatest lower bound for A, as desired.
Similarly, Let v be an upper bound for A, and suppose for the sake of contradiction that $v<7$. Since v is an upper bound for A, we also have

$$
v \geq 0>-3.2 .
$$

Consider the average $r:=\frac{v+7}{2}$, which, by (0.1) satisfies

$$
-3.2<v<r<7
$$

so $r \in A$. Since $r>v$, this contradicts the fact that v is a lower bound, so we conclude that $v \geq-3.2$ after all. Therefore, -3.2 is the least upper bound for A, as desired.
(b) The proof is nearly identical to Part (a). We claim that $\inf (B)=-3.2$ and $\sup (B)=7$. It is clear from the definition of B that these give a lower bound and upper bound, respectively. Let u be a lower bound for B, and suppose for the sake of contradiction that $u>-3.2$. Since u is a lower bound for B, we also have

$$
u \leq 7
$$

Consider the average $r:=\frac{-3.2+u}{2}$, which, by 0.1) satisfies

$$
-3.2<r<u \leq 7
$$

so $r \in B$. Since $r<u$, this contradicts the fact that u is a lower bound, so we conclude that $u \leq-3.2$ after all. Therefore, -3.2 is the greatest lower bound for B, as desired.
Similarly, Let v be an upper bound for B, and suppose for the sake of contradiction that $v<7$. Since v is an upper bound for B, we also have

$$
v \geq 0>-3.2
$$

Consider the average $r:=\frac{v+7}{2}$, which, by 0.1) satisfies

$$
-3.2<v<r<7
$$

so $r \in B$. Since $r>v$, this contradicts the fact that v is a lower bound, so we conclude that $v \geq-3.2$ after all. Therefore, -3.2 is the greatest lower bound for B, as desired.Alternatively, notice that $\max (B)=7$, so a Proposition from Discussion 6 tells us that $\sup (B)=7$.
(c) We claim that $\inf (C)=0$ and that C has no supremum. The proof the the former is by now standard. It is clear from the definition of C that 0 is a lower bound. Let u be a lower bound for C, and suppose for the sake of contradiction that $u>0$. Consider the average $r:=\frac{0+u}{2}$, which, by 0.1) satisfies

$$
0<r<u
$$

so $r \in C$. Since $r<u$, this contradicts the fact that u is a lower bound, so we conclude that $u \leq 0$ after all. Therefore, 0 is the greatest lower bound for C, as desired.
To show that C has no supremum, we show that it has no upper bounds (this suffices because suprema are, in particular, upper bounds). Indeed, let $x \in \mathbb{R}$. If $x \leq 0$, then $x<1$, but $1 \in C$, so x is not an upper bound for C. Otherwise, $x>0$, and we have $x<x+1$, but $x+1>x>0$ is in C, so x is again not an upper bound. Having excluded all possible real numbers as upper bounds, we conclude that C has no upper bound.
(d) We claim that $\sup (D)=4$ and that D has no infimum. The proof the the former is by now standard. It is clear from the definition of D that 4 is an upper bound. Let v be an upper bound for D, and suppose for the sake of contradiction that $v<4$. Consider the average $r:=\frac{v+4}{2}$, which, by 0.1 satisfies

$$
v<r<4,
$$

so $r \in D$. Since $r>v$, this contradicts the fact that v is a lower bound, so we conclude that $v \geq 4$ after all. Therefore, 4 is the greatest lower bound for C, as desired.Alternatively, notice that $\max (D)=4$, so a Proposition from Discussion 6 tells us that $\sup (D)=4$.
To show that D has no infimum, we proceed as in Part (c) by showing that it has no lower bound (this suffices because infima are, in particular, lower bounds). Indeed, let $x \in \mathbb{R}$. If $x>4$, then-because $4 \in D-x$ is not a lower bound for D. Otherwise, $x \leq 4$, and we have $x>x-1$, but $x-1<x \leq 4$ is in D, so x is again not a lower bound. Having excluded all possible real numbers as lower bounds, we conclude that D has no lower bound.

Problem 3. ($10+10$ points) Consider the set of real numbers

$$
N=\left\{3-\frac{1}{n}: n \in \mathbb{N}\right\} .
$$

Find $\inf (N)$ and $\sup (N)$.

Solution. We claim $\sup (N)=3$ and $\inf (N)=2$. Since $3>3-\frac{1}{n}$ for all $n \in \mathbb{N}$, we know 3 is un upper bound for N. We know for each $\varepsilon>0$, there exists an $n \in \mathbb{N}$ such that $\frac{1}{n}<\varepsilon$. Then, $3-\frac{1}{n}>3-\varepsilon$ so $3-\varepsilon$ is not an upper bound for any $\varepsilon>0$. Thus, 3 must be our least upper bound. Now we prove the infimum is 2 . Note that 2 is a lower bound. Moreover, $3-\frac{1}{n+1}>3-\frac{1}{n} \geq 2$ because $\frac{1}{n+1}<\frac{1}{n}$ for all $n \in \mathbb{N}$. Therefore, 2 is our greatest lower bound.

Problem 4. Consider the two following subsets of the real numbers

$$
S=\left\{\frac{n}{n+1}: n \in \mathbb{N}\right\} \subseteq \mathbb{R}, \quad T=\left\{\frac{2 n+1}{n+1}: n \in \mathbb{N}\right\} \subseteq \mathbb{R}
$$

Show that $\sup (S)=1, \sup (T)=2$ and $\inf (T)=3 / 2$. Find $\inf (S)$.

Solution. Define

$$
s_{n}=\frac{n}{n+1} \quad \text { and } \quad t_{n}=\frac{2 n+1}{n+1}
$$

Then we have the sequences $\left(s_{n}\right)_{n \in \mathbb{N}}$ and $\left(t_{n}\right)_{n \in \mathbb{N}}$. Note that

$$
t_{n}=\frac{2 n+1}{n+1}=\frac{n+n+1}{n+1}=\frac{n}{n+1}+\frac{n+1}{n+1}=s_{n}+1
$$

so our sets are $S=\left\{s_{n}: n \in \mathbb{N}\right.$ and $T=\left\{s_{n}+1: n \in \mathbb{N}\right.$. We show that the sequence $\left(s_{n}\right)_{n \in \mathbb{N}}$ is monotone. Indeed, for each $n \in \mathbb{N}$, we have

$$
\begin{aligned}
s_{n+1}-s_{n} & =\frac{n+1}{n+2}-\frac{n}{n+1} \\
& =\frac{(n+1)(n+1)-(n+2) n}{(n+2)(n+1)} \\
& =\frac{1}{(n+2)(n+1)} \\
& \geq 0
\end{aligned}
$$

so $s_{n+1} \geq s_{n}$. In particular,

$$
s_{n}-s_{1}=\frac{n}{n+1}-\frac{1}{2}=\frac{2 n-(n+1)}{2(n+1)}=\frac{n-1}{2(n+1)} \geq 0
$$

since $n \geq 1$, so $\frac{1}{2}=s_{1} \leq s_{n}$. Therefore, $\frac{1}{2} \in S$ is a lower bound for S, and hence $\inf (S)=\frac{1}{2}$ by a Proposition from Discussion 6.
By the proof of the Monotone Convergence Theorem, the limit of $\left(s_{n}\right)_{n \in \mathbb{N}}$ exists and is equal to $\sup (S)$, so we now prove that $\lim _{n \rightarrow \infty} s_{n}=1$. Let $\varepsilon>0$, and let $n_{0} \in \mathbb{N}$ be such that $\frac{1}{n_{0}}<\varepsilon$. Then, for all $n \geq n_{0}$ we have

$$
\left|1-s_{n}\right|=\left|1-\frac{n}{n+1}\right|=1-\frac{n}{n+1}=\frac{(n+1)-n}{n+1}=\frac{1}{n+1} \leq \frac{1}{n_{0}}<\varepsilon
$$

Note that in the second equality above we used the fact that $n<n+1$, which rearranges to $1-\frac{n}{n+1}>0$. This completes the proof that $\sup (S)=\lim _{n \rightarrow \infty} s_{n}=1$.
The calculations for T follow from those for S. The sequence $\left(t_{n}\right)_{n \in \mathbb{N}}$ is monotone because

$$
t_{n+1}-t_{n}=\left(s_{n+1}+1\right)-\left(s_{n}+1\right)=s_{n+1}-s_{n} \geq 0
$$

for all $n \in \mathbb{N}$. In particular,

$$
t_{n}-t_{1}=\left(s_{n}+1\right)-\left(s_{1}+1\right)=s_{n}-s_{1} \geq 0
$$

so $\frac{3}{2}=t_{1} \in T$ is a lower bound for T, and hence $\inf (T)=\frac{3}{2}$ by a Proposition from Discussion 6.

By the proof of the Monotone Convergence Theorem, the limit of $\left(t_{n}\right)_{n \in \mathbb{N}}$ exists and is equal to $\sup (T)$, so we now prove that $\lim _{n \rightarrow \infty} t_{n}=2$. Let $\varepsilon>0$, and let $n_{0} \in \mathbb{N}$ be such that $\frac{1}{n_{0}}<\varepsilon$. Then, for all $n \geq n_{0}$ we have

$$
\left|2-t_{n}\right|=\left|2-\left(s_{n}+1\right)\right|=\left|1-s_{n}\right|<\varepsilon .
$$

This completes the proof that $\sup (T)=\lim _{n \rightarrow \infty} t_{n}=2$.

Problem 5. ($10+5+5$ points) Find an upper bound for each of the following three sets:

$$
X=\left\{\left(1+\frac{1}{n}\right)^{n}: n \in \mathbb{N}\right\}, \quad Y=\left\{\left(1+\frac{1}{n^{2}}\right)^{n}: n \in \mathbb{N}\right\}, \quad Z=\left\{\left(1+\frac{1}{n}\right)^{n^{2}}: n \in \mathbb{N}\right\} .
$$

Hint: Consider the following expansion

$$
\left(1+\frac{1}{n}\right)^{n}=\sum_{k=0}^{n}\binom{n}{k} \frac{1}{n^{k}}=\sum_{k=0}^{n} \frac{1}{k!}\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right)\left(1-\frac{3}{n}\right) \cdot \ldots \cdot\left(1-\frac{k-1}{n}\right) .
$$

Solution.

(i) Let's look at the expansion:

$$
\sum_{k=0}^{n} \frac{1}{k!}\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right)\left(1-\frac{3}{n}\right) \cdot \ldots \cdot\left(1-\frac{k-1}{n}\right)
$$

In discussion, we proved that as n becomes larger, the value of $\frac{1}{n}$ becomes smaller and the infimum of the set $\left\{\left.\frac{1}{n} \right\rvert\, n \in \mathbb{N}\right\}$ is thus 0 . Therefore, each term in the parenthesis is bounded above by 1 so it suffices to consider

$$
\sum_{k=0}^{n} \frac{1}{k!} .
$$

Therefore, we have the following.

$$
\begin{aligned}
\left(1+\frac{1}{n}\right)^{n} & \leq \sum_{k=0}^{n} \frac{1}{k!} \\
& =\frac{1}{0!}+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\cdots+\frac{1}{n!} \\
& <1+1+\frac{1}{2}+\frac{1}{2^{2}}+\cdots+\frac{1}{2^{n}}+\cdots \\
& =1+\sum_{k=0}^{\infty} \frac{1}{2^{k}} \\
& =3
\end{aligned}
$$

The last equality follows since the sum of the infinite geometric series $\sum_{k=0}^{\infty} \frac{1}{2^{k}}$ is $\frac{1}{1-1 / 2}=2$.
(ii) Notice that

$$
\left(1+\frac{1}{n^{2}}\right)^{n}=\left(\left(1+\frac{1}{n^{2}}\right)^{n^{2}}\right)^{1 / n}
$$

We know $\left(1+\frac{1}{n^{2}}\right)^{n^{2}}$ is bounded above by 3 from part (i). (If it's difficult to see, replace n^{2} with a new variable z, for instance.) It is enough to then consider $3^{1 / n}$. Using what we know about the behavior of $\frac{1}{n}$, we conclude it is bounded above by 3 .
(iii) We claim that this set has no upper bound. Notice that

$$
c_{n}:=\left(1+\frac{1}{n}\right)^{n^{2}}=\left(\left(1+\frac{1}{n}\right)^{n}\right)^{n}
$$

This is similar to part (ii). By the Binomial Theorem, we have

$$
\begin{aligned}
\left(1+\frac{1}{n}\right)^{n} & =\sum_{k=0}^{n}\binom{n}{k} \frac{1}{n^{k}} \\
& =\binom{n}{0} \frac{1}{n^{0}}+\binom{n}{1} \frac{1}{n^{1}}+\sum_{k=2}^{n}\binom{n}{k} \frac{1}{n^{k}} \\
& =1 \cdot 1+n \cdot \frac{1}{n}+\sum_{k=2}^{n}\binom{n}{k} \frac{1}{n^{k}} \\
& \geq 2
\end{aligned}
$$

so $c_{n} \geq 2^{n}$. It now suffices to show that the sequence $\left(2^{n}\right)_{n \in \mathbb{N}}$ is unbounded, which we prove by showing that $2^{n} \geq n$ using induction. (This proves it is not bounded above since the natural numbers is not bounded above.) For the base case, we have $2^{1} \geq 1$, which is true. Now assume $2^{k} \geq k$. We then have

$$
2^{k+1}=2^{k} \cdot 2>k \cdot 2 \geq k+1
$$

The last inequality follows because $2 k \geq k+1$ can be rewritten as $k \geq 1$, which is true.

Problem 6. ($10+10$ points) Consider the subset $C_{0}=[0,1] \subseteq \mathbb{R}$. Recursively, define the sets

$$
C_{n+1}=\frac{C_{n}}{3} \cup\left(\frac{2}{3}+\frac{C_{n}}{3}\right)
$$

for $n \geq 1$, where, if we let $A=[a, b]$, then the notation $A / 3$ describes the interval $[a / 3, b / 3]$ and the notation $A+2 / 3$ describe the interval $[a+2 / 3, b+2 / 3]$.
(a) Describe and draw the sets C_{1}, C_{2}, C_{3} and C_{4} as a union of explicit intervals.
(b) Show that the intersection $\cap_{n=1}^{\infty} C_{n}$ is non-empty.

Solution. Here is the extension of the notations $\frac{A}{3}$ and $A+\frac{2}{3}$ for arbitrary sets. Let $X \subseteq \mathbb{R}$ be an arbitrary subset, and let c be any real number. Then we define the new sets

$$
c \cdot X:=\{c \cdot x: x \in X\} \subseteq \mathbb{R} \quad \text { and } \quad X+c:=\{x+c: x \in X\} \subseteq \mathbb{R}
$$

For $c \neq 0$, we also define $\frac{X}{c}:=\frac{1}{c} \cdot X$.
(a) The set C_{n+1} is obtained from C_{n} by scaling all of C_{n} down to fit inside $\left[0, \frac{1}{3}\right]$, and then repeating this scaled copy in the translation to $\left[\frac{2}{3}, 1\right]$. It follows that C_{n+1} is given by deleting the open middle third of each interval in C_{n}. Explicitly,

$$
\begin{aligned}
C_{0}= & {[0,1] } \\
C_{1}= & {\left[0, \frac{1}{3}\right] \cup\left[\frac{2}{3}, 1\right] } \\
C_{2}= & {\left[0, \frac{1}{9}\right] \cup\left[\frac{2}{9}, \frac{1}{3}\right] \cup\left[\frac{2}{3}, \frac{7}{9}\right] \cup\left[\frac{8}{9}, 1\right] } \\
C_{3}= & {\left[0, \frac{1}{27}\right] \cup\left[\frac{2}{27}, \frac{1}{9}\right] \cup\left[\frac{2}{9}, \frac{7}{27}\right] \cup\left[\frac{8}{27}, \frac{1}{3}\right] \cup\left[\frac{2}{3}, \frac{19}{27}\right] \cup\left[\frac{20}{27}, \frac{7}{9}\right] \cup\left[\frac{8}{9}, \frac{25}{27}\right] \cup\left[\frac{26}{27}, 1\right] } \\
C_{4}= & {\left[0, \frac{1}{81}\right] \cup\left[\frac{2}{81}, \frac{1}{27}\right] \cup\left[\frac{2}{27}, \frac{7}{81}\right] \cup\left[\frac{8}{81}, \frac{1}{9}\right] \cup\left[\frac{2}{9}, \frac{19}{81}\right] \cup\left[\frac{20}{81}, \frac{7}{27}\right] \cup\left[\frac{8}{27}, \frac{25}{81}\right] \cup\left[\frac{26}{81}, \frac{1}{3}\right] } \\
& \cup\left[\frac{2}{3}, \frac{55}{81}\right] \cup\left[\frac{56}{81}, \frac{19}{27}\right] \cup\left[\frac{20}{27}, \frac{61}{81}\right] \cup\left[\frac{62}{81}, \frac{7}{9}\right] \cup\left[\frac{8}{9}, \frac{73}{81}\right] \cup\left[\frac{74}{81}, \frac{25}{27}\right] \cup\left[\frac{26}{27}, \frac{79}{81}\right] \cup\left[\frac{80}{81}, 1\right] .
\end{aligned}
$$

These are illustrated in Figure 1 below, taken from
georgcantorbyelithompson.blogspot.com

1

1/3

Figure 1. The sets $C_{0}, C_{1}, C_{2}, C_{3}$, and C_{4}.
(b) We will show that $0 \in C_{n}$ for all integers $n \geq 0$ by induction on n. For our base case $n=0$, we have $0 \in[0,1]=C_{0}$ (it's important that we're working with closed intervals). As our inductive hypothesis, suppose $0 \in C_{n}$ for some integer $n \geq 0$. Then

$$
0=\frac{0}{3} \in \frac{C_{n}}{3} \subseteq C_{n+1},
$$

so $0 \in C_{n+1}$. We conclude that $0 \in C_{n}$ for all $n \geq 0$, so $0 \in \bigcap_{n=0}^{\infty} C_{n}$, and consequently $\bigcap_{n=0}^{\infty} C_{n}$ is not empty.
Note: The set $C_{n} \subseteq \mathbb{R}$ is a union of 2^{n} disjoint closed intervals. The above argument works similarly to show that any of the endpoints of these intervals persist in the further sets C_{n+1}, C_{n+2}, etc. (and of course, they're contained in C_{n-1}, C_{n-2}, etc. as well, since $\left.C_{0} \supset C_{1} \supset C_{2} \cdots\right)$.
So each of these $2 \cdot 2^{n}$ points in the set C_{n} is in the intersection $\bigcap_{n=0}^{\infty} C_{n}$, and consequently the set $C:=\bigcap_{n=0}^{\infty} C_{n}$ has infinitely many points! In fact, these persisting endpoints are the only elements of C. Notice the 2^{n+1} endpoints from C_{n} can all be written as rational numbers with common denominator 3^{n}.
The set $C:=\bigcap_{n=0}^{\infty} C_{n}$ is called the Cantor set, and it exhibits a wide variety of strange phenomena that can occur in the real numbers \mathbb{R}.

