
SOLUTIONS TO PROBLEM SET 4

MAT 108

Abstract. These are the solutions to Problem Set 4 for MAT 108 in the Fall Quar-
ter 2020. The problems were posted online on Wednesday Nov 4 and due Friday Nov
13.

Problem 1. (Proposition 8.53) Prove that every non-empty subset of R that is
bounded below has a greatest lower bound.

Solution. Let A be a nonempty subset of R that is bounded below. Construct a new
set Ã = {−a|a ∈ A}. This set is bounded above because l being a lower bound of A
implies −l is an upper bound of Ã. In other words, l ≤ a for all a ∈ A and negating
this gives −l ≥ −a for all a ∈ A. By the Completeness Axiom, s = sup Ã exists. We
claim −s = inf(A). By definition, s being a supremum of Ã implies −a ≤ s for all
a ∈ A. Multiply this inequality by −1 to get a ≥ −s. Hence, −s is a lower bound of
A. Moreover, it has to be our greatest lower bound. If not, then suppose −t is the
infimum of A so −t ≤ a for all a ∈ A. This would imply t ≥ −a, i.e. the supremum of
Ã is t, a contradiction.

Problem 2. (20 points, 5 each) Find the least upper bound sup(A), and the greatest
lower bound inf(A) of the following subsets of the real numbers R:

(a) A = (−3.2, 7) ⊆ R, i.e. A = {x ∈ R : −3.2 < x and x < 7} ⊆ R.

(b) B = (−3.2, 7] ⊆ R, i.e. A = {x ∈ R : −3.2 < x and x ≤ 7} ⊆ R.

(c) C = (0,∞) ⊆ R, i.e. A = {x ∈ R : 0 < x} ⊆ R.

(d) D = (−∞, 4] ⊆ R, i.e. A = {x ∈ R : x ≤ 4} ⊆ R.

Solution. We will make use of the fact that the average of two distinct real numbers
lies strictly between those two numbers. That is, for real numbers a < b, we have

a =
a

2
+

a

2
<

a

2
+

b

2
<

b

2
+

b

2
= b,

so

(0.1) a <
a + b

2
< b.

(a) We claim that inf(A) = −3.2 and sup(A) = 7. It is clear from the definition
of A that these give a lower bound and upper bound, respectively. Let u be a
lower bound for A, and suppose for the sake of contradiction that u > −3.2.
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Since u is a lower bound for A, we also have

u ≤ 0 < 7.

Consider the average r := −3.2+u
2

, which, by (0.1) satisfies

−3.2 < r < u < 7,

so r ∈ A. Since r < u, this contradicts the fact that u is a lower bound, so we
conclude that u ≤ −3.2 after all. Therefore, −3.2 is the greatest lower bound
for A, as desired.

Similarly, Let v be an upper bound for A, and suppose for the sake of contra-
diction that v < 7. Since v is an upper bound for A, we also have

v ≥ 0 > −3.2.

Consider the average r := v+7
2

, which, by (0.1) satisfies

−3.2 < v < r < 7,

so r ∈ A. Since r > v, this contradicts the fact that v is a lower bound, so we
conclude that v ≥ −3.2 after all. Therefore, −3.2 is the least upper bound for
A, as desired.

(b) The proof is nearly identical to Part (a). We claim that inf(B) = −3.2 and
sup(B) = 7. It is clear from the definition of B that these give a lower bound
and upper bound, respectively. Let u be a lower bound for B, and suppose for
the sake of contradiction that u > −3.2. Since u is a lower bound for B, we
also have

u ≤ 7.

Consider the average r := −3.2+u
2

, which, by (0.1) satisfies

−3.2 < r < u ≤ 7,

so r ∈ B. Since r < u, this contradicts the fact that u is a lower bound, so we
conclude that u ≤ −3.2 after all. Therefore, −3.2 is the greatest lower bound
for B, as desired.

Similarly, Let v be an upper bound for B, and suppose for the sake of contra-
diction that v < 7. Since v is an upper bound for B, we also have

v ≥ 0 > −3.2.

Consider the average r := v+7
2

, which, by (0.1) satisfies

−3.2 < v < r < 7,

so r ∈ B. Since r > v, this contradicts the fact that v is a lower bound, so we
conclude that v ≥ −3.2 after all. Therefore, −3.2 is the greatest lower bound
for B, as desired.Alternatively, notice that max(B) = 7, so a Proposition from
Discussion 6 tells us that sup(B) = 7.

(c) We claim that inf(C) = 0 and that C has no supremum. The proof the the
former is by now standard. It is clear from the definition of C that 0 is a lower
bound. Let u be a lower bound for C, and suppose for the sake of contradiction
that u > 0. Consider the average r := 0+u

2
, which, by (0.1) satisfies

0 < r < u,
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so r ∈ C. Since r < u, this contradicts the fact that u is a lower bound, so we
conclude that u ≤ 0 after all. Therefore, 0 is the greatest lower bound for C,
as desired.

To show that C has no supremum, we show that it has no upper bounds (this
suffices because suprema are, in particular, upper bounds). Indeed, let x ∈ R.
If x ≤ 0, then x < 1, but 1 ∈ C, so x is not an upper bound for C. Otherwise,
x > 0, and we have x < x + 1, but x + 1 > x > 0 is in C, so x is again not an
upper bound. Having excluded all possible real numbers as upper bounds, we
conclude that C has no upper bound.

(d) We claim that sup(D) = 4 and that D has no infimum. The proof the the
former is by now standard. It is clear from the definition of D that 4 is an
upper bound. Let v be an upper bound for D, and suppose for the sake of
contradiction that v < 4. Consider the average r := v+4

2
, which, by (0.1)

satisfies
v < r < 4,

so r ∈ D. Since r > v, this contradicts the fact that v is a lower bound, so
we conclude that v ≥ 4 after all. Therefore, 4 is the greatest lower bound for
C, as desired.Alternatively, notice that max(D) = 4, so a Proposition from
Discussion 6 tells us that sup(D) = 4.

To show that D has no infimum, we proceed as in Part (c) by showing that
it has no lower bound (this suffices because infima are, in particular, lower
bounds). Indeed, let x ∈ R. If x > 4, then–because 4 ∈ D–x is not a lower
bound for D. Otherwise, x ≤ 4, and we have x > x− 1, but x− 1 < x ≤ 4 is in
D, so x is again not a lower bound. Having excluded all possible real numbers
as lower bounds, we conclude that D has no lower bound.

Problem 3. (10+10 points) Consider the set of real numbers

N =

{
3− 1

n
: n ∈ N

}
.

Find inf(N) and sup(N).

Solution. We claim sup(N) = 3 and inf(N) = 2. Since 3 > 3 − 1
n

for all n ∈ N, we
know 3 is un upper bound for N . We know for each ε > 0, there exists an n ∈ N such
that 1

n
< ε. Then, 3− 1

n
> 3− ε so 3− ε is not an upper bound for any ε > 0. Thus, 3

must be our least upper bound. Now we prove the infimum is 2. Note that 2 is a lower
bound. Moreover, 3− 1

n+1
> 3− 1

n
≥ 2 because 1

n+1
< 1

n
for all n ∈ N. Therefore, 2 is

our greatest lower bound.
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Problem 4. Consider the two following subsets of the real numbers

S =

{
n

n + 1
: n ∈ N

}
⊆ R, T =

{
2n + 1

n + 1
: n ∈ N

}
⊆ R.

Show that sup(S) = 1, sup(T ) = 2 and inf(T ) = 3/2. Find inf(S).

Solution. Define

sn =
n

n + 1
and tn =

2n + 1

n + 1
.

Then we have the sequences (sn)n∈N and (tn)n∈N. Note that

tn =
2n + 1

n + 1
=

n + n + 1

n + 1
=

n

n + 1
+

n + 1

n + 1
= sn + 1,

so our sets are S = {sn : n ∈ N and T = {sn + 1 : n ∈ N. We show that the sequence
(sn)n∈N is monotone. Indeed, for each n ∈ N, we have

sn+1 − sn =
n + 1

n + 2
− n

n + 1

=
(n + 1)(n + 1)− (n + 2)n

(n + 2)(n + 1)

=
1

(n + 2)(n + 1)

≥ 0,

so sn+1 ≥ sn. In particular,

sn − s1 =
n

n + 1
− 1

2
=

2n− (n + 1)

2(n + 1)
=

n− 1

2(n + 1)
≥ 0,

since n ≥ 1, so 1
2

= s1 ≤ sn. Therefore, 1
2
∈ S is a lower bound for S, and hence

inf(S) = 1
2

by a Proposition from Discussion 6.

By the proof of the Monotone Convergence Theorem, the limit of (sn)n∈N exists and
is equal to sup(S), so we now prove that limn→∞ sn = 1. Let ε > 0, and let n0 ∈ N be
such that 1

n0
< ε. Then, for all n ≥ n0 we have

|1− sn| =
∣∣∣∣1− n

n + 1

∣∣∣∣ = 1− n

n + 1
=

(n + 1)− n

n + 1
=

1

n + 1
≤ 1

n0

< ε.

Note that in the second equality above we used the fact that n < n+1, which rearranges
to 1− n

n+1
> 0. This completes the proof that sup(S) = limn→∞ sn = 1.

The calculations for T follow from those for S. The sequence (tn)n∈N is monotone
because

tn+1 − tn = (sn+1 + 1)− (sn + 1) = sn+1 − sn ≥ 0

for all n ∈ N. In particular,

tn − t1 = (sn + 1)− (s1 + 1) = sn − s1 ≥ 0

so 3
2

= t1 ∈ T is a lower bound for T , and hence inf(T ) = 3
2

by a Proposition from
Discussion 6.
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By the proof of the Monotone Convergence Theorem, the limit of (tn)n∈N exists and is
equal to sup(T ), so we now prove that limn→∞ tn = 2. Let ε > 0, and let n0 ∈ N be
such that 1

n0
< ε. Then, for all n ≥ n0 we have

|2− tn| = |2− (sn + 1)| = |1− sn| < ε.

This completes the proof that sup(T ) = limn→∞ tn = 2.

Problem 5. (10+5+5 points) Find an upper bound for each of the following three sets:

X =

{(
1 +

1

n

)n

: n ∈ N
}
, Y =

{(
1 +

1

n2

)n

: n ∈ N
}
, Z =

{(
1 +

1

n

)n2

: n ∈ N

}
.

Hint: Consider the following expansion

(
1 +

1

n

)n

=
n∑

k=0

(
n

k

)
1

nk
=

n∑
k=0

1

k!

(
1− 1

n

)(
1− 2

n

)(
1− 3

n

)
· . . . ·

(
1− k − 1

n

)
.

Solution.

(i) Let’s look at the expansion:
n∑

k=0

1

k!

(
1− 1

n

)(
1− 2

n

)(
1− 3

n

)
· . . . ·

(
1− k − 1

n

)
.

In discussion, we proved that as n becomes larger, the value of 1
n

becomes

smaller and the infimum of the set
{

1
n
|n ∈ N

}
is thus 0. Therefore, each term

in the parenthesis is bounded above by 1 so it suffices to consider
n∑

k=0

1

k!
.

Therefore, we have the following.(
1 +

1

n

)n

≤
n∑

k=0

1

k!

=
1

0!
+

1

1!
+

1

2!
+

1

3!
+ · · ·+ 1

n!

< 1 + 1 +
1

2
+

1

22
+ · · ·+ 1

2n
+ · · ·

= 1 +
∞∑
k=0

1

2k

= 3

The last equality follows since the sum of the infinite geometric series
∑∞

k=0
1
2k

is 1
1−1/2 = 2.
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(ii) Notice that (
1 +

1

n2

)n

=

((
1 +

1

n2

)n2
)1/n

.

We know
(
1 + 1

n2

)n2

is bounded above by 3 from part (i). (If it’s difficult to see,
replace n2 with a new variable z, for instance.) It is enough to then consider
31/n. Using what we know about the behavior of 1

n
, we conclude it is bounded

above by 3.

(iii) We claim that this set has no upper bound. Notice that

cn :=

(
1 +

1

n

)n2

=

((
1 +

1

n

)n)n

.

This is similar to part (ii). By the Binomial Theorem, we have(
1 +

1

n

)n

=
n∑

k=0

(
n

k

)
1

nk

=

(
n

0

)
1

n0
+

(
n

1

)
1

n1
+

n∑
k=2

(
n

k

)
1

nk

= 1 · 1 + n · 1

n
+

n∑
k=2

(
n

k

)
1

nk

≥ 2,

so cn ≥ 2n. It now suffices to show that the sequence (2n)n∈N is unbounded,
which we prove by showing that 2n ≥ n using induction. (This proves it is not
bounded above since the natural numbers is not bounded above.) For the base
case, we have 21 ≥ 1, which is true. Now assume 2k ≥ k. We then have

2k+1 = 2k · 2 > k · 2 ≥ k + 1.

The last inequality follows because 2k ≥ k+1 can be rewritten as k ≥ 1, which
is true.

Problem 6. (10+10 points) Consider the subset C0 = [0, 1] ⊆ R. Recursively, define
the sets

Cn+1 =
Cn

3
∪
(

2

3
+

Cn

3

)
,

for n ≥ 1, where, if we let A = [a, b], then the notation A/3 describes the interval
[a/3, b/3] and the notation A + 2/3 describe the interval [a + 2/3, b + 2/3].

(a) Describe and draw the sets C1, C2, C3 and C4 as a union of explicit intervals.

(b) Show that the intersection ∩∞n=1Cn is non-empty.

Solution. Here is the extension of the notations A
3

and A + 2
3

for arbitrary sets. Let
X ⊆ R be an arbitrary subset, and let c be any real number. Then we define the new
sets

c ·X := {c · x : x ∈ X} ⊆ R and X + c := {x + c : x ∈ X} ⊆ R.
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For c 6= 0, we also define X
c

:= 1
c
·X.

(a) The set Cn+1 is obtained from Cn by scaling all of Cn down to fit inside [0, 1
3
],

and then repeating this scaled copy in the translation to [2
3
, 1]. It follows that

Cn+1 is given by deleting the open middle third of each interval in Cn. Explicitly,

C0 = [0, 1]

C1 = [0, 1
3
] ∪ [2

3
, 1]

C2 = [0, 1
9
] ∪ [2

9
, 1
3
] ∪ [2

3
, 7
9
] ∪ [8

9
, 1]

C3 = [0, 1
27

] ∪ [ 2
27
, 1
9
] ∪ [2

9
, 7
27

] ∪ [ 8
27
, 1
3
] ∪ [2

3
, 19
27

] ∪ [20
27
, 7
9
] ∪ [8

9
, 25
27

] ∪ [26
27
, 1]

C4 = [0, 1
81

] ∪ [ 2
81
, 1
27

] ∪ [ 2
27
, 7
81

] ∪ [ 8
81
, 1
9
] ∪ [2

9
, 19
81

] ∪ [20
81
, 7
27

] ∪ [ 8
27
, 25
81

] ∪ [26
81
, 1
3
]

∪ [2
3
, 55
81

] ∪ [56
81
, 19
27

] ∪ [20
27
, 61
81

] ∪ [62
81
, 7
9
] ∪ [8

9
, 73
81

] ∪ [74
81
, 25
27

] ∪ [26
27
, 79
81

] ∪ [80
81
, 1].

These are illustrated in Figure 1 below, taken from

georgcantorbyelithompson.blogspot.com

Figure 1. The sets C0, C1, C2, C3, and C4.

(b) We will show that 0 ∈ Cn for all integers n ≥ 0 by induction on n. For our
base case n = 0, we have 0 ∈ [0, 1] = C0 (it’s important that we’re working
with closed intervals). As our inductive hypothesis, suppose 0 ∈ Cn for some
integer n ≥ 0. Then

0 =
0

3
∈ Cn

3
⊆ Cn+1,

so 0 ∈ Cn+1. We conclude that 0 ∈ Cn for all n ≥ 0, so 0 ∈
⋂∞

n=0Cn, and
consequently

⋂∞
n=0Cn is not empty.

Note: The set Cn ⊆ R is a union of 2n disjoint closed intervals. The above
argument works similarly to show that any of the endpoints of these intervals
persist in the further sets Cn+1, Cn+2, etc. (and of course, they’re contained in
Cn−1, Cn−2, etc. as well, since C0 ⊃ C1 ⊃ C2 · · · ).
So each of these 2 · 2n points in the set Cn is in the intersection

⋂∞
n=0Cn, and

consequently the set C :=
⋂∞

n=0Cn has infinitely many points! In fact, these
persisting endpoints are the only elements of C. Notice the 2n+1 endpoints
from Cn can all be written as rational numbers with common denominator 3n.

The set C :=
⋂∞

n=0Cn is called the Cantor set, and it exhibits a wide variety
of strange phenomena that can occur in the real numbers R.


