
MAT 265: PROBLEM SET 2

DUE TO FRIDAY OCT 16 AT 9:00AM

Abstract. This is the second problem set for the graduate course Mathematical
Quantum Mechanics in the Fall Quarter 2020. It was posted online on FILL IN and
is due Friday Oct 16 at 9:00am via online submission.

Purpose: The goal of this assignment is to review and practice symmetries from
Mathematical Quantum Mechanics (MAT265). In particular, we would like to become
familiar with many examples of Hamiltonian systems, including Hamiltonian vector
fields, as well as with the infinitesimal symmetries of Lagrangians and their corre-
sponding constants of motion.

Task and Grade: Solve two of the six problems below. Each Problem is worth 33.3̂
points.The maximum possible grade is 100 points. Despite the task being three prob-
lems, I strongly encourage you to work on the six problems.

Instructions: It is perfectly good to consult with other students and collaborate when
working on the problems. However, you should write the solutions on your own, using
your own words and thought process. List any collaborators in the upper-left corner
of the first page.

Textbook: We will use “A Brief Introduction to Physics for Mathematicians” by I.
Dolgachev. Please contact me immediately if you have not been able to get a copy of
any edition.

Writing: Solutions should be presented in a balanced form, combining words and sen-
tences which explain the line of reasoning, and also precise mathematical expressions,
formulas and references justifying the steps you are taking are correct.
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Problem 1. (Poisson Brackets) Let M = Rn and f, g ∈ C∞(T ∗M). Consider the
function

{f, g} :=
n∑
i=1

∂qif · ∂pig − ∂pif · ∂qig.

(i) Prove that {·, ·} is a Poisson bracket: bilinear, antisymmetric and satisfies by
Jacobi’s identity and Leibniz’s rule.

(ii) Show that {f, g} = ω(Xf , Xg), where Xh is the Hamiltonian vector field of h.

(iii) Show that X{f,g} = −[Xf , Xg], where [·, ·] is the Lie bracket of vector fields.

(iv) (Another Poisson bracket) Consider R3 with the cross product ×. Define the
operation

{·, ·}so(3) : C∞(R3)× C∞(R3) −→ C∞(R3),

{f, g}so(3)(q1, q2, q3) := −(q1, q2, q3) · (grad(f)× grad(g)).

Show that {·, ·}so(3) is also a Poisson bracket on R3.

There are many interesting brackets out there, useful for solving PDEs, doing geome-
try and probability, and more: e.g. see the Ideal Fluid Bracket, the KdV Bracket, the
Poisson-Vlasov Bracket or Toda Lattice Bracket.

Problem 2. (Example 4 in I. Dolgachev’s Notes) Consider the hyperbolic plane
M = H = {(q1, q2) ∈ R2, q2 > 0} with its (constant negative curvature) metric

g =
1

q22
(dq1 ⊗ dq1 + dq2 ⊗ dq2) ,

and the Lagrangian L = g. Show that the three vector fields

η1 = q1∂q1 + q2∂q2 , η2 = (q22 − q21)∂q1 − 2q1q2∂q2 , η3 = ∂q1 ,

are infinitesimal symmetries for L, and compute their associated constants of motion.

(Optional: what is the Lie algebra generated by η1, η2, η3 ? Relate it to the group
PSL2(R) of real Möbius transformations and traceless (2× 2)-matrices.).

Problem 3. (Infinitesimal Symmetries of Lagrangians) In this problem, L : TM −→ R
is a Lagrangian, η ∈ Γ(TM) a vector field on M and, if η is a symmetry for L, Iη is
the associated constant of motion for the dynamical system defined by L. (Drawing a
picture can be helpful to understand symmetries).

(a) Let M = R2 \ {0} have Cartesian coordinates (q1, q2), r = q21 + q22, and

L =
m

2
(q̇21 + q̇22)− V (r).

Consider the vector field η = q1∂q2 − q2∂q1 . Show that η is an infinitesimal
symmetry of L and find its associated constant of motion Iη : TM −→ R.

(b) Consider a particle of mass m moving in M = (R2 \ {0}) × Rz, with cylin-
drical coordinates (r, φ, z) ∈ (R2 \ {0}) × Rz. Suppose the potential energy
V = V (r, z + φ) of the system only depends on the coordinates φ + z and r.
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Find an infinitesimal symmetry η of L = K − V (r), where K is the kinetic

energy, such that Iη = m(r2φ̇− ż).

(c) Consider a particle moving in M = R3 with a potential energy V = V (r) which
only depends on r = q21 + q22 + q23. Show that the three vector fields

η1 = q1∂q2 − q2∂q1 , η2 = q2∂q3 − q3∂q2 , η3 = q3∂q1 − q1∂q3 ,
are infinitesimal symmetries for such a Lagrangian system. Find the associated
constants of motion, and try to describe the physical meaning of the vector
(Iη1 , Iη2 , Iη3).

(d) Generalizing (a) and (c), consider a particle moving in M = Rn with a poten-
tial energy V = V (r) which only depends on r =

∑n
i=1 q

2
i , i.e. a rotationally

symmetric potential energy. Find d = n(n − 1)/2 infinitesimal symmetries
ηi ∈ TM , i ∈ [1, d], of the associated Lagrangian.1

Problem 4. (Hamiltonian Vector Fields in the Circle)2 For each of the examples
below, M is the configuration space M , H : T ∗M −→ R the Hamiltonian and XH the
associated Hamiltonian vector field on T ∗M .

(a) Consider a free particular in a circle M = S1 = R/2πZ, with coordinate θ ∈ S1.
The Hamiltonian is

H(θ, p) =
1

2m
p2,

where (θ, p) ∈ T ∗S1 = S1
θ × Rp. Find XH and describe its trajectories in T ∗S1.

(b) Consider a planar pendulum of length l and mass m, with M = S1 = R/2πZ a
circle, with coordinate θ ∈ S1. The Hamiltonian is

H(θ, p) =
1

2m
p2 +mg sin(θ),

where (θ, p) ∈ T ∗S1 = S1
θ ×Rp. Draw the trajectories of the vector field XH in

T ∗S1 and interpret them geometrically, in terms of the position and momentum
of the pendulum.

(c) Let M = S1 = R/2πZ. Does there exist a Hamiltonian H such that XH = ∂p ?

(d) Consider M = S1 = R/2πZ and an arbitrary smooth Hamiltonian

H(θ, p) = H(θ) : S1 −→ R.
Let S = {(θ, p) ∈ T ∗S1 : p = 0} be the space of all the possible initial positions
for a particle at rest. Show that the t-flow ϕtH : T ∗S1 −→ T ∗S1 of XH always
has at least two fixed points.3 (Geometrically, this says that the intersection
ϕtH(S) ∩S contains at least two points for all t ∈ R+.)

1These d infinitesimal symmetries must be distinct, that is, they should span a d-dimensional vector
subspace of TqM at each point q ∈ Rn which is not the origin r = 0.

2Equivalently, for a line M = R with periodic boundary conditions.
3Thus, any Hamiltonian system of a particle in a circle always has at least two initial positions for

a particle at rest such that, once the particle is placed there, it does not move as time evolves.
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(e) (Optional) Consider a particle moving in a 2π-unit square with periodic bound-
ary conditions, so M = T2 = S1 × S1 = R2

q1,q2
/(q1 ∼ q1 + 2π, q2 ∼ q2 + 2π) is a

2-torus. Show that a vector field

X = A1∂q1 + A2∂p1 + A3∂q2 + A4∂p2 , Ai ∈ C∞(T ∗T2),

is a Hamiltonian vector field X = XH for a function H : T ∗T2 −→ R iff∫
γi

(A1dp1 − A2dq1 + A3dp2 − A4dq2) = 0, i = 1, 2,

where the curves γ1, γ2 are

γ1 = {(q1, q2, p1, p2) ∈ T ∗T2 : q2 = p1 = p2 = 0},

γ2 = {(q1, q2, p1, p2) ∈ T ∗T2 : q1 = p1 = p2 = 0}.

Problem 5. (Some Real Life Systems with Symmetries)

(a) (Kepler Problem) The Hamiltonian two-body problem is given by M = R3 and
the Hamiltonian

H(q, p) =
m

2
(p21 + p22 + p23) + V (r), V ∈ C∞(R),

where r = q21+q22+q23 is the distance to the origin.4 Consider the three functions

I1 = q2p3 − p2q3, I2 = q3p1 − p3q1, I3 = q1p2 − q2p1.

Show that I3 and I21 + I22 + I23 are constants of motion for the Hamiltonian
system, and prove that they are in involution, that is:

{I3, I21 + I22 + I23} = 0.

(b) (Euler Tops)5 Consider a rotating rigid body in R3 fixed at a point but is not
subject to any external forces (like an ideal spinning top). Let i1, i2, i3 ∈ R be
the moments of inertia of the rigid body, then M = R3 and the Hamiltonian is
the kinetic energy

H(q, p) =
I21
2i1

+
I22
2i2

+
I23
2i3

,

where the functions Ji ∈ C∞(R3) are defined in Part (a). Find four constants
of motions for this Hamiltonian system.

(c) (Spherical Pendulum) Let (θ, ϕ) ∈ S2 be spherical coordinates for M = S2 =
{(q1, q2, q3) ∈ R3 : q21 + q22 + q23 = 1}, ϕ the azimuth and θ the altitude. This is
the configuration space of a spherical pendulum. Suppose that the pendulum
has mass m = 1, length l = 1, and it is subjected to a gravitational potential
given by the restriction of z : R3 −→ R to S2. First, show that the Hamiltonian
of this system is

H(θ, ϕ; pθ, pϕ) =
1

2

(
p2θ +

p2ϕ
sin2 θ

)
− g cos θ,

4See Problem 1.(c) for the same initial scenario. The classical planetary motion problem studied
by J. Kepler (1610s) had radial potential V (r) = r−1.

5For more fun, learn about Lagrange tops (gyroscopes) and Kovalevskaya tops.
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where H : T ∗S2 −→ R and pθ, pϕ are (local) coordinates on the cotangent fiber
of a point (θ, ϕ). Then, find a constant of motion distinct from H.

Problem 6. (Geodesic Systems with Symmetries) Let us consider a free particle of
mass m = 1 moving on a surface S. Different Riemannian metrics (S, g) on that surface
yield different models for the kinetic energy of the particle, and thus its motion. Since
some metrics g are more symmetric than others, certain symmetric choices of g will
give geodesics with interesting constants of motions.

(a) (Clairaut’s Integral) Consider a surface of revolution S ⊆ R3 with its Rie-
mannian metric induced from the flat metric (R3, gst), (r, φ, z) ∈ R3 cylindrical

coordinates and z the axis of revolution. Show that r2φ̇ is a constant of motion.

(b) (Funky, but somewhat symmetric, metrics on T2) Consider the 2π-periodic
coordinates (q1, q2) ∈ T2 and the metric

gT2 = (f(q1) + g(q2))(dq1 ⊗ dq1 + dq2 ⊗ dq2), f, g ∈ C∞(T2),

and suppose f(q1) + g(q2) 6= 0. Show that the function

J : T ∗T2 −→ R, J(q1, q2, p1, p2) =
g(q2)p

2
1 − f(q1)p

2
2

f(q1) + g(q2)

is a constant of motion for the geodesic system with Lagrangian L = gT2/2.

(c) (Geodesic System on Ellipsoids) Let a1, . . . , an ∈ R+ be such that

an < an−1 < . . . < a2 < a1.

Consider the (n− 1)-dimensional ellipsoid

E(A) = {q = (q1, . . . , qn) ∈ (Rn, gst) : 〈q, A−1q〉 = 1} ⊆ Rn,

where A := diag(a1, . . . , an) is a diagonal matrix. Consider the Lagrangian
L = gst|E(A)/2. Show that the n functions

Jl(q, q̇) = q̇l +
n∑

k=1,k 6=l

(qlq̇k − qkq̇l)2

al − ak
.

are constants of motion.


