University of California Davis
Algebraic Topology MAT 215B
Midterm Examination
Time Limit: Due 5/6@3pm
\qquad
Name (Print):
Student ID (Print):
May 32024

This examination document contains 6 pages, including this cover page, and 3 problems.

You are required to show your work on each problem on this exam. The following rules apply:
(A) If you use a lemma, proposition or theorem which we have seen in the class or in the book, you must indicate this and explain why the theorem may be applied.
(B) Organize your work, in a reasonably neat and coherent way, in the space provided. Work scattered all over the page without a clear ordering will receive little credit.
(C) Mysterious or unsupported answers will

Problem	Points	Score
1	30	
2	40	
3	30	
Total:	100	

(D) If you need more space, use the back of the pages; clearly indicate when you have done this.

Do not write in the table to the right.

1. (30 points) Compute the homology $H_{*}(X)$ of the following two topological spaces X.
(a) (15 points) Let $p \in S^{n} \times S^{n}$. Then $X=\left(S^{n} \times S^{n}\right) \backslash\{p\}$.
(b) (15 points) Let $C_{1}, C_{2} \subseteq \mathbb{R}^{3}$ be the two circles
$C_{1}=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}=1, z=0\right\}, \quad C_{2}=\left\{(x, y, z) \in \mathbb{R}^{3}:(y-1)^{2}+z^{2}=1, x=0\right\}$. Then $X=\mathbb{R}^{3} \backslash\left(C_{1} \cup C_{2}\right)$.
2. (40 points) Let A_{\bullet}, B_{\bullet} be two chain complexes and $f: A_{\bullet} \rightarrow B_{\bullet}$ a chain map. Consider the chain complex $C(f):=A_{\bullet-1} \oplus B_{\bullet}$ with differential

$$
\partial_{C}(\alpha, \beta):=\left(-\partial_{A} \alpha, \partial_{B} \beta-f(\alpha)=\left(\begin{array}{cc}
-\partial_{A} & 0 \\
-f & \partial_{B}
\end{array}\right)\binom{\alpha}{\beta} .\right.
$$

(a) (10 points) Show that $\partial_{C}^{2}=0$, and so $\left(C(f), \partial_{C}\right)$ is indeed a chain complex.
(b) (10 points) Prove that f is a quasi-isomorphism iff $C(f)$ is exact. (Here exact means $\left(C(f), \partial_{C}\right)$ has vanishing homology, a.k.a. $C(f)$ is acyclic.)
(c) (10 points) Let $f, g: A_{\bullet} \rightarrow B \bullet$ be homotopic $f \simeq g$. Show that $C(f)$ and $C(g)$ are quasi-isomorphic, i.e. \exists a chain map $F: C(f) \rightarrow C(g)$ inducing an isomorphism in homology.
(d) (10 points) Suppose that f is a homotopy equivalence. Show that the identity map id : $C(f) \rightarrow C(f)$ is null-homotopic (i.e. homotopic to the zero chain map).
3. (30 points) Solve the following parts.
(a) (10 points) Give an example of two spaces X, Y such that their homologies are isomorphic $H_{*}(X) \cong H_{*}(Y)$ but $X \not \not Y Y$ are not homotopy equivalent.
(b) (10 points) Give an example of a surjective map $f: X \rightarrow Y$ such that the induced map $H_{*}(f): H_{*}(X) \rightarrow H_{*}(Y)$ is not surjective.
(c) (10 points) Show that $X=S^{2} \times S^{2}$ and $Y=\mathbb{C P}^{2} \# \overline{\mathbb{C P}^{2}}$ have the same homology groups and the same homotopy groups.
(d) (Extra 10 points) Show that $X=S^{2} \times S^{2}$ and $Y=\mathbb{C P}^{2} \# \overline{\mathbb{C P}^{2}}$ are not homotopy equivalent.

