## LECTURE 13: PRACTICE EXERCISES

## MAT-67 SPRING 2024

AbStract. These practice problems correspond to the 13th lecture of MAT-67 Spring 2024, delivered on April 29th 2024.

The following are practice problems. They are not to be submitted, they are for your own practice. Solutions will be posted soon.

Problem 1. Solve the following parts:
(1) Let $V=W=\mathbb{R}^{2}$ and consider the basis $\left\{v_{1}, v_{2}\right\}$ and $\left\{w_{1}, w_{2}\right\}$ given by

$$
\begin{array}{cc}
v_{1}=(1,0), & v_{2}=(0,1) \\
w_{1}=(2,-1), & w_{2}=(3,4)
\end{array}
$$

Find a formula for the unique linear map $f: V \longrightarrow W$ such that $f\left(v_{i}\right)=w_{i}$.
(2) Let $V=W=\mathbb{R}^{3}$ and consider the basis $\left\{v_{1}, v_{2}, v_{3}\right\}$ and $\left\{w_{1}, w_{2}, w_{3}\right\}$ given by

$$
\begin{array}{cc}
v_{1}=(1,0,0), & v_{2}=(0,1,0), \\
w_{1}=(2,-1,0), & w_{3}=(1,1,1) \\
w_{2}=(3,4,0), & w_{3}=(1,2,1)
\end{array}
$$

Find a formula for the unique linear map $f: V \longrightarrow W$ such that $f\left(v_{i}\right)=w_{i}$.

Problem 2. Suppose that a linear map $f: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{3}$ satisfies

$$
f(0,0,1)=(1,3,2), \quad f(0,1,0)=(0,0,-6), \quad f(0,0,1)=(2,-3,1)
$$

(1) Find $f(4,3,-6)$ and $f(5,1,2)$.
(2) Show that $f(v)=0$ implies $v=0$.
(3) Is there a vector $w \in \mathbb{R}^{3}$ such that there is no $v \in \mathbb{R}^{3}$ with $f(v)=w$ ?

Problem 3. Let $V=W=\mathbb{R}[x]$ and $f: V \longrightarrow W$ the unique linear map such that $f\left(x^{n}\right)=n x^{n-1}$.
(1) Find $f\left(1-3 x+5 x^{2}-x^{7}\right)$.
(2) Find $f^{3}\left(1-3 x+5 x^{2}-x^{7}\right)$, where $f^{3}=f \circ f \circ f$ is the composition of $f$ with itself 3 times.

Problem 4. Let $V=\mathbb{R}^{4}$. Solve the following parts.
(1) Give an example of two linear maps $f, g: V \longrightarrow V$ such that $f \circ g \neq g \circ f$.
(2) Suppose that $f(1,1,3,1)=(0,0,0,0), f(0,2,6,0)=(0,0,0,0)$ and $f(0,0,0,7)=(0,0,0,0)$. Show that $f(1,0,0,0)=(0,0,0,0)$.
(3) Give an example of a linear map $f: V \longrightarrow V$ such that $f \circ f=\mathrm{Id}$ is the identity.

