THEORY OF NUMBERS, Math 115 B Homework

- 1. For which positive integers a is the congruence $ax^4 \equiv 2 \mod 13$ solvable?
- 2. Let p be an odd prime. Show that the congruence $x^4 \equiv -1 \pmod{p}$ has a solution if and only if p is of the form 8k+1.
- 3. Using the previous exercise prove that there are infinitely many primes of the form 8k + 1.
- 4. Use the index system modulo 60 to find the solutions of $11x^7 \equiv 43 \pmod{60}$.
- 5. Encrypt the message DO NOT PASS GO using the ElGamal cryptosystem with the public-key (p,r,b)=(2251,6,33). Show how the resulting ciphertext can be decrypted using the private key a=13.
- 6. Find all the quadratic residues of the following integers: a) 7, b) 8, c) 15, d) 18.
- 7. Find the values of the Legendre symbols $(\frac{j}{5})$ for j=1,2,3,4,5
- 8. Show that that there are infinitely many primes of the form 4k + 1.
- 9. What is the law of quadratic reciprocity?
- 10. Evaluate the Legendre symbols of $(\frac{3}{53})$ $(\frac{111}{991})$ $(\frac{31}{641})$
- 11. Show that there are infinitely many primes of the form 5k + 4.
- 12. Find the solution to the following quadratic congruence $x^2 + 5x + 1 \equiv 0 \pmod{7}$.