Combinatorics, Math 145

Homework six, due May 24th

1. Using the recursive formula (deletion-contraction) calculate the number of trees for $K_{3,3}$.
2. Use Kruskal's algorithm to find the optimal tree connecting the following big cities in the world: (L) London, (MC) Mexico city, New York, Paris, Beijing and Tokyo. Distances in miles or kilometers can be found at http://www.geobytes.com/CityDistanceTool.htm. What is the shortest Traveling salesman tour?
3. 8.5.1, 8.5.5, 8.5.9
4. 9.2.2, 9.2.3, 9.2.8.

Hint for 9.2.3: In the spirit of Kruskal's theorem proof: Suppose edges are in order of cost $e 1, e_{2}, \ldots, e_{n-1}$ etc. Suppose not unique optimal tree, call K the tree constructed by Kruskal's algorithm, and T an optimal tree with the largest e_{k} first edge not present in K.
Let S be the partial tree constructed by Kruskal before e_{k} is added. e_{k} forms a cycle in K, inside it there is e^{*} with one end in S and the other not in S. Prove that $U-e^{*}+e_{k}$ is another optimal tree which gives a contradiction.
5. 10.1.2, 10.3.1.

