
Problem 2: If a permutation a1a2 · · · an has inversion table (b1, b2, · · · bn) what is
the permutation that corresponds to the inversion table (n−1−b1, n−2−b2, · · · 0−
bn)?

The answer is the “reverse” permutation anan−1 · · · a1, our original permutation
written backwards.
Let k = aj in the permutation a1a2 ·an. Then bk denotes the number of elements in
the set {ai— ai > k and i < j}. Thus given k, there are bk elements to the left of k
that are bigger than k in the permutation a1a2 · · · an. Note that in total, there are
n−k elements which are greater than k in the permutation, since the entries of the
permutation run from 1 to n. Thus, it is implied that there are n− k− bk elements
to the right of k which are greater than k. Now consider what happens when we
reverse this permutation. Every element that was to the left of k is now to the right
of k, which implies that in the reverse permutation there are now n−k−bk elements
to the left of k bigger than k which means that the kth entry of the inversion table
for the reverse permutation is n− k− bk, which was to be shown. Note that this is
the unique answer becuase each permutation has a unique inversion table, as was
shown in class.

Problem 3

0.1. solutions. We have recurrence relation that implies that A(x)−x = 4xA(x)−
5x2A(x), thus we get a rational generating function

A(x) =
1

1− 4x + 5x2

One needs to find the partial fraction decomposition of the right hand side. At
the end one can recover an expression

A(x) =
i

2

∑
n≥0

xn

an
− i

2

∑
n≥0

xn

bn

where a = 0.4 + 0.2i and b = 0.4− 0.2i. We now can find the coefficient of xn in
an to be

an =
i

2
(

1
an

− 1
bn

).

Other formulas can be extracted from this one.

Problem 4

Using generating functions, find an explicit formula for an = nan−1 +(−1)n and
a0 = 1.
Let

f(x) =
∞∑

n=0

anxn

n!

a0 = 1

f(x) =
∞∑

n=1

anxn

n!
+ 1

1



2

Substituting nan−1 + (−1)n for an, we have:

f(x) =
∞∑

n=1

nan−1x
n

n!
+

∞∑
n=0

(−1)nxn

n!

=
∞∑

n=1

an−1x
n

(n− 1)!
+

∞∑
n=0

(−1)nxn

n!

= x

∞∑
n=0

anxn

n!
+

∞∑
n=0

(−1)nxn

n!

= xf(x) + e−x

So f(x) is the exponential generating function times a geometric sum:

f(x) =
e−x

1− x
= (

∞∑
n=0

(−x)n

n!
)(
∞∑

n=0

xn) =
∞∑

n=0

(
n∑

k=0

(−1)k

k!
)xn

an

n!
=

n∑
k=0

(−1)k

k!

an = n!
n∑

k=0

(−1)k

k!

1. Problem 5

What is the number of Permutations in Sn that there is no triple i < j < k with
π(j) < π(i) < π(k)?

1.1. Solution. Let π̄ denote the number of those integers 1 ≤ j ≤ i with π(j) ≥
π(i). We will use this variation of inversion to provide the answer. If there is no
triple i < j < k with π(j) < π(i) < π(k), then each i < j such that π(i) > π(j)
also satisfies π(i) > π(j + 1); thus π̄ is a monotone increasing vector. Conversely
if π̄ is monotone, then there no triple i < j < k with π(j) < π(i) < π(k). To see
this proceed by contradiction. Consider the portion π(j), π(j +1), . . . , π(k). In this
sequence there must be two consecutive terms π(l), π(l+1) such that π(l) < π(i) <
π(l + 1). Then for any v < l + 1 with π(v) > π(l + 1) also satisfies π(v) > π(l).
Moreover i itself satisfies i < l and π(i) < π(l + 1). Thus ¯π(l) > ¯π(l + 1), a
contradiction.

Thus, the number we seek is equal to the numbe of monotone mappings of
{1, . . . , n} into itself such that 1 ≤ φ(i) ≤ i.

We have counted a similar number before, but with the second condition we get
1

n+1

(
2n
n

)
.
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2. problem 6

For two generating functions f, g let N,M be the least-order non-zero term
indexes for f, g respectively. Then

f = xN
∑
n=0

an+Nxn, g(x) = xM
∑
m=0

bm+Mxm

and aN , bM are non-zero. Therefore when we multiply fg.

fg := xN+M
∑

cnxn

where cn =
∑n

k=0 ak+Nbn−k+M . In particular c0 = aNbM so fg is not zero.
Hence the ring of formal power series is an integral domain. Its quotient field is the
field of formal Laurent series.

3. problem 7

Solutions for this problem are in most books in basic combinatorics. I recommend
learning about Prüfer codes.

4. problem 8

4.1. solutions. We first we find a recurrence for the Bell numbers. Let S be the
set to be partitioned and x ∈ S. If the class containing x has k elements, it can be
chosen in

(
n−1
k−1

)
ways and the remaining n−k elements can be partitioned in Bn−k

ways. So the number of partitions in which the class containing x has k elements
is

(
n−1
k−1

)
Bn−k. This remains true for k = n if we set B0 = 1. Thus

Bn =
n∑

k=1

(
n− 1
k − 1

)
Bn−k =

n−1∑
k=0

(
n− 1

k

)
Bk

Next we prove that the exponential generating function of Bn is

p(x) =
∞∑

n=0

Bn

n!
xn = eex−1

We saw a fast solution using the composition of generating functions. But we
can also use direct elementary calculations.

p(x) =
∑∞

n=0
Bn

n! xn = 1 +
∑∞

n=1
xn

n!

∑n−1
k=0

(
n−1

k

)
Bk

This is equal to
1 +

∑∞
k=0

Bk

k!

∑∞
n=k+1

xn

n
1

(n−k−1)! , and thus for the derivative

p′(x) =
∑∞

k=0
Bk

k!

∑∞
n=k+1

xn−1

(n−k−1)! =
∑∞

k=0
Bkxk

k!

∑∞
r=0

xr

r! = p(x)ex

In other words (log(p(x)))′ = p′(x)
p(x) = ex, and p(x) = eex+c. For some constant

c, which can be determined by setting x = 0:
1 = p(0) = ee0+c, c = −1. Thus we have p(x) = eex−1.


