Problem 2: If a permutation $a_{1} a_{2} \cdots a_{n}$ has inversion table $\left(b_{1}, b_{2}, \cdots b_{n}\right)$ what is the permutation that corresponds to the inversion table $\left(n-1-b_{1}, n-2-b_{2}, \cdots 0-\right.$ b_{n})?

The answer is the "reverse" permutation $a_{n} a_{n-1} \cdots a_{1}$, our original permutation written backwards.
Let $k=a_{j}$ in the permutation $a_{1} a_{2} \cdot a_{n}$. Then b_{k} denotes the number of elements in the set $\left\{a_{i}-a_{i}>k\right.$ and $\left.i<j\right\}$. Thus given k, there are b_{k} elements to the left of k that are bigger than k in the permutation $a_{1} a_{2} \cdots a_{n}$. Note that in total, there are $n-k$ elements which are greater than k in the permutation, since the entries of the permutation run from 1 to n. Thus, it is implied that there are $n-k-b_{k}$ elements to the right of k which are greater than k. Now consider what happens when we reverse this permutation. Every element that was to the left of k is now to the right of k, which implies that in the reverse permutation there are now $n-k-b_{k}$ elements to the left of k bigger than k which means that the $k^{t h}$ entry of the inversion table for the reverse permutation is $n-k-b_{k}$, which was to be shown. Note that this is the unique answer becuase each permutation has a unique inversion table, as was shown in class.

Problem 3

0.1. solutions. We have recurrence relation that implies that $A(x)-x=4 x A(x)-$ $5 x^{2} A(x)$, thus we get a rational generating function

$$
A(x)=\frac{1}{1-4 x+5 x^{2}}
$$

One needs to find the partial fraction decomposition of the right hand side. At the end one can recover an expression

$$
A(x)=\frac{i}{2} \sum_{n \geq 0} \frac{x^{n}}{a^{n}}-\frac{i}{2} \sum_{n \geq 0} \frac{x^{n}}{b^{n}}
$$

where $a=0.4+0.2 i$ and $b=0.4-0.2 i$. We now can find the coefficient of x^{n} in a_{n} to be

$$
a_{n}=\frac{i}{2}\left(\frac{1}{a^{n}}-\frac{1}{b^{n}}\right)
$$

Other formulas can be extracted from this one.

Problem 4

Using generating functions, find an explicit formula for $a_{n}=n a_{n-1}+(-1)^{n}$ and $a_{0}=1$.
Let

$$
f(x)=\sum_{n=0}^{\infty} \frac{a_{n} x^{n}}{n!}
$$

$a_{0}=1$

$$
f(x)=\sum_{n=1}^{\infty} \frac{a_{n} x^{n}}{n!}+1
$$

Substituting $n a_{n-1}+(-1)^{n}$ for a_{n}, we have:

$$
\begin{gathered}
f(x)=\sum_{n=1}^{\infty} \frac{n a_{n-1} x^{n}}{n!}+\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{n}}{n!} \\
=\sum_{n=1}^{\infty} \frac{a_{n-1} x^{n}}{(n-1)!}+\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{n}}{n!} \\
=x \sum_{n=0}^{\infty} \frac{a_{n} x^{n}}{n!}+\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{n}}{n!} \\
=x f(x)+e^{-x}
\end{gathered}
$$

So $f(x)$ is the exponential generating function times a geometric sum:

$$
\begin{gathered}
f(x)=\frac{e^{-x}}{1-x}=\left(\sum_{n=0}^{\infty} \frac{(-x)^{n}}{n!}\right)\left(\sum_{n=0}^{\infty} x^{n}\right)=\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n} \frac{(-1)^{k}}{k!}\right) x^{n} \\
\frac{a_{n}}{n!}=\sum_{k=0}^{n} \frac{(-1)^{k}}{k!} \\
a_{n}=n!\sum_{k=0}^{n} \frac{(-1)^{k}}{k!}
\end{gathered}
$$

1. Problem 5

What is the number of Permutations in S_{n} that there is no triple $i<j<k$ with $\pi(j)<\pi(i)<\pi(k)$?
1.1. Solution. Let $\bar{\pi}$ denote the number of those integers $1 \leq j \leq i$ with $\pi(j) \geq$ $\pi(i)$. We will use this variation of inversion to provide the answer. If there is no triple $i<j<k$ with $\pi(j)<\pi(i)<\pi(k)$, then each $i<j$ such that $\pi(i)>\pi(j)$ also satisfies $\pi(i)>\pi(j+1)$; thus $\bar{\pi}$ is a monotone increasing vector. Conversely if $\bar{\pi}$ is monotone, then there no triple $i<j<k$ with $\pi(j)<\pi(i)<\pi(k)$. To see this proceed by contradiction. Consider the portion $\pi(j), \pi(j+1), \ldots, \pi(k)$. In this sequence there must be two consecutive terms $\pi(l), \pi(l+1)$ such that $\pi(l)<\pi(i)<$ $\pi(l+1)$. Then for any $v<l+1$ with $\pi(v)>\pi(l+1)$ also satisfies $\pi(v) \geq \pi(l)$. Moreover i itself satisfies $i<l$ and $\pi(i)<\pi(l+1)$. Thus $\pi \overline{(l)}>\pi(l+1)$, a contradiction.

Thus, the number we seek is equal to the numbe of monotone mappings of $\{1, \ldots, n\}$ into itself such that $1 \leq \phi(i) \leq i$.

We have counted a similar number before, but with the second condition we get $\frac{1}{n+1}\binom{2 n}{n}$.

2. PROBLEM 6

For two generating functions f, g let N, M be the least-order non-zero term indexes for f, g respectively. Then

$$
f=x^{N} \sum_{n=0} a_{n+N} x^{n}, g(x)=x^{M} \sum_{m=0} b_{m+M} x^{m}
$$

and a_{N}, b_{M} are non-zero. Therefore when we multiply $f g$.

$$
f g:=x^{N+M} \sum c_{n} x^{n}
$$

where $c_{n}=\sum_{k=0}^{n} a_{k+N} b_{n-k+M}$. In particular $c_{0}=a_{N} b_{M}$ so $f g$ is not zero. Hence the ring of formal power series is an integral domain. Its quotient field is the field of formal Laurent series.

3. PROBLEM 7

Solutions for this problem are in most books in basic combinatorics. I recommend learning about Prüfer codes.

4. PROBLEM 8

4.1. solutions. We first we find a recurrence for the Bell numbers. Let S be the set to be partitioned and $x \in S$. If the class containing x has k elements, it can be chosen in $\binom{n-1}{k-1}$ ways and the remaining $n-k$ elements can be partitioned in B_{n-k} ways. So the number of partitions in which the class containing x has k elements is $\binom{n-1}{k-1} B_{n-k}$. This remains true for $k=n$ if we set $B_{0}=1$. Thus

$$
B_{n}=\sum_{k=1}^{n}\binom{n-1}{k-1} B_{n-k}=\sum_{k=0}^{n-1}\binom{n-1}{k} B_{k}
$$

Next we prove that the exponential generating function of B_{n} is

$$
p(x)=\sum_{n=0}^{\infty} \frac{B_{n}}{n!} x^{n}=e^{e^{x}-1}
$$

We saw a fast solution using the composition of generating functions. But we can also use direct elementary calculations.

$$
p(x)=\sum_{n=0}^{\infty} \frac{B_{n}}{n!} x^{n}=1+\sum_{n=1}^{\infty} \frac{x^{n}}{n!} \sum_{k=0}^{n-1}\binom{n-1}{k} B_{k}
$$

This is equal to
$1+\sum_{k=0}^{\infty} \frac{B_{k}}{k!} \sum_{n=k+1}^{\infty} \frac{x^{n}}{n} \frac{1}{(n-k-1)!}$, and thus for the derivative
$p^{\prime}(x)=\sum_{k=0}^{\infty} \frac{B_{k}}{k!} \sum_{n=k+1}^{\infty} \frac{x^{n-1}}{(n-k-1)!}=\sum_{k=0}^{\infty} \frac{B_{k} x^{k}}{k!} \sum_{r=0}^{\infty} \frac{x^{r}}{r!}=p(x) e^{x}$
In other words $(\log (p(x)))^{\prime}=\frac{p^{\prime}(x)}{p(x)}=e^{x}$, and $p(x)=e^{e^{x}+c}$. For some constant c, which can be determined by setting $x=0$:
$1=p(0)=e^{e^{0}+c}, c=-1$. Thus we have $p(x)=e^{e^{x}-1}$.

