Enumerative Combinatorics, Math 245
 Homework three

1. Problems from Stanley's book Chapter 2: 1, 2, 3ab, 6, 7
2. Without getting your hands dirty with awful analytic arguments prove that inside the ring of formal power series $\left(e^{x}\right)\left(e^{-x}\right)=1$, and that $\log \left(e^{x}\right)=$ x.
3. Prove the following identity on Stirling numbers of the second kind:

$$
S(n, r)=\frac{1}{r!} \sum_{k=0}^{r}(-1)^{r-k}\binom{r}{k} k^{n}
$$

One of your proof should not use inclusion-exclusion methods.
4. Let $A_{1}, A_{2}, \ldots, A_{k}$ be distinct subsets of $[n]$ with the property that A_{i} and A_{j} have a non-empty intersection for all pairs i, j. Show that $k \leq 2^{n-1}$. ipi
5. Let A_{1}, \ldots, A_{n} be arbitrary events of a probability space (Ω, P). For each $I \subset\{1, \ldots, n\}$, let $A_{I}=\Pi_{i \in I} A_{i}, A_{\emptyset}=\Omega$. Define

$$
\sigma_{k}=\sum_{|I|=k} P\left(A_{I}\right), \sigma_{0}=1
$$

Prove that $P\left(A_{1}+\ldots+A_{n}\right)=\sum_{j=1}^{n}(-1)^{j-1} \sigma_{j}$
6. Using the inclusion-exclusion principle obtain a summation formula for the number of permutations in S_{n} with no cycles of length l. Can you give a proof without inclusion-exclusion?
7. Determine the number of seatings of n couples at a table of length $2 n$ with no couple sitting side-by-side, but with the additional restriction that men and women must take alternate seats.
8. Find a formula for $C(n, k, s)$ be the number of k-subsets of $[n]$ that contain no run of s consecutive integers.

