Enumerative Combinatorics, Math 245
 Homework four

(1) Problems from Stanley's book Chapter 3: 5, 10a, 11, 23a, 44, 45, 53a, 56ab
(2) Consider the lattice of subspaces of the vector space $\left(F_{q}\right)^{n}$, where F_{q} is a finite field. Prove that the size of the largest antichain is at most $\left[\begin{array}{c}n \\ n / 2\rfloor\end{array}\right]$ (a q-binomial coefficient).
(3) Let $A(P)$ denote the incidence algebra of the poset P Let $\eta=\zeta-\delta$. Show that $\eta^{k}(a, b)$ counts the number of chains from a to b of length k. Determine η^{k} for the Boolean poset $B(n)$.
(4) Show that the Möbius function μ is equal to $\sum_{k \geq 0}(-1)^{k} \eta^{k}$ inside the incidence algebra $A(P)$. Verify this for the Boolean poset.
(5) Let $P(Q)$ be the face lattice of a convex polytope Q with the smallest element o deleted. Let $O(P(Q))$ be its order complex, if we think of the simplices of $O(P(Q))$ as simplices made of points of Q can you find a geometric representation of $O(P(Q))$ in Q.
(6) Given a poset P with elements x_{1}, \ldots, x_{n} one can define an order polytope $Q(P)$ in R^{n} by: $Q(P)=\left\{X \in R^{n}: 0 \leq X_{i}<=1, X_{i}>X_{j}\right.$ if $x_{i}>$ x_{j} in $\left.P\right\}$. Prove that the vertices of $Q(P)$ are in bijection to the order ideals of P. What are the linear extensions of P in terms of $\mathrm{Q}(\mathrm{P})$?

