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Two-frequency radiative transfer (2f-RT) theory is developed for classical waves in random media. Depending
on the ratio of the wavelength to the scale of medium fluctuation, the 2f-RT equation is either a Boltzmann-like
integral equation with a complex-valued kernel or a Fokker—Planck-like differential equation with complex-
valued coefficients in the phase space. The 2f-RT equation is used to estimate three physical parameters: the
spatial spread, the coherence length, and the coherence bandwidth (Thouless frequency). A closed-form solu-
tion is given for the boundary layer behavior of geometrical radiative transfer and shows highly nontrivial
dependence of mutual coherence on the spatial displacement and frequency difference. It is shown that the
paraxial form of 2f-RT arises naturally in anisotropic media that fluctuate slowly in the longitudinal direction.
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1. INTRODUCTION

Let Uj, j=1,2, be the random, scalar wave field of wave-
number k;, j=1,2. The mutual coherence function and its
cross-spectral version, known as the two-frequency mu-
tual coherence function, defined by

(x y - X y
Ipx,y) =\ Uy k_1+2_kl 2 k_z—z_kz > (1

where (-) stands for ensemble averaging, is the central
quantity of optical coherence theory, from which the two-
space, two-time correlation function can be obtained via
the Fourier transform in frequency and therefore plays a
fundamental role in analyzing propagation of random
pulses [1-5]. The motivation for the scaling factors in Eq.
(1) will be given below; cf. Eq. (3).

In this paper I set out to analyze the two-frequency mu-
tual coherence as function of the spatial displacement and
frequency difference for classical waves in multiply scat-
tering media. This problem has been extensively studied
in the physics literature (see [3,6-8] and references
therein). Here I derive from the multiscale expansion
(MSE) the two-frequency version of the radiative transfer
equation, which is then used to estimate qualitatively the
three physical parameters: the spatial and spatial fre-
quency spreads and the coherence bandwidth, also known
as the Thouless frequency in condensed matter physics.
Moreover, I show that the boundary layer behavior of the
two-frequency radiative transfer (2f-RT) equation is ana-
lytically solvable in geometrical optics. The closed-form
solution (43) provides detailed information of the two-
frequency mutual coherence beyond the current physical
picture [7-9] [see the discussion about expression (44)].

To this end, I introduce the two-frequency Wigner dis-
tribution whose ensemble average is equivalent to the
two-frequency mutual coherence and is a natural exten-
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sion of the standard Wigner distribution widely used in
optics [10,11]. A different version of two-frequency Wigner
distribution for parabolic waves was introduced earlier
[12], and with it the corresponding radiative transfer
equation has been derived with full mathematical rigor
[13,14]. In the case of anisotropic media fluctuating
slowly in the longitudinal direction the 2f-RT equation de-
veloped here reduces to that of the paraxial waves in
similar media, which lends support to the validity of
MSE. The other regime where the two frequency radia-
tive transfer equation has been obtained with full math-
ematical rigor is geometrical optics [15].

The main difference between the 2f-RT and the stan-
dard theory is that the former retains the wave nature of
the process and is not just about energy transport. Hence
the governing equation cannot be derived simply based on
the energy conservation law.

2. TWO-FREQUENCY WIGNER
DISTRIBUTION

Let U, j=1,2 be governed by the reduced wave equation

AU](I') + ka(v_] + V](r))Ul(r) Zf}(l'), re RS’ J = 1’2a

(2)

where v; and V; are, respectively, the mean and fluctua-
tion of the refractive index associated with the wavenum-
ber k; and are in general complex valued. The source
terms f; may result from the initial data or the external
sources. Here and below the vacuum phase speed is set to
be unity. To solve Eq. (2) one also needs some boundary
condition that is assumed to be vanishing at the far field.

We define the two-frequency Wigner distribution as

© 2007 Optical Society of America
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1 - b4 y - X y q
‘(277)3J Woy Tony ) 2\ By 2k, )Y

3)

W(x,p)

In view of the definition, we see that both x and p are di-
mensionless. Here the choice of the scaling factors is cru-
cial; namely, the spatial dependence of the wave field
should be measured with respect to the probing wave-
length. The benefit is that this choice leads to a closed-
form equation for W. It is easy to see that the ensemble
average (W) is just the (partial) Fourier transform of the
mutual coherence function (1). The two-frequency Wigner
distribution defined here has a different scaling factor
from the one introduced for the parabolic waves [12].

The purpose of introducing the two-frequency Wigner
distribution is to develop a two-frequency theory in anal-
ogy to the well-studied standard theory of radiative trans-
fer. Although definition (3) requires the domain to be R3,
the governing radiative transfer equation, once obtained,
can be (inverse) Fourier transformed back to get the gov-
erning equation for the two-point function Ul(rl)U;(rz) or
I'19, as their boundary conditions are usually easier to de-
scribe [cf. Eq. (42)].

The Wigner distribution has the following easy-to-
check properties:

7 7\3
Ik1ko

f |U1|2(x)dxf |U2|2(X)dX,
2

X y y
JW(X ple®Vdp = Ul(k o )U;<k o ), (4)
1 2 2

J |W[2(x, p)dxdp = ( :

B kip  kiq
W(x,p)e ix: adx = (Wzklkg) Ul T + 7
ir kop  koq 5)
N4 2)

where - stands for the Fourier transform and hence con-
tains all the information in the two-point two-frequency
function. In particular,

1 x [ x
J pW("’P)dP*{z—leUl(k)U?(k:)
1 X X
‘T@Ul(kl)V%(kz)}

which, in the case of k;=Fk,, is proportional to the energy
flux density.

Let us now derive the equation for the two-frequency
Wigner distribution. After taking the derivative p-V and
some calculation we have
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W i —-— X y - X y
VW= — —i -~ 7
P 2(27)° Nz, " or, ) 2\ ky 2k,
X y 4 i o Xy
XV — -— Y| — - —
! kl 2k1 y Z(ZW)SJe ! kl 2k1
X vy (X Y
Uz “on V; 7 dy
ky 2k, k2 2k
i *
+ E(vl —v)W+F, (6)

where the function F' depends linearly on U; and f;:
i X Yy X Y
e e - ey
2(2’77 ) k1 2k k2 2k2

i _ip.yU X y q
+z<2w)3fe 2k, iy by 2y )Y

(7)
Substituting the spectral representation of V;
Vi(x) = J ¢ 1*Vi(da), ®)

into the expression and using the definition of W, we then
obtain the exact equation

i *
P VW—Q(VI— v)W-F

i q
V,(dq)el kW -
2f 1(dq)e (XP o )

_i . —iq-x/ky _i
2fV;(dqo:e T W(xp 2k2> 9)

Here and below V; is the complex conjugate of the Fourier

spectral measure V. The full derivation of Eq. (9) is given
in Appendix A.

Let us pause to compare the classical wave with the
quantum wave function in the context of two-frequency

formulation. The quantum wave functions ¥; at two dif-

ferent frequencies w;,ws satisfy the stationary
Schrodinger equation

ﬁ2

EA‘I'J-+[V]-+V}(X)]\I’]«=— whV;+f;,  j=1,2, (10)

where »;+V; are hypothetical, energy-dependent real-
valued potentials. Here the source terms f; equal the ini-
tial data f of the time-dependent problem. Usually, in the
quantum mechanical context, the potential function does
not explicitly depend on the energy level (i.e., it is disper-
sionless).

The natural definition of the two-frequency Wigner dis-
tribution for the quantum wave functions is
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1 : hy\ ., hy
W(x,p) = 2 Je"lp'y‘lfl X+ 5y Yol x — Y dy,

which satisfies the Wigner—Moyal equation

i,
P-VW+i(wy— )W+ %(V; -n)W

i (. 4 fiq
= Vi(dq)e'*™*W| x,p - o

i e ) hq
ey f VE(dq)e““"‘W<X,p - 7) +F, (12)

where F has an expression similar to Eq. (7). The main
difference between the quantum and classical waves in
the Wigner formulation is that the derivation of a closed-
form equation does not require rescaling each energy
component with respect to its de Broglie wavelength. The
implication in radiative transfer will be further discussed
[see the remark following Eq. (27)].

3. TWO-FREQUENCY RADIATIVE
TRANSFER SCALING

Let us assume that Vj(x), j=1,2 are real-valued, centered,
random stationary (i.e., statistically homogeneous) er-
godic fields admitting spectral representation (8) with the

spectral measures \?}(dp), j=1,2 such that

(Vi(dp)V;(dq)) = &(p - q)®;(p)dpdaq,

where ®; are the (nonnegative-valued) power spectral
densities of the random fields V;, j=1,2. The above & func-

tion is a consequence of the statistical homogeneity of the
random field V;. As V;, j=1,2 are real valued, V;(dp)

=Vj(—dp), and hence the power spectral densities ®;(p)
satisfy the symmetry property ®;(p)=®;(-p), Vp.

We will also need the cross-frequency correlation, and
we postulate the existence of the cross-frequency spec-
trum ®q5 such that

(V1(dp)V4(dq)) = 8(p - q)P15(p)dpdq.

Here @, need not be real valued.

An important regime of multiple scattering of classical
waves takes place when the scale of medium fluctuation is
much smaller than the propagation distance but is com-
parable with or much larger than the wavelength [3,16].
The radiative transfer regime can be characterized by the
scaling limit, which replaces »;+V; in Eq. (2) with

1 _ (r
ﬁ(vj-'— \r’GVJ(;)), y>0, e<1, (13)

where € is the ratio of the scale of medium fluctuation to
the O(1) propagation distance and vy the ratio of the wave-
length to the scale of medium fluctuation. Hence ve is the
ratio of the wavelength to the propagation distance, and
the prefactor (ye)~? arises from rescaling the wavenumber
k—Fk/(ey). This is the so-called weak coupling (or disor-
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der) limit in kinetic theory, which prohibits the Anderson
localization from happening [17]. Note that the resulting
medium fluctuation €32Vj(r/e) converges to a spatial
white noise in three dimensions.

Physically speaking, the radiative transfer scaling be-
longs to the diffusive wave regime under the condition of
a large dimensionless conductance g=N{,/L, where ¢, is
the transport mean free path, L is the sample size in the
direction of propagation, and N=27A/\? is the number of
transverse modes, limited by the illuminated area A and
the wavelength of radiation \ [6,7]. The dimensionless
conductance g can be expressed as g=k{,0 with the in-
verse Fresnel number 6=A/(\L). With the scaling of Eq.
(13), k¢,~ 6~y el and hence g~ y2¢ 2> 1 for any finite
v as e—0.

Anticipating small-scale fluctuation due to Eq. (13), we
modify the definition of the two-frequency Wigner distri-
bution in the following way:

1 . X yey\ . [X yey
W(x,p) = s | e YU —+ —— |U| — - — |dy.
(2’77') kl 2k1 k2 2k2

Equation (9) now becomes

1

\r/;

i ,
p-VW-F=—(v;—vy) W+ —LW, (14)
2ey

where the operator £ is defined by

W) = — [ Vidaesp| i L= |w ™
xp) =5 | Vidaexp| i—— | W xp-

i q-x 7q
- | Vad@exp| -i—— |W|x,p- .
2 Y Ek 2 2k2
To capture the cross-frequency correlation in the radiative

transfer regime, we also need to restrict the frequency dif-
ference range

ko—Fk
L g, (15)

limk, =limky, =%,
e—0 e—0 €7k

where &, >0 are independent of € and y. Assuming the
differentiability of the mean refractive index’s depen-
dence on the wavenumber, we write

®
Vog— 1

=, 16
2y v (16)

where v’ is independent of e, y.

4. MULTISCALE EXPANSION

To derive the radiative transfer equation for the two-
frequency Wigner distribution let us employ MSE [18,19],
which begins with introducing the fast variable

X=xX/e

and treating X as independent from the slow variable x.
Consequently the derivative p-V consists of two terms,

p-V=p-Vy+elp- V. (17)

Then MSE posits the following asymptotic expansion:
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W(x,p) = W(x,X,p) + eW,(x,%,p) + Wy (x,%,p)
+0(?), X=xe, (18)

whose proper sense will be explained below.

Substituting the ansatz into Eq. (14) and using Eq.
(17), we determine each term of Eq. (18) by equating
terms of the same order of magnitude, starting with the
highest order, !

The e !-order equation has one term,

p'V%WZO,

which can be solved by setting W=W(x,p). That is, to the
leading order W is independent of the fast variable. Since
the fast variable is due to medium fluctuation, this sug-
gests that W is deterministic.

The next is the e Y2-order equation:

p- VW, =LW. (19)

We seek a solution that is stationary in X, square inte-
grable in p, and has finite second moment. The solvability
condition (Fredholm alternative) is that the right-hand
side, LW, satisfies [E[¥"LW]dp=0 for any X-stationary,
square-integrable field V(X,p) satisfying p-Vg¥=0. The
solvability condition is, however, not easy to enforce. Al-
ternatively, we can consider the regularized equation

WS +p- VWS =LW, (20)

which is always solvable for e>0 and admits of the solu-
tion

Wix,X,p)

q-X
. exp| i
l N kl _ Yq
=—fV1(dq)—W<x,p——>
2y

E+iq'p/k1 2k1

q-Xx
exp( lk—> 'yq
[ 7 q)—v‘v( xp- )

—iq - p/ky 2k
(21)

In the jargon of asymptotic analysis [18], \EWi is called
the first corrector. To control the first corrector, let us
choose W such that LW has zero mean. This is a neces-
sary condition, as we seek an X-stationary solution and
consequently (p-VgWi)=p-Vg(W;)=0. Needless to say,
this condition is weaker than the solvability condition

stated above and is satisfied for any deterministic W,
since both V; and V, have zero mean.

Indeed, under the assumption of deterministic W, the
resulting equation will be much simplified; so let us im-
pose this property on W from now on. The fact that in the
limit W is deterministic can be proved rigorously in the
paraxial regime [14].

Finally, the O(1) equation is
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p- ViWZ(Xaiap) =-p- VXW(X;p) - iV,W"'F

; V. L X
+Z/ 1(dq)exp lk—l

yq A
XW;(X,KP—Q—kJ—ZJVQ(dq)

q-X 7q
Wil x,%,p -
k2> ( 2k2)

(22)

Xexp(—i

which can be solved with regularization as in Eq. (20) and
yields the second corrector eW5. Again we impose on the
right-hand side of Eq. (22) the weaker condition of zero
mean. Using Eq. (21) in Eq. (22), taking the ensemble av-
erage, and passing to the limit e— 0, we obtain the gov-

erning equation for W:

P VXV_V(x,p) +iv'W - (F)

k3 ky
=- dq<1>1(—(p q)) 78(p|* - [a>)W(x,p)

274
ky
cI)1<—(P - (I)>

ik} f Y
+— fdgq———F———
2y* lpl*-lqf

kS ky _
-— dq%(—(p q))mS(IPI2 la»)W(x,p)

2
ks
Oyl —(p-q)

ikgf y
- — dq—
2y* Ipl* - lal?

1 R T | q Ya
+— | dg® xqky —ky) sl — . P
472f qPi5(qe w (kz (p 2k1))

XW "M
X,p-— - —
P ok 2k,

dqy(qe®ati' 5 el L. (- 2
'yZ ky 2k,

XW(x’p'z_yz ) wf ( m)

W(x,p)

W(x,p)

2k

- @12(q)€ii'q(kil_k§1)
q 7
B \P7 o,

XW "M
X
P ok, " o,

where we have used the fact that in the sense of general-
ized function
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R RN
7]{1(1) 7]+i§_77 (g)_f’

with the second term giving rise to the Cauchy principal
value integral denoted f. From Eq. (7) we have the ex-
pression for (F),

i . X y XY
P57 | f(z?%)<”<k—%>>d

i . X y [ X y
‘g7 <U<k‘%)>f”(k‘%)dy

which depends only on the mean fields (U;), (Us), both as-
sumed known throughout the paper.

Putting all the terms together with the regularization,
we arrive at the following MSE:

W(x,p) = W(x,p) + \eW$(x,%,p) + eW5(x,%,p), (23)

which satisfies

1 -
(p V- 7£)W+ iVW-F=@Gv - 1)\,’;Wi +\ep - VW5
Ve

—JeLWS + (iv/ - 1)eWs
+ep - VW (24)

Unfortunately, the right-hand side of Eq. (24) does not
vanish in the strong L? topology, but only in the weak to-

pology, as in
x 2
fdei X,—,Pp ‘Mp) =O’ leELz
€

lime f dx<
e—0
(25)

(see Appendix B). It is not clear at this point how to justify
the preceding argument and construction of asymptotic
solution with full mathematical rigor. Fortunately, in the
regime of geometrical optics, the rigorous asymptotic re-
sult can be obtained by a probabilistic method [15] and is
the same as derived by MSE (see Section 6). Another re-
gime for which the asymptotic result can be fully justified
is paraxial waves, which we will turn to in Section 5.
Owing to assumption (15) and the assumed continuous
dependence of the medium fluctuation on the frequency,
we have lim ®;=1im ®y=1im $,=P. As a consequence, all
the Cauchy principal value integrals cancel out. With

some changes of variables the governing equation for W
takes the much simplified form

L k3 k
p-VxW+w’W—<F>=7qu¢> ;(p—q) a(lp* - o

% [eix~(p—q)BV_V(x’q) — W(X, p)] . (26)

The 6 function in the scattering kernel is due to elastic
scattering, which preserves the wavenumber. When =0
(then v;=v9 and iv’' ~ the imaginary part of v), Eq. (26) re-
duces to the standard form of the radiative transfer equa-
tion for the phase space energy density [16,20-22]. For
B>0, the wave feature is retained in Eq. (26). When B
— oo, the first term in the bracket on the right-hand side of
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Eq. (26) drops out because of rapid phase fluctuation, so
the random scattering effect is pure damping:

_ _ k3 k
p-ViW+iv'W—(F)=-— qu@ -(p-q)
Y Y

x3(|p[* - |a|)W(x,p).

As a comparison, for Schrodinger equation (10) in the
frequency domain, we modify the Wigner distribution as

1 : ehy . ehy
W(x,p) = PE J e PV | x + Y V| x — Y dy

and in the limit e— 0 obtain the radiative transfer equa-
tion by following the same procedure:

_ _ 20 _
P ViW+i(wy— w))W+ gv'W—(F}

47 P—-q ) - _
alres dq@® 7 pl? - g/ [W(x,q) - W(x,p)].
(27)

The absence of the factor ¢ P95 in Eq. (27), and there-
fore the cross-frequency interference, is the main charac-
teristic of 2f-RT for quantum waves.

5. PARAXIAL 2f-RT: ANISOTROPIC
MEDIUM

The forward-scattering approximation, also called the
paraxial approximation, is valid when backscattering is
negligible, and, as we shall see now, this is the case for
anisotropic media fluctuating slowly in the (longitudinal)
direction of propagation. Let z denote the longitudinal co-
ordinate and x, the transverse coordinates. Let p and p |
denote the longitudinal and transverse components of p
e R3, respectively. Let q=(q,q ) € R3 be likewise defined.
Consider now a highly anisotropic spectral density for a
medium fluctuating much more slowly in the longitudinal
direction, i.e., replacing ®((p-q)k/vy) in Eq. (26) with

1 k k
-® _(p_q)5_(pL_qL) ) 77<1’
n \ny Y
which, in the limit »— 0, tends to
y k
55(17 —q)fdwfb w,;(m -qy) . (28)

Writing W=W(z,x,p,p,), we can approximate Eq. (26)
by

po.W+p, -V W+iv'W-(F)
wh? k 2 2
=7quljdw‘b wv;(pl_qL) alp.l-la.?

X [eixl.(pi_qL)BW(znyrp)qJ_) - W(Z7XJ_ 7p>pj_)] . (29)

Equation (29) is identical to the 2f-RT equation rigorously
derived directly from the paraxial wave equation for simi-
lar anisotropic media [13,14]. This is somewhat surpris-
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ing in view of the different scaling factors in the definition
of two-frequency Wigner distributions in the two cases.

Note that in Eq. (29) the longitudinal momentum p
plays the role of a parameter and does not change during
propagation and scattering. An important implication of
this observation is that Eq. (29) can be solved as an evo-
lution equation in the direction of increasing z with the
one-sided boundary condition (e.g., at z=constant). In
other words, the influence from the other boundary van-
ishes as the longitudinal direction is infinitely long. The
initial value problem of Eq. (29) is much easier to solve
than the boundary value problem of Eq. (26).

6. TWO-FREQUENCY GEOMETRICAL
RADIATIVE TRANSFER (2f-GRT)

Let us consider the further limit y<1 when the wave-
length is much shorter than the correlation length of the
medium fluctuation. To this end, the following form is
more convenient to work with:

_ _ Tk
P ViW+iv'W—(F)=—

Y
272 dq®(q)é| q - P-o

X [eix'QBV/kW(X,p - %q) - V_V(X,P)} ’
(30)

which is obtained from Eq. (26) after a change of vari-
ables. We expand the right-hand side of Eq. (30) in y and
pass to the limit y— 0 to obtain

1
p-V W+ivW—(F)= E(Vp-iﬁx) ‘D (V,-ipx)W

(31)

with the (momentum) diffusion coefficient

D(p) = Wf ®(q)dp- q)q ® qdq. (32)

The symmetry ®(p)=®(-p) plays an explicit role here in
rendering the right-hand side of Eq. (30) a second-order
operator in the limit y— 0. Equation (31) can be rigor-
ously derived from geometrical optics by a probabilistic
method [15].

A. Spatial (Frequency) Spread and Coherence
Bandwidth

Through dimensional analysis, Eq. (31) yields qualitative
information about important physical parameters of the
stochastic medium. To show this, let us assume for sim-
plicity the isotropy of the medium, i.e., ®(p)=®(|p|), so
that D=C|p|"'P(p), where

™ P q
C=—f5(—-—><l>(lql)lqldq (33)
3 Ipl la

is a constant and P(p) the orthogonal projection onto the
plane perpendicular to p. In view of Eq. (31), C (and D)
has the dimension of inverse length, while the variables x
and p are dimensionless.

Now consider the following change of variables:
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x=0k%,  p=0,bk, B=BB, (34)
where o, and o, are, respectively, the spreads in position

and spatial frequency, and g, is the coherence bandwidth.
Let us substitute Eq. (34) into Eq. (31) and aim for the
standard form

P VW +iv'W—(F)= (V5 -iBx) - [B| 'P)(Vs - ifX)W.
(35)

The first term on the left-hand side yields the first duality
relation

oo, ~ 1k (36)

The balance of terms in each pair of parentheses yields
the second duality relation

o0, ~ 1/8,, (37)

whose left-hand side is the space-spread-bandwidth prod-
uct. Finally, removal of the constant C determines

o, ~ k2/301/3’ (38)

from which o, and B, can be determined by using rela-
tions (36) and (37):

o, ~ k_4/301/3, ﬁc — k2/3C_2/3.

We do not know if| as it stands, Eq. (35) is analytically
solvable, but we can solve analytically for its boundary
layer behavior.

B. Boundary Layer Asymptotics: Paraxial 2f-GRT
Consider the half-space z=0 occupied by an isotropic ran-
dom medium characterized by the power spectral density
®=d(|p|) and a collimated narrowband beam propagating
in the z direction and incident normal to the boundary of
the medium. Near the point of incidence on the boundary
the corresponding two-frequency Wigner distribution
would be highly concentrated at the longitudinal momen-
tum, say, p=1. Hence we can assume that the projection
P(p) in Eq. (35) is effectively just the projection onto the
transverse plane coordinated by x,, and we can approxi-
mate Eq. (31) by

_ _ C, _
(,+p, - in)W"' wWW-—(F)= E(Vpi —-ipx )W,

(39)

where the constant C | is given by
W 2
C, = ®(0,q,)|q,[*dq, .
2 Jge

Note again that the longitudinal momentum p plays the
role of a parameter in Eq. (39), which then can be solved
in the direction of increasing z as an evolution equation
with initial data given at a fixed z. This is another in-
stance of paraxial approximation.

Let 0. be the spatial spread in the transverse coordi-
nates , €, the coherence length in the transverse dimen-
sions and B, the coherence bandwidth. Let L be the scale
of the boundary layer. We then seek the following change
of variables:
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X,

b
o.k

X, =

z -
D = k€ 5 ~=_, =
PL=P.Rt, = Lk B B,

to remove all the physical parameters from Eq. (39) and
to aim for the form
W +P, - Vg W+Lkiv'W - Lk(F) = (V- iB%,)*W.
(41)
The same reasoning as above now leads to

lo,~Llk, ot ~1B, €~k L2072

and hence

o, ~L3/2011/2 :8 — k_ch_lL_Z.

The layer thickness L may be determined by €,~1 or
equivalently L~ka‘2. After the inverse Fourier trans-
form Eq. (41) becomes

oI iV,

s, Vs, T +Lkiv'T ~Lk(F)=~§, + B [T,

(42)

which is the governing equation for the two-frequency
mutual coherence in the normalized variables. With data
given on Z=0 and vanishing far-field boundary condition
in the transverse directions, Eq. (42) can be solved ana-
lytically, and its Green’s function is given by

e—iLkv'(i4B)1/2 1 B _
— o €Xp| —— |y, -B%, -y +px\[?
(27)%2 sinh[(i4B)V%2]

4Pz
coth[(i45)"7] yi+hx |7
Xexpy —-———|¥ ———
(14p)12 cosh[(i48)V%2]
tanh[(:45)%z] _
Xexp) - ——————1y\ +Bx [’ . (43)
(14[3 1/2

Formula (43) is consistent with the asymptotic result in
the literature, which mainly concerns the cross-frequency
correlation of intensity. In the radiative transfer regime
considered here, the cross-spectral correlation of intensity
is the square of the two-frequency mutual coherence and
has the commonly accepted form [8,9,23]

exp(-2\/2B), (44)

which is just the large 8 asymptotic of the squared factor
|sinh[(48)Y22]|2 in formula (43) for Z=1(see Ref. [15] for
detailed comparison). Moreover, formula (43) provides de-
tailed information about the simultaneous dependence of
the mutual coherence on the frequency difference and
spatial displacement [7,8].

Surprisingly, a closely related equation arises in the
two-frequency formulation of the Markovian approxima-
tion of the paraxial waves [12]. The closed-form solution
is crucial for analyzing the performance of time-reversal
communication with broadband signals [24]. The solution
procedure for formula (43) is similar to that given else-
where [24] and is omitted here.
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C. Paraxial 2f-GRT in Anisotropic Media
We use here the setting and notation defined in Section 5
for anisotropic media. For simplicity we will set p=1 and

omit writing it out in W. In view of Eq. (28) we replace
®(q) in Eq. (32) with

8q) f dwd(w,q,)

and obtain the transverse diffusion coefficient

D,(p)= ’”'f dq, J dwdw,q,)dPp, q,)q, ®q,,

whereas the longitudinal diffusion coefficient is zero.

For simplicity we assume the isotropy in the transverse
dimensions, ®(w,p,)=®w,|p,]), so that D,
=C,|p.["'P.(p.), where

T P, q.
Ci=-| 8l — 7 |Pw,la.)lq.|dwdq,
2 p.l la.l

is a constant and P (p ) is the orthogonal projection onto
the transverse line perpendicular to p,. Hence Eq. (31)
reduces to

(0, +PpL -V )W+iv'W—(F)

C _
= Vo, ~iBx) - [p.[ PPV, ~iBx )W,  (45)

Alternatively, Eq. (45) can also be derived from Eq. (29) by
taking the geometrical optics limit as described at the be-
ginning of Section 6.

Consider change of variables (40) to remove all the
physical parameters from Eq. (45) to aim for the form

[0:+D, - Vs JW + Lkiv'W - Lk(F)

=(Vp, —if%.) - [P/ 'PL(®.)(V;, —iB% )W, (46)

where L is interpreted as the distance of propagation. Fol-
lowing the same line of reasoning, we obtain that
{.0,~ LIk,

o, ~ 1B, €, ~CL g,

and hence

o, ~ CY3L4/3 IB — 012/3L_5/3k_1.
Unlike Eq. (39) it is unclear whether a closed-form so-
lution to Eq. (45) exists.

7. DISCUSSION AND CONCLUSION

The standard (one-frequency) RT can be formally derived
from the wave equation in at least two ways: the diagram-
matic expansion method, as the ladder approximation of
the Bethe—Salpeter equation [8,16] and the multiscale ex-
pansion [MSE] method advocated here [18]. The latter is
considerably simpler than the former in terms of the
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amount of calculation involved. Both approaches have
been developed with full mathematical rigor in some spe-
cial cases (see [25,26] and the references therein). There
are two regimes for which the 2f-RT equation has been
derived with full mathematical rigor: first, for the
paraxial wave equation by using the so-called martingale
method in probability theory [13,14]; second, for spherical
waves in geometrical optics by the path-integration
method [15]. These rigorous results coincide with those
derived here for the respective regimes and hence support
the validity of MSE.

Within the framework of 2f-RT, a paraxial form arises
naturally in anisotropic media that fluctuate slowly in the
longitudinal direction. Another form of paraxial 2f-RT
takes place in the boundary layer asymptotics of isotropic
media. The latter equation turns out to be exactly solv-
able, and the boundary layer behavior is given in a closed
form, revealing highly nontrivial structure of the two-
frequency mutual coherence. In any case, dimensional
analysis with the 2f-GRT equations yields qualitative
scaling behavior of the spatial spread, the spatial fre-
quency spread, and the coherent bandwidth in various re-
gimes.

From the point of view of computation, especially
Monte Carlo simulation, it appears to be natural to intro-
duce the new quantity

W(x,p) = e *PW(x,p)
and rewrite Eq. (26) in the following form:

p - VW +iB|p|*W +iv'W — e P<P(F)

k3 k
=— f quD(—(p -q)
Y Y
X 5(|p‘2 - |q|2)[W(X,Q) - W(Xyp)]

The solution W can then be expressed as a path integra-
tion over the Markov process generated by the operator A
defined by

Tk k
AW=-p- -V, W+ > f dq® ;(p -q) |&|pl*-1lal*

when V is real valued and ® is nonnegative. I will pursue
this observation in a separate publication [15].

APPENDIX A: DERIVATION OF EQ. (6)
Applying the operator p-V to definition (3), we obtain

1 x y
SV W= e PY2p -V .U
P <2w>3f PR, 2y
y 1 _
Uz dy_ 3 e_lp.y
k2 2k2 (277)

x y x y
x| — 2p - V,Us| — - —|d
Why Tor, )P 2\ g, "o, )Y
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y
-ip'y
2)3f<w )VU1<k1 2k>
X y q 21 >
<U - | vy
2N\ 5y 20, (277)3f(ye )
x y [(x ¥
.V N —_ - —
Ul(kl 2k1> yU;<k2 2k )dy

Integrating by parts with the first Vy in the above inte-
grals, we have

21 i yV U x y
(2 7T)3 f ! k 1 2k 1
[(x ¥ 20 .
XUyl — dy + 3 | e?Y
k2 2k (2m)

xU *, 7 ViU, — * Y d (A1)
.2 ,
W T on, ) Y 2\ k" 2k, )Y

where the other resulting terms canceled each other.
From Eq. (2),

X y 1 x Yy Xy
VZUJ- —+— ==+ V)| =+ — | |U| =+ —
y ki 2k; 4 k; 2Fk; ki 2k,

1 b’ y

p'VxW=_

Using Eq. (A2) in Eq. (A1), we arrive at Eq. (6).

APPENDIX B: WEAK CONVERGENCE OF
CORRECTOR

First we shall see that the corrector does not vanish
in the mean-square norm in any dimension, i.e.,
lim, e[ (|W5%)dxdp >0 in general. For simplicity, we set
v=1 and consider the term involving Vl only. This can be
seen in the following calculation:
W q
X,p- —
LAY

W a)|’
X,p-—

P ok
which is positive in general.

Next we shall see that the corrector vanishes in the

weak topology
X 2
Jdei(x,?p> wp)| )=

lim e f dx
e—0

Ve L® (B1)

€ 2

€+ (p-qlky)’?

1
limz J dpdxdq®,(q)

e—0

>

T
=7 f dpdxdq®(q)dp - q/k)

It suffices to prove Eq. (B1) for any smooth, compactly
supported function %, and we have
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lim 1 J dpdp’dxdq

e—0
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D1(q)¥(p) ¥ (p')
(e+ip-alky)(e-ip’ - q/ky)

_ q )\ _ q
XW(X,p - E)W(X,p/ - E)
1 1

€

i)_ 4 i«ﬂ(p)V_V< _i)
2%, Pk \ P 2,

* = q
X [Wfdp’t?(p"ﬁ/kl)tﬂ (p’)W(X,p’ ——)

2k,
do iy (p) W( . a )
+ ., X’ -~ 2
P p'-a/ky P 2k,

><V_V<x,p—

where §=q/|q| for sufficiently smooth W, ®, and rapidly
decaying ®. The essential point now is that |q|~2 is an in-
tegrable singularity in three dimensions, and hence the
above expression vanishes in the limit.
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