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Two-frequency radiative transfer (2f-RT) theory is developed for classical waves in random media. Depending
on the ratio of the wavelength to the scale of medium fluctuation, the 2f-RT equation is either a Boltzmann-like
integral equation with a complex-valued kernel or a Fokker–Planck-like differential equation with complex-
valued coefficients in the phase space. The 2f-RT equation is used to estimate three physical parameters: the
spatial spread, the coherence length, and the coherence bandwidth (Thouless frequency). A closed-form solu-
tion is given for the boundary layer behavior of geometrical radiative transfer and shows highly nontrivial
dependence of mutual coherence on the spatial displacement and frequency difference. It is shown that the
paraxial form of 2f-RT arises naturally in anisotropic media that fluctuate slowly in the longitudinal direction.
© 2007 Optical Society of America
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. INTRODUCTION
et Uj, j=1,2, be the random, scalar wave field of wave-
umber kj, j=1,2. The mutual coherence function and its
ross-spectral version, known as the two-frequency mu-
ual coherence function, defined by

�12�x,y� =�U1� x

k1
+

y

2k1
�U2

*� x

k2
−

y

2k2
�� , �1�

here �·� stands for ensemble averaging, is the central
uantity of optical coherence theory, from which the two-
pace, two-time correlation function can be obtained via
he Fourier transform in frequency and therefore plays a
undamental role in analyzing propagation of random
ulses [1–5]. The motivation for the scaling factors in Eq.
1) will be given below; cf. Eq. (3).

In this paper I set out to analyze the two-frequency mu-
ual coherence as function of the spatial displacement and
requency difference for classical waves in multiply scat-
ering media. This problem has been extensively studied
n the physics literature (see [3,6–8] and references
herein). Here I derive from the multiscale expansion
MSE) the two-frequency version of the radiative transfer
quation, which is then used to estimate qualitatively the
hree physical parameters: the spatial and spatial fre-
uency spreads and the coherence bandwidth, also known
s the Thouless frequency in condensed matter physics.
oreover, I show that the boundary layer behavior of the

wo-frequency radiative transfer (2f-RT) equation is ana-
ytically solvable in geometrical optics. The closed-form
olution (43) provides detailed information of the two-
requency mutual coherence beyond the current physical
icture [7–9] [see the discussion about expression (44)].
To this end, I introduce the two-frequency Wigner dis-

ribution whose ensemble average is equivalent to the
wo-frequency mutual coherence and is a natural exten-
1084-7529/07/082248-9/$15.00 © 2
ion of the standard Wigner distribution widely used in
ptics [10,11]. A different version of two-frequency Wigner
istribution for parabolic waves was introduced earlier
12], and with it the corresponding radiative transfer
quation has been derived with full mathematical rigor
13,14]. In the case of anisotropic media fluctuating
lowly in the longitudinal direction the 2f-RT equation de-
eloped here reduces to that of the paraxial waves in
imilar media, which lends support to the validity of
SE. The other regime where the two frequency radia-

ive transfer equation has been obtained with full math-
matical rigor is geometrical optics [15].

The main difference between the 2f-RT and the stan-
ard theory is that the former retains the wave nature of
he process and is not just about energy transport. Hence
he governing equation cannot be derived simply based on
he energy conservation law.

. TWO-FREQUENCY WIGNER
ISTRIBUTION
et Uj, j=1,2 be governed by the reduced wave equation

�Uj�r� + kj
2��j + Vj�r��Uj�r� = fj�r�, r � R3, j = 1,2,

�2�

here �j and Vj are, respectively, the mean and fluctua-
ion of the refractive index associated with the wavenum-
er kj and are in general complex valued. The source
erms fj may result from the initial data or the external
ources. Here and below the vacuum phase speed is set to
e unity. To solve Eq. (2) one also needs some boundary
ondition that is assumed to be vanishing at the far field.

We define the two-frequency Wigner distribution as
007 Optical Society of America
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W�x,p� =
1

�2��3 	 e−ip·yU1� x

k1
+

y

2k1
�U2

*� x

k2
−

y

2k2
�dy.

�3�

n view of the definition, we see that both x and p are di-
ensionless. Here the choice of the scaling factors is cru-

ial; namely, the spatial dependence of the wave field
hould be measured with respect to the probing wave-
ength. The benefit is that this choice leads to a closed-
orm equation for W. It is easy to see that the ensemble
verage �W� is just the (partial) Fourier transform of the
utual coherence function (1). The two-frequency Wigner

istribution defined here has a different scaling factor
rom the one introduced for the parabolic waves [12].

The purpose of introducing the two-frequency Wigner
istribution is to develop a two-frequency theory in anal-
gy to the well-studied standard theory of radiative trans-
er. Although definition (3) requires the domain to be R3,
he governing radiative transfer equation, once obtained,
an be (inverse) Fourier transformed back to get the gov-
rning equation for the two-point function U1�r1�U2

*�r2� or
12, as their boundary conditions are usually easier to de-
cribe [cf. Eq. (42)].

The Wigner distribution has the following easy-to-
heck properties:

	 
W
2�x,p�dxdp = ��k1k2

2�
�3	 
U1
2�x�dx	 
U2
2�x�dx,

	W�x,p�eip·ydp = U1� x

k1
+

y

2k1
�U2

*� x

k2
−

y

2k2
� , �4�

	W�x,p�e−ix·qdx = ��2k1k2�3Û1�k1p

4
+

k1q

2 �
�Û2

*�k2p

4
−

k2q

2 � , �5�

here ·̂ stands for the Fourier transform and hence con-
ains all the information in the two-point two-frequency
unction. In particular,

	 pW�x,p�dp = − i� 1

2k1
� U1� x

k1
�U2

*� x

k2
�

−
1

2k2
U1� x

k1
� � U2

*� x

k2
� ,

hich, in the case of k1=k2, is proportional to the energy
ux density.
Let us now derive the equation for the two-frequency
igner distribution. After taking the derivative p ·� and

ome calculation we have
p · �W =
i

2�2��3 	 e−ip·yU1� x

k1
+

y

2k1
�U2

*� x

k2
−

y

2k2
�

�V1� x

k1
+

y

2k1
�dy −

i

2�2��3 	 e−ip·yU1� x

k1
−

y

2k1
�

�U2
*� x

k2
−

y

2k2
�V2

*� x

k2
−

y

2k2
�dy

+
i

2
��1 − �2

*�W + F, �6�

here the function F depends linearly on Uj and fj:

F = −
i

2�2��3 	 e−ip·yf1� x

k1
+

y

2k1
�U2

*� x

k2
−

y

2k2
�dy

+
i

2�2��3 	 e−ip·yU1� x

k1
+

y

2k1
�f2

*� x

k2
−

y

2k2
�dy.

�7�

ubstituting the spectral representation of Vj,

Vj�x� =	 eiq·xV̂j�dq�, �8�

nto the expression and using the definition of W, we then
btain the exact equation

p · �W −
i

2
��1 − �2

*�W − F

=
i

2 	 V̂1�dq�eiq·x/k1W�x,p −
q

2k1
�

−
i

2 	 V̂2
*�dq�e−iq·x/k2W�x,p −

q

2k2
� . �9�

ere and below V̂2
* is the complex conjugate of the Fourier

pectral measure V̂2. The full derivation of Eq. (9) is given
n Appendix A.

Let us pause to compare the classical wave with the
uantum wave function in the context of two-frequency
ormulation. The quantum wave functions �j at two dif-
erent frequencies �1 ,�2 satisfy the stationary
chrödinger equation

�2

2
��j + ��j + Vj�x���j = − �j��j + fj, j = 1,2, �10�

here �j+Vj are hypothetical, energy-dependent real-
alued potentials. Here the source terms fj equal the ini-
ial data f of the time-dependent problem. Usually, in the
uantum mechanical context, the potential function does
ot explicitly depend on the energy level (i.e., it is disper-
ionless).

The natural definition of the two-frequency Wigner dis-
ribution for the quantum wave functions is
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W�x,p� =
1

�2��3 	 e−ip·y�1�x +
�y

2 ��2
*�x −

�y

2 �dy,

�11�

hich satisfies the Wigner–Moyal equation

p · �W + i��2 − �1�W +
i

�
��2

* − �1�W

=
i

�
	 V̂1�dq�eiq·xW�x,p −

�q

2 �
−

i

�
	 V̂2

*�dq�e−iq·xW�x,p −
�q

2 � + F, �12�

here F has an expression similar to Eq. (7). The main
ifference between the quantum and classical waves in
he Wigner formulation is that the derivation of a closed-
orm equation does not require rescaling each energy
omponent with respect to its de Broglie wavelength. The
mplication in radiative transfer will be further discussed
see the remark following Eq. (27)].

. TWO-FREQUENCY RADIATIVE
RANSFER SCALING
et us assume that Vj�x�, j=1,2 are real-valued, centered,
andom stationary (i.e., statistically homogeneous) er-
odic fields admitting spectral representation (8) with the
pectral measures V̂j�dp�, j=1,2 such that

�V̂j�dp�V̂j
*�dq�� = 	�p − q�
j�p�dpdq,

here 
j are the (nonnegative-valued) power spectral
ensities of the random fields Vj, j=1,2. The above 	 func-
ion is a consequence of the statistical homogeneity of the
andom field Vj. As Vj, j=1,2 are real valued, V̂j

*�dp�
V̂j�−dp�, and hence the power spectral densities 
j�p�
atisfy the symmetry property 
j�p�=
j�−p�, ∀p.

We will also need the cross-frequency correlation, and
e postulate the existence of the cross-frequency spec-

rum 
12 such that

�V̂1�dp�V̂2
*�dq�� = 	�p − q�
12�p�dpdq.

ere 
12 need not be real valued.
An important regime of multiple scattering of classical

aves takes place when the scale of medium fluctuation is
uch smaller than the propagation distance but is com-

arable with or much larger than the wavelength [3,16].
he radiative transfer regime can be characterized by the
caling limit, which replaces �j+Vj in Eq. (2) with

1

�2�2��j + ��Vj�r

�
��, �  0, � � 1, �13�

here � is the ratio of the scale of medium fluctuation to
he O�1� propagation distance and � the ratio of the wave-
ength to the scale of medium fluctuation. Hence �� is the
atio of the wavelength to the propagation distance, and
he prefactor ����−2 arises from rescaling the wavenumber
→k / ����. This is the so-called weak coupling (or disor-
er) limit in kinetic theory, which prohibits the Anderson
ocalization from happening [17]. Note that the resulting

edium fluctuation �−3/2Vj�r /�� converges to a spatial
hite noise in three dimensions.
Physically speaking, the radiative transfer scaling be-

ongs to the diffusive wave regime under the condition of
large dimensionless conductance g=N�t /L, where �t is

he transport mean free path, L is the sample size in the
irection of propagation, and N=2�A /�2 is the number of
ransverse modes, limited by the illuminated area A and
he wavelength of radiation � [6,7]. The dimensionless
onductance g can be expressed as g=k�t� with the in-
erse Fresnel number �=A / ��L�. With the scaling of Eq.
13), k�t����−1�−1, and hence g��−2�−2�1 for any finite

as �→0.
Anticipating small-scale fluctuation due to Eq. (13), we
odify the definition of the two-frequency Wigner distri-

ution in the following way:

W�x,p� =
1

�2��3 	 e−ip·yU1� x

k1
+

��y

2k1
�U2

*� x

k2
−

��y

2k2
�dy.

quation (9) now becomes

p · �W − F =
i

2��
��1 − �2

*�W +
1

��
LW, �14�

here the operator L is defined by

LW�x,p� =
i

2�
	 V̂1�dq�exp�i

q · x

�k1
�W�x,p −

�q

2k1
�

−
i

2�
	 V̂2

*�dq�exp�− i
q · x

�k2
�W�x,p −

�q

2k2
� .

o capture the cross-frequency correlation in the radiative
ransfer regime, we also need to restrict the frequency dif-
erence range

lim
�→0

k1 = lim
�→0

k2 = k,
k2 − k1

��k
= �, �15�

here k, �0 are independent of � and �. Assuming the
ifferentiability of the mean refractive index’s depen-
ence on the wavenumber, we write

�2
* − �1

2��
= ��, �16�

here �� is independent of �, �.

. MULTISCALE EXPANSION
o derive the radiative transfer equation for the two-
requency Wigner distribution let us employ MSE [18,19],
hich begins with introducing the fast variable

x̂ = x/�

nd treating x̃ as independent from the slow variable x.
onsequently the derivative p ·� consists of two terms,

p · � = p · �x + �−1p · �x̃. �17�

hen MSE posits the following asymptotic expansion:
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W�x,p� = W̄�x,x̃,p� + ��W1�x,x̃,p� + �W2�x,x̃,p�

+ O��3/2�, x̃ = x�−1, �18�

hose proper sense will be explained below.
Substituting the ansatz into Eq. (14) and using Eq.

17), we determine each term of Eq. (18) by equating
erms of the same order of magnitude, starting with the
ighest order, �−1.
The �−1-order equation has one term,

p · �x̃W̄ = 0,

hich can be solved by setting W̄=W̄�x ,p�. That is, to the
eading order W is independent of the fast variable. Since
he fast variable is due to medium fluctuation, this sug-
ests that W̄ is deterministic.

The next is the �−1/2-order equation:

p · �x̃W1 = LW̄. �19�

e seek a solution that is stationary in x̃, square inte-
rable in p, and has finite second moment. The solvability
ondition (Fredholm alternative) is that the right-hand
ide, LW̄, satisfies �E��*LW̄�dp=0 for any x̃-stationary,
quare-integrable field ��x̃ ,p� satisfying p ·�x̃�=0. The
olvability condition is, however, not easy to enforce. Al-
ernatively, we can consider the regularized equation

�W1
� + p · �x̃W1

� = LW̄, �20�

hich is always solvable for �0 and admits of the solu-
ion

W1
��x,x̃,p� =

i

2�
	 V̂1�dq�

exp�i
q · x̃

k1
�

� + iq · p/k1
W̄�x,p −

�q

2k1
�

−
i

2�
	 V̂2

*�dq�

exp�− i
q · x̃

k2
�

� − iq · p/k2
W̄�x,p −

�q

2k2
� .

�21�

n the jargon of asymptotic analysis [18], ��W1
� is called

he first corrector. To control the first corrector, let us
hoose W̄ such that LW̄ has zero mean. This is a neces-
ary condition, as we seek an x̃-stationary solution and
onsequently �p ·�x̃W1�=p ·�x̃�W1�=0. Needless to say,
his condition is weaker than the solvability condition
tated above and is satisfied for any deterministic W̄,
ince both V1 and V2 have zero mean.

Indeed, under the assumption of deterministic W̄, the
esulting equation will be much simplified; so let us im-
ose this property on W̄ from now on. The fact that in the
imit W̄ is deterministic can be proved rigorously in the
araxial regime [14].
Finally, the O�1� equation is
p · �x̃W2�x,x̃,p� = − p · �xW̄�x,p� − i��W̄ + F

+
i

2�
	 V̂1�dq�exp�i

q · x̃

k1
�

�W1
��x,x̃,p −

�q

2k1
� −

i

2�
	 V̂2

*�dq�

�exp�− i
q · x̃

k2
�W1

��x,x̃,p −
�q

2k2
� ,

�22�

hich can be solved with regularization as in Eq. (20) and
ields the second corrector �W2

� . Again we impose on the
ight-hand side of Eq. (22) the weaker condition of zero
ean. Using Eq. (21) in Eq. (22), taking the ensemble av-

rage, and passing to the limit �→0, we obtain the gov-
rning equation for W̄:

· �xW̄�x,p� + i��W̄ − �F�

= −
k1

3

2�4 	 dq
1�k1

�
�p − q���	�
p
2 − 
q
2�W̄�x,p�

+
ik1

3

2�4 W
dq


1�k1

�
�p − q��


p
2 − 
q
2
W̄�x,p�

−
k2

3

2�4 	 dq
2�k2

�
�p − q���	�
p
2 − 
q
2�W̄�x,p�

−
ik2

3

2�4 W
dq


2�k2

�
�p − q��


p
2 − 
q
2
W̄�x,p�

+
1

4�2 	 dq
12�q�eix̃·q�k1
−1−k2

−1��	� q

k2
· �p −

�q

2k1
��

�W̄�x,p −
�q

2k1
−

�q

2k2
�

+
1

4�2 	 dq
12�q�eix̃·q�k1
−1−k2

−1��	� q

k1
· �p −

�q

2k2
��

�W̄�x,p −
�q

2k1
−

�q

2k2
� +

i

4�2 	 dq�
1

q

k2
· �p −

�q

2k1
�

−
1

q

k1
· �p −

�q

2k2
��
12�q�eix̃·q�k1

−1−k2
−1�

�W̄�x,p −
�q

2k1
−

�q

2k2
� ,

here we have used the fact that in the sense of general-
zed function
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lim
�→0

1

� + i�
= �	��� −

i

�
,

ith the second term giving rise to the Cauchy principal
alue integral denoted W. From Eq. (7) we have the ex-
ression for �F�,

�F� = −
i

2�2��3 	 e−ip·yf1� x

k1
+

y

2k1
��U2

*� x

k2
−

y

2k2
��dy

+
i

2�2��3 	 e−ip·y�U1� x

k1
+

y

2k2
��f2

*� x

k2
−

y

2k2
�dy,

hich depends only on the mean fields �U1�, �U2�, both as-
umed known throughout the paper.

Putting all the terms together with the regularization,
e arrive at the following MSE:

W�x,p� = W̄�x,p� + ��W1
��x,x̃,p� + �W2

��x,x̃,p�, �23�

hich satisfies

�p · �−
1

��
L�W + i��W − F = �i�� − 1���W1

� + ��p · �xW1
�

− ��LW2
� + �i�� − 1��W2

�

+ �p · �xW2
� . �24�

nfortunately, the right-hand side of Eq. (24) does not
anish in the strong L2 topology, but only in the weak to-
ology, as in

lim
�→0

� 	 dx��	 dpW1
��x,

x

�
,p���p��2� = 0, ∀ � � L2

�25�

see Appendix B). It is not clear at this point how to justify
he preceding argument and construction of asymptotic
olution with full mathematical rigor. Fortunately, in the
egime of geometrical optics, the rigorous asymptotic re-
ult can be obtained by a probabilistic method [15] and is
he same as derived by MSE (see Section 6). Another re-
ime for which the asymptotic result can be fully justified
s paraxial waves, which we will turn to in Section 5.

Owing to assumption (15) and the assumed continuous
ependence of the medium fluctuation on the frequency,
e have lim 
1=lim 
2=lim 
12=
. As a consequence, all

he Cauchy principal value integrals cancel out. With
ome changes of variables the governing equation for W̄
akes the much simplified form

p · �xW̄ + i��W̄ − �F� =
�k3

�4 	 dq
�k

�
�p − q��	�
p
2 − 
q
2�

��eix·�p−q��W̄�x,q� − W̄�x,p��. �26�

he 	 function in the scattering kernel is due to elastic
cattering, which preserves the wavenumber. When �=0
then �1=�2 and i��� the imaginary part of �), Eq. (26) re-
uces to the standard form of the radiative transfer equa-
ion for the phase space energy density [16,20–22]. For
0, the wave feature is retained in Eq. (26). When �
�, the first term in the bracket on the right-hand side of
q. (26) drops out because of rapid phase fluctuation, so
he random scattering effect is pure damping:

p · �xW̄ + i��W̄ − �F� = −
�k3

�4 	 dq
�k

�
�p − q��

�	�
p
2 − 
q
2�W̄�x,p�.

As a comparison, for Schrödinger equation (10) in the
requency domain, we modify the Wigner distribution as

W�x,p� =
1

�2��3 	 e−ip·y�1�x +
��y

2 ��2
*�x −

��y

2 �dy

nd in the limit �→0 obtain the radiative transfer equa-
ion by following the same procedure:

p · �xW̄ + i��2 − �1�W̄ +
2i

�
��W̄ − �F�

=
4�

�4 	 dq
�p − q

�
�	�
p
2 − 
q
2��W̄�x,q� − W̄�x,p��.

�27�

he absence of the factor eix·�p−q�� in Eq. (27), and there-
ore the cross-frequency interference, is the main charac-
eristic of 2f-RT for quantum waves.

. PARAXIAL 2f-RT: ANISOTROPIC
EDIUM

he forward-scattering approximation, also called the
araxial approximation, is valid when backscattering is
egligible, and, as we shall see now, this is the case for
nisotropic media fluctuating slowly in the (longitudinal)
irection of propagation. Let z denote the longitudinal co-
rdinate and x� the transverse coordinates. Let p and p�

enote the longitudinal and transverse components of p
R3, respectively. Let q= �q ,q���R3 be likewise defined.
Consider now a highly anisotropic spectral density for a
edium fluctuating much more slowly in the longitudinal

irection, i.e., replacing 
��p−q�k /�� in Eq. (26) with

1

�

� k

��
�p − q�,

k

�
�p� − q���, � � 1,

hich, in the limit �→0, tends to

�

k
	�p − q� 	 dw
�w,

k

�
�p� − q��� . �28�

riting W̄=W̄�z ,x� ,p ,p��, we can approximate Eq. (26)
y

p�zW̄ + p� · �x�
W̄ + i��W̄ − �F�

=
�k2

�3 	 dq�	 dw
�w,
k

�
�p� − q���	�
p�
2 − 
q�
2�

� �eix�·�p�−q���W̄�z,x�,p,q�� − W̄�z,x�,p,p���. �29�

quation (29) is identical to the 2f-RT equation rigorously
erived directly from the paraxial wave equation for simi-
ar anisotropic media [13,14]. This is somewhat surpris-
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ng in view of the different scaling factors in the definition
f two-frequency Wigner distributions in the two cases.

Note that in Eq. (29) the longitudinal momentum p
lays the role of a parameter and does not change during
ropagation and scattering. An important implication of
his observation is that Eq. (29) can be solved as an evo-
ution equation in the direction of increasing z with the
ne-sided boundary condition (e.g., at z=constant). In
ther words, the influence from the other boundary van-
shes as the longitudinal direction is infinitely long. The
nitial value problem of Eq. (29) is much easier to solve
han the boundary value problem of Eq. (26).

. TWO-FREQUENCY GEOMETRICAL
ADIATIVE TRANSFER (2f-GRT)
et us consider the further limit ��1 when the wave-

ength is much shorter than the correlation length of the
edium fluctuation. To this end, the following form is
ore convenient to work with:

p · �xW̄ + i��W̄ − �F� =
�k

2�2 	 dq
�q�	�q · �p −
�q

2k��
��eix·q��/kW̄�x,p −

�q

k � − W̄�x,p�
�30�

hich is obtained from Eq. (26) after a change of vari-
bles. We expand the right-hand side of Eq. (30) in � and
ass to the limit �→0 to obtain

p · �xW̄ + i��W̄ − �F� =
1

4k
��p − i�x� · D · ��p − i�x�W̄

�31�

ith the (momentum) diffusion coefficient

D�p� = �	 
�q�	�p · q�q � qdq. �32�

he symmetry 
�p�=
�−p� plays an explicit role here in
endering the right-hand side of Eq. (30) a second-order
perator in the limit �→0. Equation (31) can be rigor-
usly derived from geometrical optics by a probabilistic
ethod [15].

. Spatial (Frequency) Spread and Coherence
andwidth
hrough dimensional analysis, Eq. (31) yields qualitative

nformation about important physical parameters of the
tochastic medium. To show this, let us assume for sim-
licity the isotropy of the medium, i.e., 
�p�=
�
p
�, so
hat D=C
p
−1P�p�, where

C =
�

3 	 	� p


p

·

q


q
�
�
q
�
q
dq �33�

s a constant and P�p� the orthogonal projection onto the
lane perpendicular to p. In view of Eq. (31), C (and D)
as the dimension of inverse length, while the variables x
nd p are dimensionless.
Now consider the following change of variables:
x = �xkx̃, p = �pp̃/k, � = �c�̃, �34�

here �x and �p are, respectively, the spreads in position
nd spatial frequency, and �c is the coherence bandwidth.
et us substitute Eq. (34) into Eq. (31) and aim for the
tandard form

p̃ · �x̃W̄ + i��W̄ − �F� = ��p̃ − i�x̃� · 
p̃
−1P�p̃���p̃ − i�x̃�W̄.

�35�

he first term on the left-hand side yields the first duality
elation

�x/�p � 1/k2. �36�

he balance of terms in each pair of parentheses yields
he second duality relation

�x�p � 1/�c, �37�

hose left-hand side is the space-spread–bandwidth prod-
ct. Finally, removal of the constant C determines

�p � k2/3C1/3, �38�

rom which �x and �c can be determined by using rela-
ions (36) and (37):

�x � k−4/3C1/3, �c � k2/3C−2/3.

We do not know if, as it stands, Eq. (35) is analytically
olvable, but we can solve analytically for its boundary
ayer behavior.

. Boundary Layer Asymptotics: Paraxial 2f-GRT
onsider the half-space z�0 occupied by an isotropic ran-
om medium characterized by the power spectral density
=
�
p
� and a collimated narrowband beam propagating

n the z direction and incident normal to the boundary of
he medium. Near the point of incidence on the boundary
he corresponding two-frequency Wigner distribution
ould be highly concentrated at the longitudinal momen-

um, say, p=1. Hence we can assume that the projection
�p� in Eq. (35) is effectively just the projection onto the

ransverse plane coordinated by x�, and we can approxi-
ate Eq. (31) by

��z + p� · �x�
�W̄ + i��W̄ − �F� =

C�

4k
��p�

− i�x��2W̄,

�39�

here the constant C� is given by

C� =
�

2	R2

�0,q��
q�
2dq�.

ote again that the longitudinal momentum p plays the
ole of a parameter in Eq. (39), which then can be solved
n the direction of increasing z as an evolution equation
ith initial data given at a fixed z. This is another in-

tance of paraxial approximation.
Let �� be the spatial spread in the transverse coordi-

ates , �c the coherence length in the transverse dimen-
ions and �c the coherence bandwidth. Let L be the scale
f the boundary layer. We then seek the following change
f variables:
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x̃� =
x�

��k
, p̃� = p�k�c, z̃ =

z

Lk
, �̃ =

�

�c
, �40�

o remove all the physical parameters from Eq. (39) and
o aim for the form

�z̃W̄ + p̃� · �x̃�
W̄ + Lki��W̄ − Lk�F� = ��p̃�

− i�̃x̃��2W̄.

�41�

he same reasoning as above now leads to

�c�� � L/k, ��/�c � 1/�c, �c � k−1L−1/2C�
−1/2

nd hence

�� � L3/2C�
−1/2, �c � k−1C�

−1L−2.

The layer thickness L may be determined by �c�1 or
quivalently L�C�

−1k−2. After the inverse Fourier trans-
orm Eq. (41) becomes

�z̃� − i�ỹ�
· �x̃�

� + Lki��� − Lk�F� = − 
ỹ� + �̃x̃�
2�,

�42�

hich is the governing equation for the two-frequency
utual coherence in the normalized variables. With data

iven on z̃=0 and vanishing far-field boundary condition
n the transverse directions, Eq. (42) can be solved ana-
ytically, and its Green’s function is given by

e−iLk���i4�̃�1/2

�2��2z̃ sinh��i4�̃�1/2z̃�
exp� 1

i4�̃z̃

ỹ� − �̃x̃� − y�� + �̃x�� 
2�

� exp�−
coth��i4�̃�1/2z̃�

�i4�̃�1/2
�ỹ� + �̃x̃� −

y�� + �̃x��

cosh��i4�̃�1/2z̃�
�2�

� exp�−
tanh��i4�̃�1/2z̃�

�i4�̃�1/2

y�� + �̃x�� 
2� . �43�

Formula (43) is consistent with the asymptotic result in
he literature, which mainly concerns the cross-frequency
orrelation of intensity. In the radiative transfer regime
onsidered here, the cross-spectral correlation of intensity
s the square of the two-frequency mutual coherence and
as the commonly accepted form [8,9,23]

exp�− 2�2�̃�, �44�

hich is just the large �̃ asymptotic of the squared factor
sinh��i4�̃�1/2z̃�
−2 in formula (43) for z̃=1(see Ref. [15] for
etailed comparison). Moreover, formula (43) provides de-
ailed information about the simultaneous dependence of
he mutual coherence on the frequency difference and
patial displacement [7,8].

Surprisingly, a closely related equation arises in the
wo-frequency formulation of the Markovian approxima-
ion of the paraxial waves [12]. The closed-form solution
s crucial for analyzing the performance of time-reversal
ommunication with broadband signals [24]. The solution
rocedure for formula (43) is similar to that given else-
here [24] and is omitted here.
. Paraxial 2f-GRT in Anisotropic Media
e use here the setting and notation defined in Section 5

or anisotropic media. For simplicity we will set p=1 and
mit writing it out in W̄. In view of Eq. (28) we replace
�q� in Eq. (32) with

	�q� 	 dw
�w,q��

nd obtain the transverse diffusion coefficient

D��p�� = �	 dq�	 dw
�w,q��	�p� · q��q� � q�,

hereas the longitudinal diffusion coefficient is zero.
For simplicity we assume the isotropy in the transverse

imensions, 
�w ,p��=
�w , 
p�
�, so that D�

C�
p�
−1P��p��, where

C� =
�

2 	 	� p�


p�

·

q�


q�
�
�w, 
q�
�
q�
dwdq�

s a constant and P��p�� is the orthogonal projection onto
he transverse line perpendicular to p�. Hence Eq. (31)
educes to

�z + p� · �x�
�W̄ + i��W̄ − �F�

=
C�

4k
��p�

− i�x�� · 
p�
−1P��p����p�
− i�x��W̄. �45�

lternatively, Eq. (45) can also be derived from Eq. (29) by
aking the geometrical optics limit as described at the be-
inning of Section 6.

Consider change of variables (40) to remove all the
hysical parameters from Eq. (45) to aim for the form

��z̃ + p̃� · �x̃�
�W̄ + Lki��W̄ − Lk�F�

= ��p̃�
− i�̃x̃�� · 
p̃�
−1P��p̃����p̃�

− i�̃x̃��W̄, �46�

here L is interpreted as the distance of propagation. Fol-
owing the same line of reasoning, we obtain that

�c�� � L/k, ��/�c � 1/�c, �c � C�
−1/3L−1/3k−1,

nd hence

�� � C�
1/3L4/3, �c � C�

−2/3L−5/3k−1.

Unlike Eq. (39) it is unclear whether a closed-form so-
ution to Eq. (45) exists.

. DISCUSSION AND CONCLUSION
he standard (one-frequency) RT can be formally derived

rom the wave equation in at least two ways: the diagram-
atic expansion method, as the ladder approximation of

he Bethe–Salpeter equation [8,16] and the multiscale ex-
ansion [MSE] method advocated here [18]. The latter is
onsiderably simpler than the former in terms of the
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mount of calculation involved. Both approaches have
een developed with full mathematical rigor in some spe-
ial cases (see [25,26] and the references therein). There
re two regimes for which the 2f-RT equation has been
erived with full mathematical rigor: first, for the
araxial wave equation by using the so-called martingale
ethod in probability theory [13,14]; second, for spherical
aves in geometrical optics by the path-integration
ethod [15]. These rigorous results coincide with those

erived here for the respective regimes and hence support
he validity of MSE.

Within the framework of 2f-RT, a paraxial form arises
aturally in anisotropic media that fluctuate slowly in the

ongitudinal direction. Another form of paraxial 2f-RT
akes place in the boundary layer asymptotics of isotropic
edia. The latter equation turns out to be exactly solv-

ble, and the boundary layer behavior is given in a closed
orm, revealing highly nontrivial structure of the two-
requency mutual coherence. In any case, dimensional
nalysis with the 2f-GRT equations yields qualitative
caling behavior of the spatial spread, the spatial fre-
uency spread, and the coherent bandwidth in various re-
imes.

From the point of view of computation, especially
onte Carlo simulation, it appears to be natural to intro-

uce the new quantity

W̃�x,p� = e−i�x·pW̄�x,p�

nd rewrite Eq. (26) in the following form:

p · �xW̃ + i�
p
2W̃ + i��W̃ − e−i�x·p�F�

=
�k3

�4 	 dq
�k

�
�p − q��

�	�
p
2 − 
q
2��W̃�x,q� − W̃�x,p��.

he solution W̃ can then be expressed as a path integra-
ion over the Markov process generated by the operator A
efined by

AW = − p · �xW +
�k3

�4 	 dq
�k

�
�p − q��	�
p
2 − 
q
2�

��W�x,q� − W�x,p��

hen V is real valued and 
 is nonnegative. I will pursue
his observation in a separate publication [15].

PPENDIX A: DERIVATION OF EQ. (6)
pplying the operator p ·� to definition (3), we obtain

p · �xW =
1

�2��3 	 e−ip·y2p · �yU1� x

k1
+

y

2k1
�

�U2
*� x

k2
−

y

2k2
�dy −

1

�2��3 	 e−ip·y

�U1� x

k1
+

y

2k1
�2p · �yU2

*� x

k2
−

y

2k2
�dy
=
2i

�2��3 	 ��ye−ip·y� · �yU1� x

k1
+

y

2k1
�

�U2
*� x

k2
−

y

2k2
�dy −

2i

�2��3 	 ��ye−ip·y�

�U1� x

k1
−

y

2k1
� · �yU2

*� x

k2
−

y

2k2
�dy.

ntegrating by parts with the first �y in the above inte-
rals, we have

· �xW = −
2i

�2��3 	 e−ip·y�y
2U1� x

k1
+

y

2k1
�

�U2
*� x

k2
−

y

2k2
�dy +

2i

�2��3 	 e−ip·y

�U1� x

k1
+

y

2k1
��y

2U2
*� x

k2
−

y

2k2
�dy, �A1�

here the other resulting terms canceled each other.
rom Eq. (2),

�y
2Uj� x

kj
+

y

2kj
� = −

1

4��j + Vj� x

kj
+

y

2kj
�Uj� x

kj
+

y

2kj
�

+
1

4
fj� x

kj
+

y

2kj
� . �A2�

sing Eq. (A2) in Eq. (A1), we arrive at Eq. (6).

PPENDIX B: WEAK CONVERGENCE OF
ORRECTOR
irst we shall see that the corrector does not vanish

n the mean-square norm in any dimension, i.e.,
im�→0���
W1

� 
2�dxdp0 in general. For simplicity, we set
=1 and consider the term involving V̂1 only. This can be
een in the following calculation:

lim
�→0

1

4 	 dpdxdq
1�q�
�

�2 + �p · q/k1�2�W̄�x,p −
q

2k1
��2

=
�

4 	 dpdxdq
�q�	�p · q/k��W̄�x,p −
q

2k��2

,

hich is positive in general.
Next we shall see that the corrector vanishes in the

eak topology

lim
�→0

�	 dx��	 dpW1
��x,

X

�
,p���p��2� = 0,

∀ � � L2. �B1�

t suffices to prove Eq. (B1) for any smooth, compactly
upported function �, and we have
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lim
�→0

�

4 	 dpdp�dxdq

1�q���p��*�p��

�� + ip · q/k1��� − ip� · q/k1�

�W̄�x,p −
q

2k1
�W̄*�x,p� −

q

2k1
�

= lim
�→0

�

4 	 dxdq

1�q�


q
2 ��	 dp	�p · q̂/k1���p�

�W̄�x,p −
q

2k1
� −

W
dp

i��p�

p · q̂/k1
W̄�x,p −

q

2k1
�

� ��	 dp�	�p� · q̂/k1��*�p��W̄*�x,p� −
q

2k1
�

+
W

dp�
i�*�p��

p� · q̂/k1
W̄*�x,p� −

q

2k1
� ,

here q̂=q / 
q
 for sufficiently smooth W̄, 
, and rapidly
ecaying 
. The essential point now is that 
q
−2 is an in-
egrable singularity in three dimensions, and hence the
bove expression vanishes in the limit.
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