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Abstract
The paper addresses the two-point correlations of electromagnetic waves in
general random, bi-anisotropic media whose constitutive tensors are complex
Hermitian, positive- or negative-definite matrices. A simplified version of the
two-frequency Wigner distribution (2f-WD) for polarized waves is introduced
and the closed form Wigner–Moyal equation is derived from the Maxwell
equations. In the weak-disorder regime with an arbitrarily varying background
the two-frequency radiative transfer (2f-RT) equations for the associated 2 × 2
coherence matrices are derived from the Wigner–Moyal equation by using
the multiple-scale expansion. In birefringent media, the coherence matrix
becomes a scalar and the 2f-RT equations take the scalar form due to the
absence of depolarization. A paraxial approximation is developed for spatially
anisotropic media. Examples of isotropic, chiral, uniaxial and gyrotropic media
are discussed.

PACS numbers: 42.25.Dd, 41.20.Jb

1. Introduction

Consider the electromagnetic wave propagation in a random dielectric. Let u(x, t) =
(D(x, t), B(x, t))† be the displacement-magnetic-induction vector field. Then the mutual
coherence function is given by [3]

〈u(x1, t1)u†(x2, t2)〉 =
∫

ei(ω2−ω1)t e−iτ(ω1+ω2)/2〈U(x1, ω1)U†(x2, ω2)〉 dω1 dω2, (1)

where 〈·〉 is ensemble averaging, t = (t1 + t2)/2, τ = t1 − t2 and U(x, ω) is the frequency
component of u at frequency ω. Throughout, all vectors are by default column vectors and †
denotes the Hermitian conjugation.

Radiative transfer theory [1, 4, 8, 10, 13–15, 17] has been traditionally carried out in
spacetime with one time variable (t1 = t2). The main goal of this paper is to derive equations
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for the quantity directly related to 〈U(x1, ω1)U†(x2, ω2)〉. In particular, we obtain the two-
frequency radiative transfer (2f-RT) equations for polarized light in the weak-disorder regime
with an arbitrary bianisotropic background. The 2f-RT equations then determine, via (1), the
two-spacetime correlations of the electromagnetic wave in random media.

Our approach is set up for the most general linear local, lossless electromagnetic materials,
in which each of the field vectors E and H is coupled tensorially to both D and B. Such materials
have been the subject of considerable recent interest. One reason is that they can be created
as metamaterials, i.e. composites of more conventional materials in which E is coupled to D
alone and H is coupled to B alone.

The two-frequency approach has been previously pursued in terms of wavelength-rescaled
two-frequency Wigner distribution (2f-WD) in the case of a uniform background [7]. In the
present work, we introduce an alternative version of 2f-WD and derive the corresponding
2f-RT equations for the associated 2 × 2 coherence matrices in the case with an arbitrary
background. We give several examples for which the scattering kernels can be computed
explicitly. We show that birefringence naturally leads to decoupling of the polarization modes
and the absence of depolarization in such media. As a result, the 2f-RT equations simplify to
scalar equations.

In section 2, we formulate the problem in terms of the straightforwardly defined 2f-WD
and derive the two-frequency Wigner–Moyal equation in appendix A. In section 3, we analyze
the problem for high-frequency waves in an arbitrary background bianisotropic medium in
the absence of random fluctuations. This is the geometrical optics regime. In section 4,
we consider the weak-disorder regime where, in addition to the arbitrary background, small
random fluctuations are present on the scale of the wavelength. In sections 5 and 6, we employ
the multi-scale expansion (MSE) technique to derive the radiative transfer equation from
the two-frequency Wigner–Moyal equation for the weak-disorder regime. We also derive a
paraxial approximation for the polarized light in a spatially anisotropic medium. In section 7,
we give several examples of isotropic, chiral, uniaxial and gyrotropic media for which the
scattering kernels can be explicitly calculated. We conclude in section 8 with a discussion of
the final expression of the mutual coherence in terms of the solution of the 2f-RT equations.

2. Maxwell equations and Wigner–Moyal equations

In this paper, we consider the electromagnetic wave propagation in a heterogeneous, lossless,
bi-anisotropic dielectric medium. We assume that the scattering medium is free of charges
and currents and start with the source-free Maxwell equations in the frequency ω domain

−iω

[
D
B

]
+

[
0 −∇×

∇× 0

]
K−1

[
D
B

]
= 0, (2)

where K is, by the assumption of losslessness, a Hermitian matrix [12]

K =
[

Kε Kχ

Kχ† Kµ

]
(3)

with the permittivity and permeability tensors Kε, Kµ, and the magneto-electric tensor Kχ [16].
The Hermitian matrix K is assumed to be invertible. The present formulation encompasses
the acoustic, electromagnetic and elastic waves so that the 2f-RT theory developed here can
be extended to these waves without major changes. We choose D, B as the primary fields
because they are transverse (divergence free).

In an isotropic dielectric, Kε = εI, Kµ = µI, Kχ = 0. In a bi-isotropic dielectric, Kχ

as well as Kε, Kµ are nonzero scalars. A reciprocal chiral medium is bi-isotropic with purely
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imaginary Kχ = iχ . The appearance of nonzero Kχ arises from the so-called magnetoelectric
effect [11]. Crystals are often naturally anisotropic, and in some media (such as liquid crystals)
it is possible to induce anisotropy by applying, e.g. an external electric field. In crystal optics,
Kε, Kµ are real, symmetric matrices and Kχ = 0 [3]. In response to a magnetic field,
some materials can have a dielectric tensor that is complex Hermitian; this is the gyrotropic
effect. A magnetoelectric, bi-anisotropic medium has a constitutive relation (3) with complex
Hermitian Kε, Kµ and a complex matrix Kχ satisfying the Post constraint. It has been shown
that a moving medium, even isotropic, must be treated as bi-anisotropic [5, 11].

Writing the total field U = (D, B) we introduce the two-frequency matrix-valued Wigner
distribution

W(x, p;ω1, ω2) = 1

(2π)3

∫
e−ip†yU1

(
x +

�y
2

)
U†

2

(
x − �y

2

)
dy, (4)

where U1 and U2 are the total fields at frequencies ω1/� and ω2/� respectively. The parameter
� is roughly the ratio of the wavelength to the distance of propagation. In the present setting,
� � 1. Correspondingly, we will replace ω in (2) by ω/�. The 2f-WD is clearly equivalent to
the two-point function U1U†

2 via the inverse Fourier transform.
Note the symmetry of the Wigner distribution matrix

W†(x, p;ω1, ω2) = W(x, p;ω2, ω1). (5)

In other words, the right-hand side of (4) is invariant under the simultaneous transformations
of the Hermitian conjugation † and frequency exchange ω1 ↔ ω2.

In what follows we shall omit writing the arguments of any fields unless necessary.
We put the equation (2) in the form of general symmetric hyperbolic system [17]

− i
ω

�
U + Rj ∂xj

(K−1U) = 0, (6)

where Rj are the symmetric matrix given by

Rj =
[

0 Tj

−Tj 0

]
with

T1 =
⎡⎣0 0 0

0 0 −1
0 1 0

⎤⎦ , T2 =
⎡⎣ 0 0 1

0 0 0
−1 0 0

⎤⎦ , T3 =
⎡⎣0 −1 0

1 0 0
0 0 0

⎤⎦ .

The matrices iTj , j = 1, 2, 3 are related to the photon spin matrices [2]. For ease of notation,
we set L = K−1.

Let ω′ = (ω1 − ω2)/� and ω̄ = (ω1 + ω2)/2. The 2f-WD satisfies the Wigner–Moyal
equations

iω′W = i

�
pj Rj

∫
eiq†xL̂(q)W

(
p − �q

2

)
dq − i

�

∫
W
(

p +
�q
2

)
L̂(q) eiq†x dq pj Rj

+
1

2
Rj ∂xj

∫
eiq†xL̂(q)W

(
p − �q

2

)
dq +

1

2
∂xj

∫
W
(

p +
�q
2

)
L̂(q) eiq†x dq Rj (7)

i
2ω̄

�
W = i

�
pj Rj

∫
eiq†xL̂(q)W

(
p − �q

2

)
dq +

i

�

∫
W
(

p +
�q
2

)
L̂(q) eiq†x dq pj Rj

+
1

2
Rj ∂xj

∫
eiq†xL̂(q)W

(
p − �q

2

)
dq − 1

2
∂xj

∫
W
(

p +
�q
2

)
L̂(q) eiq†x dq Rj ,

(8)
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where L̂ is the Fourier transform (spectral density) of L

L(x) =
∫

eix†qL̂(q) dq.

The derivation is given in appendix A. For a Hermitian L we have

L̂(p) = L̂†(−p), ∀ p.

Clearly, equation (7) is related to the time derivative of the mutual coherence (1) with respect
to the central time t while equation (7) is related to the time derivative with respect to the
differential time τ . We will first focus on equation (7) and comment on the constraint posed
by (8) in the conclusion. The full analysis of equation (8) requires substantially different
treatment and will be presented elsewhere. However, we will discuss the constraint imposed
by the leading order terms of equation (8) in the conclusion and its implication on the two-
spacetime correlation.

3. Geometrical optics

In this regime, we let � � 1 implying a small ratio between the wavelength and the scale of
background heterogeneity which is comparable to the distance of propagation.

Let us first simplify equation (7) by expanding the expression in the power of � and
neglecting O(�) terms. The first two terms on the right-hand side of equation (7) reduce to
�−1P0 − P1, where

P0(p)W = ipj Rj LW − iWLpj Rj

P1(p)W = 1
2pj Rj ∂xl

L∂pl
W + 1

2∂pl
W∂xl

Lpj Rj ,

while the last two terms on the right-hand side become

P2W = 1
2 Rj ∂xj

[LW] + 1
2∂xj

[WL]Rj .

We employ the regular expansion W = W̄ + �W1 + · · · and substitute it into the resulting
equation. The leading order equation

P0W̄ = 0 (9)

can be solved as follows [17].
For a positive (or negative) definite L, L1/2 is well defined and under the transformation

L1/2 the matrix pj Rj L is transformed into the Hermitian matrix L1/2pj Rj L1/2 which has
a complete set of eigenvectors and eigenvalues {�σ } ⊂ R. Let {dσ,α} be the associated
eigenvectors in the original vector space, where the index α keeps track of the multiplicity.
Let the eigenvectors {dσ,α} be normalized such that dσ,α†Ldτ,ζ = δσ,τ δα,ζ . It is easy to check
that {eσ,α† : eσ,α = Ldσ,α} are the left eigenvectors of pj Rj L and they are orthogonal to
{dτ,ζ (p)} with respect to the standard scalar product

eσ,α†dτ,ζ = δσ,τ δα,ζ . (10)

Clearly, the eigenvalues �σ as a function of the wavevector p define the dispersion relations.
For general bianisotropic dielectric, it is easy to check that the zero eigenvalue �0 = 0 is
always an eigenvalue with the associated left eigenvectors

e0,1(p) ∼
(

p
0

)
, e0,2(p) ∼

(
0
p

)
. (11)

Since L is invertible, it follows that the null space of pj Rj L is spanned by {d0,1 = Ke0,1, d0,2 =
Ke0,2}. The relations (10) and (11) imply that dτ,ζ , τ 
= 0, are transverse vectors in the sense
that they are orthogonal to the wavevector p.
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Throughout the English indices represent the spatial degrees of freedom while the Greek
indices represent the polarization degrees of freedom. The Einstein summation convention
and the Hermitian conjugation are used only on the English indices.

Define

Dσ,αζ (p, q) = dσ,α(p)dσ,ζ (q)† (12)

Eσ,αζ (p, q) = eσ,α(p)eσ,ζ (q)†. (13)

The null space of P0 is the linear span of {Dτ,αζ (p, p),∀ τ, α, ζ, p}, denoted by Mp, for each
p 
= 0 with the scalar product Tr[H†LGL], H, G ∈ Mp.

Then the general solution to (9) can be expressed as

W̄ =
∑
σ,α,ζ

W̄ σ
αζ Dσ,αζ (p, p), (14)

where W̄ σ
αζ are generally complex-valued functions. The matrices W̄σ = [W̄ σ

αζ

]
, free of the

English indices, are referred to as the coherence matrices.
The constraint that the electric displacement D and the magnetic induction B are both

divergence free yields

(±∇,±∇) · W̄ = 0

which, in view of definition (4), is equivalent to

(±p†,±p†)W̄ = 0. (15)

Hence by (11) e0,j†W̄ = 0 and by (10) W̄0 = 0, where W0 is the 2 × 2 coherence matrix
associated with the non-propagating mode �0 = 0. This implies, by (10), that W̄ is a
transverse field.

The O(1) equation is

P0W1 = iω′W̄ + P1W̄ − P2W̄, (16)

which is solvable if the right-hand side is orthogonal to the null space, Mp, of P0. The
solvability condition for (16) then leads to the governing equation for the 2 × 2 coherence
matrices:

iω′W̄τ − ∇x�
τ · ∇pW̄τ + ∇p�

τ · ∇xW̄τ − Cτ W̄τ − W̄τ Cτ† = 0, (17)

where the depolarization matrix Cτ = [Cτ
ξα

]
is given by

Cτ
ξα = ∂xj

�τ eτ,ξ†∂pj
dτ,α + 1

2

[
∂xj

eτ,ξ†Rj eτ,α − eτ,ξ†Rj ∂xj
eτ,α
]
.

Using (10) we can cast Cτ in the explicitly skew-symmetric (in ξ, α) form

Cτ
ξα = 1

2∂xj
�τ
[
eτ,ξ†K∂pj

eτ,α − ∂pj
eτ,ξ†Keτ,α

]
+ 1

2

[
∂xj

eτ,ξ†Rj eτ,α − eτ,ξ†Rj ∂xj
eτ,α
]
.

The details of the calculation is given in appendix B. Note that equation (17) is invariant under
the simultaneous transformations of the Hermitian conjugation and frequency exchange.

4. Weak-disorder regime

Now we consider the weak coupling regime with the permittivity–permeability tensor K given
by

K−1(x) = L0(x)
[
I +

√
�V
(x

�

)]
, � � 1, (18)
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where the Hermitian matrix L0 represents the slowly varying background medium and
√

�V
represents the medium fluctuations. The small parameter � describes the ratio of the scale of
the medium fluctuation or the wavelength to the propagation distance or the variability scale
of L0 .

To preserve the Hermicity of L the matrix V must satisfy

V†L0 = L0V. (19)

We shall assume below that L0 is either positive or negative definite. A negative definite L0

gives rise to negative index of refraction [18, 19]. A nondefinite L0 gives rise to complex-
valued refractive index and hence a lossy medium. To fix the idea, let us take L0 to be positive
definite. Our method applies equally well to the negative-definite case.

We assume that V = [Vij ] is a stationary (statistically homogeneous) random field with
the spectral density tensors Φ = [�ijmn],Ψ = [�ijmn], such that

〈Vij (x)V ∗
mn(y)〉 =

∫
eik†(x−y)�ijmn(k) dk (20)

〈Vij (x)Vmn(y)〉 =
∫

eik†(x−y)�ijmn(k) dk, (21)

which implies

〈V̂ij (p)V̂ ∗
mn(q)〉 = �ijmn(p)δ(p − q) (22)

〈V̂ij (p)V̂mn(q)〉 = �ijmn(p)δ(p + q). (23)

Here and below * denotes the complex conjugation. In the case of real-valued V,Φ = Ψ.
The spectral density tensors have the basic symmetry

�∗
ijmn(p) = �mnij (p), (24)

�ijmn(−p) = �mnij (p), (25)

equation (19) implies that

L0,ij�mnjl(p) = L∗
0,lj�mnji(p) (26)

L0,ij�mnjl(p) = L∗
0,lj�mnji(p) (27)

iω′W = i

�
pj Rj

∫
eiq†xL̂0(q)W

(
p − �q

2

)
dq − i

�

∫
W
(

p +
�q
2

)
L̂0(q) eiq†x dq pj Rj

+
1

2
Rj ∂xj

∫
eiq†xL̂0(q)W

(
p − �q

2

)
dq +

1

2
∂xj

∫
W
(

p +
�q
2

)
L̂0(q) eiq†x dq Rj

+
i√
�
pj Rj

∫
eiq†x̃L̂0

(
q′

�

)
V̂(q − q′)W

(
p − q

2

)
dq′ dq

− i√
�

∫
W
(

p +
q
2

)
(̂V†)(q − q′)L̂0

(
q′

�

)
eiq†x̃ dq′ dq pj Rj

+
1

2
√

�
Rj ∂x̃j

∫
eiq†x̃L̂0

(
q′

�

)
V̂(q − q′)W

(
p − q

2

)
dq′ dq

+
1

2
√

�
∂x̃j

∫
W
(

p +
q
2

)
V̂†(q − q′)L̂0

(
q′

�

)
eiq†x̃ dq′ dq Rj , (28)
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where x̃ = x/� is the fast spatial variable and (̂V†)(q) = V̂†(−q) the Fourier transform of
V†. As in the geometrical optics we approximate the first four terms on the right-hand side of
equation (28) by �−1P0W − P1W + P2W. For the last four terms on the right-hand side
of equation (28) we have∫

eiq†x̃L̂0

(
q′

�

)
V̂
(

q − q′
)

W
(

p − q
2

)
dq′ dq ≈ L0(x)

∫
eiq†x̃V̂(q)W

(
p − q

2

)
dq∫

W
(

p +
q
2

)
V̂†(q − q′)L̂0

(
q′

�

)
eiq†x̃ dq′ dq ≈

∫
W
(

p +
q
2

)
V̂†(−q) eiq†x̃ dq L0(x).

Hence we have the simplified form

iω′W = �−1P0W − P1W + P2W + �−1/2Q1W + �−1/2Q2W, (29)

where

Q1W = ipj Rj L0

∫
eiq†x̃V̂(q)W

(
p − q

2

)
dq − i

∫
W
(

p +
q
2

)
V̂†(q) eiq†x̃ dq L0pj Rj

Q2W = 1

2
Rj L0∂x̃j

∫
eiq†x̃V̂(q)W

(
p − q

2

)
dq +

1

2
∂x̃j

∫
W
(

p +
q
2

)
V̂†(−q) eiq†x̃ dq L0Rj .

Hereafter, we shall work with equation (29) to derive the 2f-RT equations using the
MSE.

5. Multiscale expansion

The key point of MSE is to separate the fast variable x̃ from the slow variable x and make the
substitution

∇W → ∇xW + �−1∇x̃W.

Consequently,

P2W → P2W + �−1P̃2W

with

P2W = 1
2 Rj ∂xj

[LW] + 1
2∂xj

[WL]Rj (30)

P̃2W = 1
2 Rj L∂x̃j

W + 1
2∂x̃j

WLRj . (31)

The idea is that for sufficiently small � the two widely separated scales, represented by x and
x̃ respectively, become mathematically independent.

We posit the expansion W = W̄ +
√

�W1 + �W2 + · · ·, substitute it into equation (29) and
equate terms of same order of magnitude.

The O(�−1) equation is

(P̃2 + P0)W̄ = 0. (32)

We hypothesize that the leading order term W̄ = W̄(x, p) be independent of the fast variable
x̃. Thus P̃2W̄ = 0 and equation (32) reduces to (9) and its solution takes the form (14).

The O(�−1/2) equation is

P0W1 + P̃2W1 = −Q1W̄ − Q2W̄ (33)
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or equivalently, after Fourier transforming in x̃ and adding a regularizing O(�) term

−i2�Ŵ1(k, p) + kj Rj L0Ŵ1(k, p) + Ŵ1(k, p)L0kj Rj

+ 2[pj Rj L0Ŵ1(k, p) − Ŵ1(k, p)L0pj Rj ]

= −Rj L0(2pj + kj )V̂(k)W̄
(

p − k
2

)
+ W̄

(
p +

k
2

)
V̂†(−k)(2pj − kj )L0Rj

(34)

and posit the solution

Ŵ1(k, p) =
∑
σ,α,ζ

Cσ
αζ (k, p) Dσ,αζ

(
p +

k
2
, p − k

2

)
, (35)

where Cσ
αζ are generally complex numbers. Note that the two arguments of Dσ,αζ in (35) are

at different momenta p + k/2, p − k/2.
We substitute (14) and (35) into equation (34) and multiply it with eσ,α

(
p + k

2

)†
from the

left and with eσ,ζ
(
p − k

2

)
from the right and solve the resulting equation algebraically. This

yields the coefficients

Cσ
αζ (k, p) =

(
�σ

(
p +

k
2

)
− �σ

(
p − k

2

)
− i�

)−1∑
η

×
[
−�σ

(
p +

k
2

)
W̄ σ

ηζ

(
p − k

2

)
eσ,α

(
p +

k
2

)†
V̂(k)dσ,η

(
p − k

2

)

+ �σ

(
p − k

2

)
W̄ σ

αη

(
p +

k
2

)
dσ,η

(
p +

k
2

)†
V̂†(−k)eσ,ζ

(
p − k

2

)]
. (36)

When the leading term W̄ is invariant under the simultaneous transformations of the Hermitian
conjugation † and frequency exchange ω1 ↔ ω2, so is W1 which is equivalent to

Cσ∗
ζα (−k, p;ω1, ω2) = Cσ

αζ (k, p;ω2, ω1).

Finally, the O(1) terms yield the equation after regularization

�W2 +
1

2
Rj L0

∂

∂x̃j

W2 +
1

2

∂

∂x̃j

W2L0Rj + ipj Rj L0W2 − iW2L0pj Rj = F (37)

with

F = iω′W̄ + P1W̄ − P2W̄ − Q1W1 − Q2W1. (38)

It suffices to note that in order for the resulting solution �W2 to vanish in the limit � → 0, F
must satisfy the solvability condition

lim
�→0

Tr〈G†L0FL0〉 = 0 (39)

for all random stationary matrices G satisfying equation (32). This can be seen by transforming
equation (37) into Tr〈G†L0(37)L0〉 which by equation (32) implies 2�Tr〈G†L0W2L0〉 =
Tr〈G†L0FL0〉 and hence (39).

Fortunately, we do not need to work with the full solvability condition (39). It suffices to
demand (39) to be fulfilled by all deterministic G, independent of x̃, such that

pj Rj L0G − GL0pj Rj = 0. (40)

In other words, as in (14), we consider only a subspace of the solution space of equation (32)
and replace (39) by

lim
�→0

Tr(Eτ,ξν†(p, p)〈F(x, x̃, p)〉) = 0, ∀ τ, ξ, ν, x, x̃, p, (41)
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where Eτ,ξν are defined in (13). As (29), (33) and (38) are invariant under the simultaneous
transformations of the Hermitian conjugation † and frequency exchange ω1 ↔ ω2, therefore
equation (41) must also be invariant under the same transformations.

To summarize, we have constructed the asymptotic solution W̄ +
√

�W1 + �W2 which
satisfies approximately the 2f Wigner–Moyal equation in the sense that the remainder vanishes
in a suitable sense as � → 0 [6, 7].

With (35)–(36) and (38), equation (41) is an implicit form of 2f-RT equations that
determines the leading order coherence matrix. Our next step is to write (41) explicitly
in terms of explicit, physical quantities.

6. 2f-RT equations

As in the geometrical optics, the terms iω′W̄ + P1W̄ − P2W̄ in the expression (38) yield the
left-hand side of (17) after the operation (41).

First, note the key expression〈∫
dq eiq†x̃V̂(q)W1

(
p − q

2

)〉
sj

=
∑

σ,α,ζ,η

∫
dk(�σ (p + k) − �σ(p) − i�)−1

× [−�σ(p + k)W̄ σ
ηζ (p)e

σ,α∗
f (p + k)�fgsi(k)dσ,η

g (p)D
σ,αζ

ij (p + k, p)

+ �σ (p)W̄ σ
αη(p + k)dσ,η∗

g (p + k)�∗
fgsi(−k)e

σ,ζ

f (p)Dσ,αζ (p + k, p)
]

and〈∫
dq eiq†x̃W1

(
p +

q
2

)
V̂(−q)†

〉
sj

=
∑

σ,α,ζ,η

∫
dk(�σ (p) − �σ(p − k) − i�)−1

× [−�σ(p)W̄ σ
ηζ (p − k)e

σ,α
f (p)∗�fgjn(k)dσ,η

g (p − k)Dσ,αζ
sn (p, p − k)

+ �σ (p − k)W̄ σ
αη(p)dσ,η∗

g (p)�∗
fgjn(−k)e

σ,ζ

f (p − k)Dσ,αζ
sn (p, p − k)

]
.

The above expressions are independent of the fast variable x̃ so 〈Q2W1〉 = 0. We also have

Tr(Eσ,ξν†(p, p)〈Q1W1〉) = i
∑
α,η

∫
dk(�τ (p + k) − �τ(p) − i�)−1�σ(p) eσ,ξ∗

s (p)

× [−�σ(p + k)W̄ σ
ην(p)e

σ,α∗
f (p + k)�fgsi(k)dσ,η

g (p)d
σ,α
i (p + k)

+ �σ (p)W̄ σ
αη(p + k)dσ,η∗

g (p + k)�∗
fgsi(−k)e

σ,ν
f (p)d

σ,α
i (p + k)

]
− i
∑
ζ,η

∫
dk(�σ (p) − �σ(p − k) − i�)−1�σ(p)e

σ,ν
j (p)

× [−�σ(p)W̄ σ
ηζ (p − k)e

σ,ξ∗
f (p)�fgjn(k)dσ,η

g (p − k)dσ,ζ∗
n (p − k)

+ �σ (p − k)W̄ σ
ξη(p)dσ,η∗

g (p)�∗
fgjn(−k)e

σ,ζ

f (p − k)dσ,ζ∗
n (p − k)

]
.

To state the full result in a concise form, let us introduce the following quantities. Define
the scattering kernel tensors Sτ (p, q) = [Sτ

ξναζ (p, q)
]

as

Sτ
ξανζ (p, q) = �τ(p)�τ (q)eτ,ξ∗

s (p)d
τ,α
i (q)�sifg(p − q)e

τ,ν
f (p)dτ,ζ∗

g (q). (42)

Using (24)–(27) one can derive the alternative expressions in terms of Ψ

Sτ
ξανζ (p, q) = �τ(p)�τ (q)e

τ,ν
f (p)dτ,ζ∗

g (q)�∗
fgsi(q − p)eτ,α

s (q)d
τ,ξ∗
i (p)

= �τ(p)�τ (q)eτ,ξ∗
s (p)d

τ,α
i (q)�sifg(q − p)e

τ,ζ∗
f (q)dτ,ν

g (p)
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and the properties

Sτ
ξανζ (p, q) = Sτ∗

νζξα(p, q) (43)

Sτ
ξανζ (q, p) = Sτ

ζναξ (p, q). (44)

For any Mp-valued field G(p) define the (ξ, ν)-component of the tensor Sτ (p, q) : G(q)

as

[Sτ (p, q) : G(q)]ξν =
∑
α,ζ

Sτ
ξανζ (p, q)Gαζ (q).

Define the tensors Στ = [�τ
ξν

]
analogous to the total scattering cross section as

Στ (p) =
{∫

δ(�τ (p) − �τ(q)) − i
∫
−(�τ (p) − �τ(q))−1

}
Sτ (p, q) : I dq.

The 2f-RT equations for the coherence matrix W̄τ then reads as

iω′W̄τ − ∇x�
τ · ∇pW̄τ + ∇p�

τ · ∇xW̄τ − Cτ W̄τ − W̄τ Cτ†

= 2π

∫
δ(�τ (q) − �τ(p))Sτ (p, q) : W̄τ (q) dq

−Στ (p)W̄τ (p) − W̄τ (p)Στ†(p), ∀ τ. (45)

The δ-function and Cauchy singular kernel arise because of the fact

lim
�→0

1

x − i�
= iπδ(x) +

1

x
(46)

in the sense of generalized function.
With the property (43) one can verify directly the invariance of (45) with respect to the

simultaneous transformations of the Hermitian conjugation and frequency exchange.

6.1. Birefringence: scalar 2f-RT equation

Although, in view of (11), the zero eigenvalue �0 = 0 has multiplicity two in general, the
nonzero eigenvalues in media other than the simplest isotropic medium often have multiplicity
one as we shall see in section 7. This is closely related to the birefringence effect. Under such
circumstances, the 2f-RT equations take a much simplified form which we now state.

Because �j, j = 1, 2, 3, 4 are simple (of multiplicity one), expression (14) reduces to

W̄ =
∑

σ

W̄ σ Dσ (p, p).

Consequently, (45) becomes a scalar equation for W̄ σ and the different polarization modes
decouple:

iω′W̄ τ − ∇x�
τ · ∇pW̄

τ + ∇p�
τ · ∇xW̄

τ

= 2π

∫
δ(�τ (q) − �τ(p))Sτ (p, q)W̄ τ (q) dq − 2�τ(p)W̄ τ (p), ∀ τ (47)

where

Sτ (p, q) = �τ(p)�τ (q)eτ∗
s (p)dτ

i (q)�sifg(p − q)eτ
f (p)dτ∗

g (q) (48)

�τ(p) = π

∫
δ(�τ (p) − �τ(q))Sτ (p, q) dq. (49)

Note that the Cauchy principal value integral disappears from (49) whenever �τ and W̄
commute.



Mutual coherence of polarized light in disordered media: two-frequency method extended 13677

6.2. Paraxial approximation: spatial anisotropy

Consider now a spatially anisotropic spectral density tensor for a medium fluctuating much
more slowly in the longitudinal x3 = z direction, i.e. replacing Φ(p − q) in (45) by

1

θ
Φ
(

p⊥ − q⊥,
1

θ
(p − q)

)
,

which, in the limit θ → 0, tends to

δ(p − q)

∫
dkΦ(p⊥ − q⊥, k). (50)

With W̄σ = W̄σ (x⊥, z, p⊥, p), the right-hand side of equation (45) reduces to

2π

∫
δ(�τ (p⊥, p) − �τ(q⊥, p))S(p⊥, q⊥) : W̄τ (q⊥) dq⊥

− [Στ (p⊥)W̄τ (p⊥) + W̄τ (p⊥)Στ†(p⊥)],

where Sτ = [Sτ
ξανζ

]
,

Sτ
ξανζ (p⊥, q⊥) = eτ,ξ∗

s (p⊥, p)d
τ,α
i (q⊥, p)

∫
�sifg(p⊥ − q⊥, k)dke

τ,ν
f (p⊥, p)dτ,ζ∗

g (q⊥, p)

and

Στ (p⊥) =
[∫

δ(�τ (p⊥, p) − �τ(q⊥, p))

− i
∫
−(�τ (p⊥, p) − �τ(q⊥, p))−1

]
Sτ (p⊥, q⊥) : I dq⊥.

equation (45) now takes the paraxial form

∂p�τ∂zW
τ + ∇p⊥�τ · ∇x⊥W̄τ + iω′W̄τ − ∇x�

τ · ∇pW̄τ − Cτ W̄τ − W̄τ Cτ†

= 2
∫

δ(�τ (p⊥, p) − �τ(q⊥, p))S(p⊥, q⊥) : Wτ (q⊥) dq⊥

− [Στ (p⊥)Wτ (p⊥) + Wτ (p⊥)Στ†(p⊥)]. (51)

The longitudinal variable z plays the role of a temporal variable and p is a parameter so that
(51) can be solved as an ‘initial’ value problem given the initial data on z = constant and a
fixed p if ∂p�τ 
= 0.

7. Examples

In this section, we briefly discuss a few media for which the scattering tensor can be explicitly
computed (see [7] for a more elaborate discussion).

7.1. Isotropic medium

For the simplest isotropic medium, K0 = diag[ε0, ε0, ε0, µ0, µ0, µ0]. There are two nonzero
eigenvalues: �+(p) = c0|p|,�−(p) = −c0|p| of multiplicity two. Let p̂ = p/|p| and let
p̂+

⊥, p̂−
⊥ be any pair of unit vectors orthogonal to each other and to p̂ so that

{
p̂+

⊥, p̂−
⊥, p̂
}

form
a right-handed coordinate frame. Let

{
q̂+

⊥, q̂−
⊥, q̂
}

be similarly defined. The eigenvectors are

d+,+(p) =
⎛⎝√ ε0

2 p̂+
⊥√

µ0

2 p̂−
⊥

⎞⎠ , d+,−(p) =
⎛⎝ √

ε0
2 p̂−

⊥

−
√

µ0

2 p̂+
⊥

⎞⎠ ,
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d−,+(p) =
⎛⎝ √

ε0
2 p̂+

⊥

−
√

µ0

2 p̂−
⊥

⎞⎠ , d−,−(p) =
⎛⎝√ ε0

2 p̂−
⊥√

µ0

2 p̂+
⊥

⎞⎠ .

Often, in a scattering atmosphere for instance, µ̃ ≈ 0 and consequently

Sτ
ξανζ (p, q) = 1

4�ε(p − q)p̂ξ†
⊥ q̂α

⊥q̂ζ †
⊥ p̂ν

⊥, τ, ξ, α, ν, ζ = ±. (52)

This is the setting for which Chandrasekhar originally derived his famous equation of transfer
[4]. In this case, equation (45) is the two-frequency version of Chandrasekhar’s famous
transfer equation [4, 9].

As we shall see below, many materials are birefringent and permit two monochromatic
plane waves with two different linear polarizations and two different velocities to propagate
in any given direction [3]. This is the birefringence effect.

7.2. Chiral media

A chiral medium is a reciprocal, bi-isotropic medium with the constitutive matrix

K0 =
[

ε0I iχI
−iχI µ0I

]
,

where χ ∈ R is the magneto-electric coefficient. To maintain a positive-definite K0 we assume
χ2 < εµ. We then have

pj Rj L0 = c0

1 − κ2

[
0 −p×

p× 0

] [
zI −iκI
iκI z−1I

]
, (53)

where z = √
µ0/ε0 > 0 is the impedance and κ = χc0 is the chirality parameter. The four

nonzero simple eigenvalues and their corresponding eigenvectors are

e1 ∼
(

−ip̂1
⊥ + p̂2

⊥
−z−1p̂1

⊥ − iz−1p̂2
⊥

)
, �1 = c0|p|(1 + κ)−1,

e2 ∼
(

ip̂1
⊥ + p̂2

⊥
−z−1p̂1

⊥ + iz−1p̂2
⊥

)
, �2 = c0|p|(1 − κ)−1,

e3 ∼
(

−ip̂1
⊥ + p̂2

⊥
z−1p̂1

⊥ + iz−1p̂2
⊥

)
, �3 = c0|p|(κ − 1)−1,

e4 ∼
(

ip̂1
⊥ + p̂2

⊥
z−1p̂1

⊥ − iz−1p̂2
⊥

)
, �4 = c0|p|(−κ − 1)−1.

ote also that �4 = −�1,�3 = −�2. As |κ| < 1, e1, e2 are the forward propagating modes
and e3, e4 the backward propagating modes.

7.3. Birefrigence in anisotropic crystals

The only optically isotropic crystal is the cubic crystal. In the system of principal dielectric
axes, the permitivity–permeability tensor of a crystal, which is always a real, symmetric
matrix, can be diagonalized as K0 = diag[εx, εy, εz, 1, 1, 1]. One type of anisotropic crystals
are the uniaxial crystals for which εx = εy = ε⊥ 
= εz = ε‖ (if the distinguished direction, the
optic axis, is taken as the z-axis). There exist two distinct dispersion relations for the forward
modes

�o = |p|√
ε⊥

, �e =
√

p2
3

ε⊥
+

p2
1 + p2

2

ε‖
.
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The backward modes correspond to −�e,−�o. The corresponding wavevector surface
consists of a sphere and an ovaloid, a surface of revolution. The former corresponds to
an ordinary wave with a velocity independent of the wavevector, the latter an extraordinary
wave with a velocity depending on the angle between the wavevector and the optic axis [3].

Let do, de be the associated eigenvectors. Set Kε
0 = diag[ε⊥, ε⊥, ε‖] and let aσ solve the

following symmetric eigenvalue problem:

−p × (Kε
0

)−1
p × aσ = (�σ )2aσ , σ = e, o. (54)

Then the eigenvectors dσ can be written as

dσ ∼
(−p × aσ

�σ aσ

)
, σ = e, o. (55)

The same formula applies to the backward modes. Equation (54) has the following solutions:

ae = (−p2, p1, 0)†, ao =
(

p1, p2,−p2
1 + p2

2

p3

)†

from which we deduce that the wave is linearly polarized.

7.4. Gyrotropic media: magneto-optical effect

For an isotropic medium [11] in motion or in the presence of a static external magnetic field
Hext the permittivity tensor Kε

0 is no longer symmetrical; it is generally a complex Hermitian
matrix. Here, we consider the simplest such constitutive relation

D = ε0E − ig × E, B = H, (56)

where g = f Hext, f ∈ R, is the gyration vector. Equivalently, we can write

E = 1

ε2
0 − |g|2

(
ε0D + ig × D − 1

ε0
gg†D

)
.

In this case, there are two distinct forward dispersion relations [11]

�1 = c0

∣∣∣∣p +
�1

2
g

∣∣∣∣, �2 = c0

∣∣∣∣p − �2

2
g

∣∣∣∣,
where c0 = 1/

√
ε0. Clearly, the wave-vector surface consists of two spheres of the same

radius but different centers. This should be contrasted with the case of chiral media for which
the wave-vector surface consists of two concentric spheres of different radii.

The associated eigenvectors dσ , σ = 1, 2 can be written as in (55) with aσ solving (54)
and with

Kε
0 =

⎡⎣ ε0 ig3 −ig2

−ig3 ε0 ig1

ig2 −ig1 ε0

⎤⎦ .

Let g = g1p̂1
⊥ + g2p̂2

⊥ + g3p̂. We can write the three-dimensional vector aσ as aσ =
p̂1

⊥ + γσ p̂2
⊥ with

γσ =
g2

2 − g2
1 − (−1)σ

√(
g2

1 + g2
2

)2
+ 4ε2

0g
2
3

2(g1g2 − iε0g3)
, σ = 1, 2.

We see that the wave is in general elliptically polarized or linearly polarized when g is
orthogonal to the wavevector p and circularly polarized when g is parallel to p. Again, the
simplicity of the eigenvalues implies that depolarization is absent in the gyrotropic media.
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8. Conclusion

The main contribution of this work is the derivation of the 2f-RT equations (45), (47) for the
2f-WD in the weak-disorder regime based on the first Wigner–Moyal equation (7). All the
terms in the equations can be explicitly calculated from the materials properties.

Let us turn to the second Wigner–Moyal equation (8) and briefly discuss its implications.
By the same multi-scale expansion, the leading order term from equation (8) is

2ω̄W̄ = ipj Rj LW̄ + iW̄Lpj Rj ,

which, along with (14), then implies that the wavenumber p should be restricted to the surface

ω̄ = �σ(p).

Denote the area element of the surface by d�. Hence the mutual coherence in this regime is
given approximately as

〈u(x1, t1)u†(x2, t2)〉 ∼
∑
σ,αζ

∫∫
e−iω′t e−iτ ω̄/�

×
∫

ω̄=�σ (p)

eip†(x1−x2)/�W̄ σ
αζ

(x1 + x2

2
, p; ω̄, ω′

)
Dσ,αζ (p, p) d�(p) dω̄ dω′,

where the coherence matrix W̄σ = [W̄ σ
αζ

]
satisfies the 2f-RT equations (45) and d�(p) is the

area element of the surface ω̄ = �σ(p).
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Appendix A. Derivation of Wigner–Moyal equation

From the Maxwell equations, we have

iω1W = 1

(2π)3

∫
e−ip†yRj ∂xj

(
L
(

x +
�y
2

)
U1

)
U†

2 dy

= 2i

�(2π)3
pj Rj

∫
e−ip†yL

(
x +

�y
2

)
U1U†

2 dy

+
1

(2π)3

∫
e−ip†yRj L

(
x +

�y
2

)
U1∂xj

U†
2 dy

after changing variable and integrating by parts. Using the identity

Rj ∂xj

∫
e−ip†yL

(
x +

�y
2

)
U1U†

2 dy =
∫

e−ip†yRj ∂xj

[
L
(

x +
�y
2

)
U1

]
U†

2 dy

+
∫

e−ip†yRj L
(

x +
�y
2

)
U1∂xj

U†
2 dy,

we then obtain

i
ω1

�
W = 1

(2π)3

∫
e−ip†yRj ∂xj

(
L
(

x +
�y
2

)
U1

)
U†

2 dy

= i

�(2π)3
pj Rj

∫
e−ip†yL

(
x +

�y
2

)
U1U†

2 dy

+
1

2(2π)3
Rj ∂xj

∫
e−ip†yL

(
x +

�y
2

)
U1U†

2 dy. (A.1)
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Similarly,

− i
ω2

�
W = 1

(2π)3

∫
e−ip†yU1∇x

(
U†

2L
(

x − �y
2

))
Rj dy

= − i

�(2π)3

∫
e−ip†yU1U†

2L
(

x − �y
2

)
dypj Rj

+
1

2(2π)3
∇x

∫
e−ip†yU1U†

2L
(

x − �y
2

)
dy Rj . (A.2)

By the spectral representation of L we write

1

(2π)3

∫
e−ip†yL

(
x +

�y
2

)
U1U†

2 dy =
∫

eiq†xL̂(q)W
(

p − �q
2

)
dq (A.3)

1

(2π)3

∫
e−ip†yU1U†

2L
(

x − �y
2

)
dy =

∫
W
(

p +
�q
2

)
L̂(q) eiq†x dq. (A.4)

Adding or subtracting (A.1) and (A.2) with (A.3)–(A.4) we obtain the Wigner–Moyal
equations.

Appendix B. Derivation of geometrical optics equation

Consider the following term from P2W̄:

Tr
[
Eτ,ξν†Rj ∂xj

[
LW̄ σ

αζ Dσ,αζ
]] = Tr

[
Eτ,ξν†Rj L∂xj

[
W̄ σ

αζ Dσ,αζ
]]

+ Tr
[
Eτ,ξν†Rj ∂xj

LW̄ σ
αζ Dσ,αζ

]
= Tr

[
Eτ,ξν†Rj L∂xj

W̄ σ
αζ Dσ,αζ

]
+ Tr

[
Eτ,ξν†Rj LW̄ σ

αζ ∂xj
Dσ,αζ

]
+ Tr
[
Eτ,ξν†Rj ∂xj

LW̄ σ
αζ Dσ,αζ

]
. (B.1)

The first term on the right-hand side of (B.1) can be calculated as

Tr
[
Eτ,ξν†Rj L · ∂xj

W̄ σ
αζ Dσ,αζ

] = Tr
[
Eτ,ξν†∂pj

[plRlL] ∂xj
W̄ σ

αζ Dσ,αζ
]

= Tr
[
eτ,ν∂pj

[eτ,ξ†plRlL]∂xj
W̄ σ

αζ Dσ,αζ
]− Tr

[
eτ,ν∂pj

[eτ,ξ†]plRlL∂xj
W̄ σ

αζ Dσ,αζ
]

= Tr
[
Eτ,ξν†∂pj

�τ ∂xj
W̄ σ

αζ Dσ,αζ
]

+ Tr
[
eτ,ν∂pj

[eτ,ξ†][�τ − plRlL]∂xj
W̄ σ

αζ Dσ,αζ
]

= δτδδξαδνζ ∇p�
τ · ∇xW̄

τ
ξν (B.2)

using the eigenvector property and (10) while the last term on the right-hand side of (B.1) is

Tr
[
Eτ,ξν†Rj ∂xj

LW̄ σ
αζ Dσ,αζ

] = δτσ δνζ eτ,ξ†Rj ∂xj
Ldτ,αW̄ τ

αν. (B.3)

We turn to the middle term on the right-hand side of (B.1). We have the following calculation:∑
σ,α,ζ

Tr
[
Eτ,ξν†Rj LW̄ σ

αζ

[
∂xj

dσ,αdσ,ζ † + dσ,α∂xj
dσ,ζ †]]

= eτ,ξ†Rj L∂xj
dτ,αW̄ τ

αν +
∑
σ,α,ζ

Tr
[
eτ,ν∂pl

[eτ,ξ†pj Rj L]W̄ σ
αζ dσ,α∂xl

dσ,ζ †]
−
∑
σ,α,ζ

Tr
[
eτ,ν∂pl

eτ,ξ†W̄ σ
αζpj Rj Ldσ,α∂xl

dσ,ζ †]
= eτ,ξ†Rj L∂xj

dτ,αW̄ τ
αν +

∑
σ,α,ζ

Tr
[
eτ,ν∂pl

[�τ eτ,ξ†]W̄ σ
αζ dσ,α∂xl

dσ,ζ †]
−
∑
σ,α,ζ

Tr
[
eτ,ν∂pl

eτ,ξ†W̄ σ
αζ�

σ dσ,α∂xl
dσ,ζ †]
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=
∑

α

eτ,ξ†Rj L∂xj
dτ,αW̄ τ

αν +
∑

ζ

∂pj
�τ ∂xj

dτ,ζ †eτ,νW̄ τ
ξζ

+
∑
σ,α,ζ

(�τ − �σ)W̄ σ
αζ ∂pj

eτ,ξ†dσ,α∂xj
dσ,ζ †eτ,ν . (B.4)

The second part in P2W̄ can be calculated in the same manner. The counterpart of (B.2) yields
exactly the same expression as the right-hand side of (B.2) while the counterparts of (B.3) and
(B.4) yield, respectively,∑

ζ

W̄ τ
ξζ dτ,ζ †∂xj

LRj eτ,ν

and∑
σ,α,ζ

Tr
[
Eτ,ξν†W̄ σ

αζ

[
∂xj

dσ,αdσ,ζ + dσ,α∂xj
dσ,ζ
]
LRj

]
=
∑

ζ

W̄ τ
ξζ ∂xj

dτ,ζ †LRj eτ,ν +
∑

α

eτ,ξ†∂xl
dτ,α∂pl

�τ W̄ τ
αν

+
∑
σ,α,ζ

(�τ − �σ)W̄ σ
αζ eτ,ξ†∂xl

dσ,αdσ,ζ †∂pl
eτ,ν . (B.5)

Next let us turn to the first part in P1W̄:∑
σ,α,ζ

Tr
[
Eτ,ξν†pj Rj∇xL · ∇p

[
W̄ σ

αζ dσ,αdσ,ζ †]]
=
∑

α

eτ,ξ†pj Rj∇xL · ∇pW̄
τ
ανdτ,α

+
∑
σ,α,ζ

Tr
[
Eτ,ξν†plRl∂xj

LW̄ σ
αζ ∂pj

[dσ,αdσ,ζ †]
]
. (B.6)

The first term on the right-hand side of (B.6) equals∑
α

∂xj
(�τ eτ,ξ†)dτ,α∂pj

W̄ τ
αν −

∑
α

∂xj
eτ,ξ†plRlLdτ,α∂pj

W̄ τ
αν = ∇x�

τ · ∇pW̄
τ
ξν,

while the second term can be calculated as∑
σ,α,ζ

∂xj
(�τ eτ,ξ†)W̄ σ

αζ ∂pj
[dσ,αdσ,ζ †]eτ,ν −

∑
σ,α,ζ

∂xj
eτ,ξ†plRlLW̄ σ

αζ ∂pj
[dσ,αdσ,ζ †] eτ,ν

=
∑

α

eτ,ξ†∂pj
dτ,α∂xj

�τ W̄ τ
αν +

∑
ζ

W̄ τ
ξζ ∂xj

�τ ∂pj
dτ,ζ †eτ,ν

+
∑

α

�τ W̄ τ
αν∂xj

eτ,ξ†∂pj
dτ,α +

∑
σ,α,ζ

(�τ − �σ) W̄ σ
αζ ∂xj

eτ,ξ†dσ,α∂pj
dσ,ζ †eτ,ν

−
∑

α

W̄ τ
αν∂xj

eτ,ξ†plRlL∂pj
dτ,α. (B.7)

The last term on the right-hand side of (B.7) can be further expressed as

−
∑

α

W̄ τ
αν∂xj

eτ,ξ†∂pj
[plRlLdτ,α] +

∑
α

W̄ τ
αν∂xj

eτ,ξ†Rj Ldτ,α

= −
∑

α

W̄ τ
αν∂pj

�τ ∂xj
eτ,ξ†dτ,α −

∑
α

W̄ τ
αν�

τ ∂xj
eτ,ξ†∂pj

dτ,α

+
∑

α

∂xj
eτ,ξ†Rj Ldτ,αW̄ τ

αν. (B.8)
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For the second part in P1W̄, the counterpart of (B.7) yields exactly the same expression as
(B.7) while the counterpart of (B.7) yields∑

α

eτ,ξ†∂pj
dτ,α∂xj

�τ W̄ τ
αν +

∑
ζ

W̄ τ
ξζ ∂xj

�τ ∂pj
dτ,ζ †eτ,ν

+
∑
σ,α,ζ

(�τ − �σ) W̄ σ
αζ eτ,ξ†∂pj

dσ,αdσ,ζ †∂xj
eτ,ν

+ W̄ τ
ξζ dτ,ζ †LRj ∂xj

eτ,ν − W̄ τ
ξζ ∂pj

�τ dτ,ξ†∂xj
eτ,ν .

In the final expression, many of the above terms in P1W̄ − P2W̄ cancel. For instance, all the
terms involving (�τ − �σ), all the terms involving W̄ τ

ξζ ∂pj
�τ , W̄ τ

αν∂pj
�τ and all the terms

involving �τW̄ τ
ξζ , �

τ W̄ τ
αν cancel. Using the fact eτ,α = Ldτ,α and some algebra we obtain

Tr[Eτ,ξν†P1W̄] − Tr[Eτ,ξν†P2W̄] − ∇x�
τ · ∇pW̄

τ
ξν + ∇p�

τ · ∇xW̄
τ
ξν

=
∑

α

eτ,ξ†∂pj
dτ,α∂xj

�τ W̄ τ
αν +

∑
ζ

W̄ τ
ξζ ∂xj

�τ ∂pj
dτ,ζ †eτ,ν

+
1

2

∑
α

∂xj
eτ,ξ†Rj eτ,αW̄ τ

αν − 1

2

∑
α

eτ,ξ†Rj ∂xj
eτ,αW̄ τ

αν

+
1

2

∑
ζ

W̄ τ
ξζ eτ,ζ †Rj ∂xj

eτ,ν − 1

2

∑
ζ

W̄ τ
ξζ ∂xj

eτ,ζ †Rj eτ,ν .
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