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The paper addresses the space-frequency correlations of electromagnetic waves in general random, bianisotro-
pic media whose constitutive tensors are complex Hermitian matrices. The two-frequency Wigner distribution
(2f-WD) for polarized waves is introduced to describe the space-frequency correlations, and the closed form
Wigner–Moyal equation is derived from the Maxwell equations. Two-frequency radiative transfer (2f-RT) equa-
tions are then derived from the Wigner–Moyal equation by using the multiple-scale expansion. For the sim-
plest isotropic medium, the result coincides with Chandrasekhar’s transfer equation. In birefringent media,
the 2f-RT equations take the scalar form due to the absence of depolarization. A number of birefringent media
such as chiral, uniaxial, and gyrotropic media are examined. For the unpolarized wave in an isotropic medium
the 2f-RT equations reduces to the 2f-RT equation previously derived in part I of this research [J. Opt. Soc. Am.
A 24, 2248 (2007)]. A similar Fokker–Planck-type equation is derived from the scalar 2f-RT equation for the
birefringent media. © 2007 Optical Society of America

OCIS codes: 030.5620, 290.4210.
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. INTRODUCTION
n part I [1] of the series we studied the space-frequency
orrelation for scalar waves in random media as governed
y the Helmholtz equation with a randomly fluctuating
efractive index. To this end, we introduced the two-
requency Wigner distribution (2f-WD), which in the un-
caled form is

W�x,p;�1,�2� =
1

�2��3 � e−ip†yU1� x

�1
+

y

2�1
�

�U2
*� x

�2
−

y

2�2
�dy,

here U1 and U2 are the wave fields at frequencies �1
nd �2, respectively. Throughout, † denotes the Hermitian
onjugation of vectors or matrices and * denotes the com-
lex conjugation. The important characteristic of defini-
ion (1) is that the spatial argument of each wave field is
caled in proportion to the respective wavelength. The
ariables x are the so-called size parameter in scattering
heory when the phase velocity is unity [2].

In the weak-coupling (disorder) regime we derived the
wo-frequency radiative transfer (2f-RT) equation for the
wo-frequency Wigner distribution. We considered several
pproximations, notably the geometrical optics and
araxial approximations. Based on the dimensional
nalysis of these asymptotic equations, we obtained scal-
ng behavior of the coherence bandwidth and coherence
ength. We also obtained the space-frequency correlation
elow the transport mean free path by analytically solv-
ng one of the paraxial 2f-RT equations.

The main advantage of the 2f-RT theory over the tradi-
ional equal-time RT theory is that it describes not just
1084-7529/07/123680-11/$15.00 © 2
he energy transport but also the two space–time point
utual coherence in the following way. Let u�tj ,xj� , j
1,2 be the time-dependent wave field at two space–time
oints �tj ,xj� , j=1,2. Let x= ��1x1+�2x2� /2 and y=�1x1
�2x2. Then we have

u�t1,x1�u*�t2,x2��

=� ei��2t2−�1t1��U1�x1�U2
*�x2��d�1d�2

=� eip†ye−i��te−i���W�x,p;� + ��/2,� − ��/2��

�d� d��dp, �1�

ith t= �t1+ t2� /2 ,�= t1− t2 ,�= ��1+�2� /2 ,��=�1−�2.
ere and below �·� is the ensemble averaging w.r.t. the
edium fluctuations. In comparison, the single-time cor-

elation gives rise to the expression

u�t,x1�u†�t,x2��

=� eip†ye−i��t�� �W�x,p;� + ��/2,� − ��/2��d�	
�d��dp,

hich, through spectral decomposition, determines only
he central-frequency-integrated 2f-WD. For a statisti-
ally stationary signal, Eq. (1) would be a function of �
nly. In this case different frequency components are un-
orrelated and consequently only the equal-frequency WD
s necessary to describe the two-space–time correlation
3]. For statistically nonstationary signals the two-
requency cross correlation is needed to characterize the
wo-space–time correlation.
007 Optical Society of America
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The 2f-RT theory developed in part I has enabled pre-
ise estimation of important physical quantities such as
he coherence length and the coherence bandwidth [1],
hich are medium characteristics relevant to communica-

ions and imaging in disordered media [4,5]. In particular,
he two-frequency formulation is an indispensable tool for
he statistical stability analysis of the time-reversal com-
unication scheme with broadband signals in multiple-

cattering media (see [4], where a 2f-RT equation and its
olution play a key role). The 2f-RT theory developed here
s expected to extend these results to the case of polarized
aves.
The organization of this paper is as follows. In Section
and Appendix A, we develop the two-frequency formu-

ation of the Maxwell equations for a general heteroge-
eous dielectric in terms of 2f-WD. In Section 3, we for-
ulate the weak-coupling scaling limit for two-frequency
igner–Moyal equation. In Section 4 we develop the mul-

iscale expansion to find an approximate solution in the
eak-coupling regime. In Section 5 and Appendix B,
ased on a solvability condition we give an explicit form to
he 2f-RT equations for general bianisotropic media and
n Subsection 5.A we derive a scalar 2f-RT equation for bi-
efringent media. In Subsection 6.A, we consider the iso-
ropic medium and show that the general 2f-RT equations
fter a change of variable reduces to the two-frequency
ersion of Chandrasekhar’s transfer equation. In Subsec-
ions 6.B–6.D, we examine three birefringent media: chi-
al, uniaxial, and gyrotropic media. In Section 7, we ana-
yze the unpolarized wave in the isotropic medium in the
eometrical optics regime and show that the two-
requency version of Chandrasekhar’s equation reduces to
Fokker–Planck-type equation rigorously derivable from

he geometrical optics of the scalar wave [6]. We derive a
imilar equation from the scalar 2f-RT equation for the bi-
efringent media. We conclude the paper in Section 8 with
brief discussion on expressing the two-space–time cor-

elation in terms of solutions of the 2f-RT equations.

. MAXWELL EQUATIONS AND
IGNER–MOYAL EQUATIONS

n this paper, we consider the electromagnetic wave
ropagation in a heterogeneous, lossless, bianisotropic di-
lectric medium. We assume that the scattering medium
s free of charges and currents and start with the source-
ree Maxwell equations in the frequency domain,

− i�K�E

H	 + � 0 − ��

�� 0 	�E

H	 = 0, �2�

here K is, by the assumption of losslessness, a Hermit-
an matrix [7],

K = � K� K�

K�† K�	 , �3�

ith the permittivity and permeability tensors K� ,K�,
nd the magnetoelectric tensor K� [8]. The Hermitian ma-
rix K is assumed to be always invertible. Here and below,
� denotes the curl operator.
In an isotropic dielectric, K�=�I, K�=�I, K�=0. In a bi-

sotropic dielectric, K� as well as K� ,K� are nonzero sca-
ars. A reciprocal chiral medium is biisotropic with purely
maginary K�= i�. The appearance of nonzero K� arises
rom the so called magnetoelectric effect [9]. Crystals are
ften naturally anisotropic, and in some media (such as
iquid crystals) it is possible to induce anisotropy by ap-
lying, e.g., an external electric field. In crystal optics,
� ,K� are real, symmetric matrices and K�=0 [10]. In re-

ponse to a magnetic field, some materials can have a di-
lectric tensor that is complex-Hermitian; this is called
he gyrotropic effect. In general, a magnetoelectric, bi-
nisotropic medium has a constitutive tensor (3) with
omplex Hermitian K� ,K� and a complex matrix K� sat-
sfying the Post constraint [11]. It has been shown that a

oving medium, even isotropic, must be treated as bi-
nisotropic [9,12].
In general, K is a function of the frequency � (for dis-

ersive media), but it turns out that if the frequency-
ependence of K is sufficiently smooth, the 2f-RT equa-
ions derived in the present framework have the same
orm as for nondispersive media; the frequency depen-
ence would enter the coefficients of the equations in the
bvious way [1]. For simplicity of presentation we shall
ssume that the medium is nondispersive.
Writing the total field U= �E ,H�, we introduce the two-

requency matrix-valued Wigner distribution,

�x,p;�1,�2�

=
1

�2��3 � e−ip†yU1� x

�1
+

y

2�1
�U2

†� x

�2
−

y

2�2
�dy, �4�

here U1 and U2 are the total fields at frequencies �1 and
2, respectively. From the definition we see that the vari-
bles x and p−1 have the dimension of length/time. Al-
hough the scaling factors in the arguments of U1 and U2
re not required for the development of the 2f-RT theory
or the first-order (Maxwell) equations, they are particu-
arly useful in the case of the second-order (Helmholtz
nd paraxial wave) equations. For consistency and conti-
uity of presentation (see Section 7) we work with defini-
ion (4) in the present paper. For an alternative develop-
ent of the 2f-RT theory for Maxwell’s equations in terms

f the 2f-WD without the scaling factors, we refer the
eader to [13].

First note the symmetry of the Wigner distribution ma-
rix:

W†�x,p;�1,�2� = W�x,p;�2,�1�. �5�

n other words, the right-hand side of Eq. (4) is invariant
nder the simultaneous transformations of Hermitian
onjugation † and frequency exchange �1↔�2.

In what follows we shall omit writing the arguments of
ny fields if there is no risk of confusion.
We put Eq. (5) in the form of a general symmetric hy-

erbolic system [14,15],

− i�KU + Rl�xl
U = 0, �6�

here the symmetric matrices Rj are given by

Rj = � 0 Tj

− Tj 0 	 ,

ith
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T1 = 

0 0 0

0 0 − 1

0 1 0
�, T2 = 


0 0 1

0 0 0

− 1 0 0
�, T3 = 


0 − 1 0

1 0 0

0 0 0
� .

he matrices iTj , j=1,2,3 are related to the photon spin
atrices [16].
Throughout this paper the dot notation, “·”, is used ex-

lusively for the directional derivative as in p ·�=pj�xj
. All

ectors are treated as matrices, and the scalar product is
ust the matrix multiplication between row and column
ectors. All vectors are taken to be, by default, column
ectors, unless explicitly transposed. Einstein’s summa-
ion is applied to all english indices.

Applying the operator Rj� /�xj to W and using Eq. (6) we
btain

Rj

�

�xj
W = − 2ipjRjW + 2i� eiq†x/�1K̂�q�W�x,p −

q

2�1
�dq,

�7�

hose derivation is given in Appendix A. From Eqs. (7)
nd (5) we also have

�

�xj
WRj

† = 2iWpjRj − 2i�W�x,p +
q

2�2
�K̂�q�eiq†x/�2dq.

�8�

ere and below, K̂ stands for the Fourier transform (spec-
ral density) of K as in

K�x� =� eix†qK̂�q�dq.

or a Hermitian K we have K̂�p�=K̂†�−p�, ∀p.

. WEAK-COUPLING LIMIT
s in part I [1] we consider the weak-coupling regime
ith the tensor

K�x� = K0�I + ��V�x/���, � � 1, �9�

here the Hermitian matrix K0 represents the uniform
ackground medium and ��V represents the relative fluc-
uations of the permittivity–permeability tensor. The
mall parameter l describes the ratio of the scale of the
edium fluctuation to the propagation distance. In an

sotropic dielectric,

K0 = ��0I3 0

0 �0I3
	, V = ��̃I3 0

0 �̃I3
	 ,

here �̃ and �̃ are the electric and magnetic susceptibility,
espectively. In general K0 is a Hermitian matrix, and its
locks, as in Eq. (3), are denoted by K0

� ,K0
� ,K0

� ,K0
�†, re-

pectively. To preserve the Hermiticity of K and K0 the
atrix V must satisfy

V†K0 = K0V. �10�

e shall assume below that K0 is either positive or nega-
ive definite. Otherwise, the materials would be lossy
ince the refractive index is not real valued if K is not
0
ign definite. A negative-definite K0 gives rise to negative
efractive index, which is a hot topic in metamaterial re-
earch [17–19]. To fix the idea, let us take K0 to be posi-
ive definite. With minor notational change, our method
pplies equally well to the negative definite case.
We assume that V= Vij� is a statistically homogeneous

andom field with the spectral density tensors �
	ijmn�, �= 
ijmn� such that

�Vij�x�Vmn
* �y�� =� eik†�x−y�	ijmn�k�dk �11�

�Vij�x�Vmn�y�� =� eik†�x−y�
ijmn�k�dk. �12�

his implies the following relations:

�V̂ij�p�V̂mn
* �q�� = 	ijmn�p���p − q�, �13�

�V̂ij�p�V̂mn�q�� = 
ijmn�p���p + q�. �14�

In the case of real-valued V, �=�. The spectral den-
ity tensors have the basic symmetry

	ijmn
* �p� = 	mnij�p�, �15�


ijmn�− p� = 
mnij�p�, �16�

urthermore, Eq. (10) implies that

K0,ij
mnjl�p� = K0,lj
* 	mnji�p�, �17�

K0,ij	mnjl�p� = K0,lj
* 
mnji�p�. �18�

As in part I, we consider the regime where the wave-
engths are of the same order of magnitude as the corre-
ation length of the medium fluctuations by rescaling the
requencies �j= �̃j /� , j=1,2. This choice of frequency scal-
ng results in strong scattering by the medium heteroge-
eities. For ease of notation, we drop the tilde in �̃j below.
o capture the high-frequency behavior of the wave field,
e redefine the 2f-WD as

W�x,p� =
1

�2��3 � e−ip†yU1� x

�1
+

�y

2�1
�U2

†� x

�2
−

�y

2�2
�dy.

�19�

We also assume that �1 ,�2→� as �→0 such that

�2 − �1

��
= � �20�

ith a fixed constant �. The governing equations for Eq.
19) become

Rj

�

�xj
W = −

2i

�
pjRjW +

2i

�
K0W

+
2i

��
� eiq†x̃/�1K0V̂�q�W�p −

q

2�1
�dq,

�21�
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�

�xj
WRj =

2i

�
WpjRj −

2i

�
WK0

−
2i

��
�W�p −

q

2�2
�V̂†�q�K0e−iq†x̃/�2dq,

�22�

here x̃=x /� is the fast spatial variable. In order to can-
el the background effect, we multiply Eq. (21) by K0

−1

rom the left and Eq. (22) by K0
−1 from the right and add

hem to obtain the symmetrical form

K0
−1Rj

�

�xj
W +

�

�xj
WRjK0

−1 +
2i

�
K0

−1pjRjW − WpjRjK0
−1�

=
2i

��
� �eiq†x̃/�1V̂�q�W�p −

q

2�1
�

− W�p −
q

2�2
�V̂†�q�e−iq†x̃/�2	dq. �23�

his is the equation that we shall work with to derive the
f-RT equations employing the multiscale expansion
MSE) [1,15]. Note that Eq. (23) is invariant under the si-

ultaneous transformations of Hermitian conjugation †

nd frequency exchange �1↔�2.
If, instead of adding the two equations, we subtract

hem, then we obtain the antisymmetric form

4i

�
W + K0

−1Rj

�

�xj
W −

�

�xj
WRjK0

−1 +
2i

�
K0

−1pjRjW

+ WpjRjK0
−1�

=
2i

��
� �eiq†x̃/�1V̂�q�W�p −

q

2�1
�

+ W�p −
q

2�2
�V̂†�q�e−iq†x̃/�2	dq. �24�

Equation (24) requires a different treatment and will
ot be pursued here. However, the leading order �−1 terms
f Eq. (24) impose a constraint, which will be discussed in
he Conclusion.

. MULTISCALE EXPANSION
he key point of MSE is to separate the fast variable x̃

rom the slow variable x and make the substitution

Rj�xj
W → Rj

�

�xj
W + �−1Rj

�

�x̃j
W,

�xj
WRj →

�

�xj
WRj + �−1

�

�x̃j
WRj.

he idea is that for sufficiently small � the two widely
eparated scales, represented by x and x̃ respectively, be-
ome mathematically (but not physically) independent.
We posit the expansion W=W̄+��W1+�W2+¯, substi-
ute it into Eq. (23), and equate terms of same order of
agnitude.

. Leading Term
he �−1 terms yield

K0
−1Rj

�

�x̃j
W̄ +

�

�x̃j
W̄RjK0

−1 + 2iK0
−1pjRjW̄ − W̄pjRjK0

−1� = 0.

�25�

We hypothesize that the leading order term W̄
W̄�x ,p� is independent of the fast variable x̃. Thus the
rst two terms of Eq. (25) vanish so the equation reduces
o

K0
−1pjRjW̄ − W̄pjRjK0

−1 = 0. �26�

Equation (26) arises also in the equal-time RT theory
15] and can be solved as follows. For a positive (or nega-
ive) definite K0, consider the eigenvalues ��� and eigen-
ectors �e�,�� of the matrix K0

−1pjRj, where the index �
eeps track of the multiplicity and hence depends on �. As

0
−1pjRj is Hermitian with respect to the scalar product
efined by a†K0b , ∀a ,b�C6, the eigenvalues are real and
he eigenvectors form a complete set of K0-orthogonal ba-
is in C6. Alternatively, we may work with the Hermitian
atrix K0

−1/2pjRjK0
−1/2 in the image space, with the stan-

ard scalar product, under the transformation K0
1/2. Let

he eigenvectors �e�,�� be normalized such that
�,�†K0e�,�=��,���,�.
Clearly, the eigenvalues � as a function of the wave

ector p define the dispersion relations. For general bi-
nisotropic dielectric, it is easy to check that 0=0 is al-
ays an eigenvalue with eigenvectors

e0,1�p� � �p

0�, e0,2�p� � �0

p� . �27�

ince K0 is invertible, it follows that the null space of

0
−1pjRj is spanned by these two nonpropagating modes.

t is easy to check that �d�,�†�p� :d�,��p�=K0e�,��p�� are
he left eigenvectors of K0

−1pjRj and �d�,��p�� , �e�,��p�� are
o-orthogonal with respect to the standard scalar product:

d�,�†�p�e�,��p� = ��,���,�. �28�

his relation will be useful in deriving the 2f-RT equa-
ions (see Appendix B).

Throughout, the english indices represent the spatial
egrees of freedom while the greek indices represent the
odal and polarization degrees of freedom. It is impor-

ant to keep this distinction in mind in the subsequent
nalysis. The Einstein summation convention and the
ermitian conjugation are used only on the arabic indi-

es.
It can be checked easily that the general solution to Eq.

26) is given by [15]

W̄�x,p� = �
�,�,�

W̄��
� �x,p�E�,���p,p� �29�

here W̄� are generally complex-valued functions and
��
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E�,���p,q� = e�,��p�e�,�†
�q�. �30�

ikewise, we define

D�,���p,q� = d�,��p�d�,�†
�q�. �31�

he linear span of �E�,���p ,p� , ∀� ,� ,� ,p� is a Hilbert
pace, denoted by Mp, for each p�0 with the scalar prod-
ct TrH†KGK� ,H ,G�Mp. The matrices W̄�= W̄��

� �, free
f the arabic indices, are called the coherence matrices.

For x̃-independent W̄, the constraint that the electric
isplacement and the magnetic induction both be diver-
ence free yields, on the macroscopic scale,

�±�, ± �� · K0W̄ = 0,

hich, in view of definition (19), is equivalent to

�±p†, ± p†�K0W̄�x,p� = 0. �32�

ence by Eq. (27), d0,j†W̄=0 and by Eq. (28) W̄0=0, where
0 in Eq. (29) is the coherence matrix associated with the

onpropagating mode 0=0.

. Correctors
he �−1/2 terms yield the equation

2lW1 + K0
−1Rj

�

�x̃j
W1 +

�

�x̃j
W1RjK0

−1

+ 2iK0
−1pjRjW1 − W1pjRjK0

−1�

= 2i� dq�eiq†x̃/�1V̂�q�W̄�p −
q

2�1
�

− W̄�p −
q

2�2
�V̂†�q�e−iq†x̃/�2	 �33�

here, as in part I [1], we have added a small regulariza-
ion term. The reader is referred to part I [1] for the dis-
ussion of the choice of the regularization parameter.
hysically, the sign of the parameter (positive here)
mounts to choosing the direction of causality.
We Fourier transform Eq. (33) in x̃,

− i2�Ŵ1�k,p� + K0
−1kjRjŴ1�k,p� + Ŵ1�k,p�kjRjK0

−1

+ 2K0
−1pjRjŴ1�k,p� − Ŵ1�k,p�pjRjK0

−1�

= 2�V̂��1k�W̄�p −
k

2� − W̄�p +
k

2�V̂†�− �2k�	 ,

�34�

nd posit the solution

Ŵ1�k,p� = �
�,�,�

C��
� �k,p�E�,���p +

k

2
,p −

k

2� , �35�

here C��
� are generally complex numbers. Note that the

wo arguments of E�,�� in Eq. (35) are at different mo-
enta p+k /2 ,p−k /2.
We substitute Eqs. (29) and (35) into Eq. (34) and mul-

iply by d�,�†�p+k /2� from the left and with d�,��p
k /2� from the right and solve the resulting equation al-
ebraically. This yields the coefficients

C��
� �k,p� = ���p +

k

2� − ��p −
k

2� − i��−1

��
�
�d�,�†�p +

k

2�V̂��1k�W̄��
� �p −

k

2�
�e�,��p −

k

2� − W̄��
� �p +

k

2�e�,�†�p +
k

2�
�V̂†�− �2k�d�,��p −

k

2�	 . �36�

hen the leading term W̄ is invariant under the simulta-
eous transformations of Hermitian conjugation † and

requency exchange �1↔�2, so is W1. This invariance is
anifest in the relation

C��
�*�− k,p;�1,�2� = C��

� �k,p;�2,�1�.

inally, the O�1� terms yield the equation after adding a
egularizing term 2�W2:

2�W2 + K0
−1Rj

�

�x̃j
W2 +

�

�x̃j
W2RjK0

−1

+ 2iK0
−1pjRjW2 − W2pjRjK0

−1� = F, �37�

ith

F = 2i� dq�eiq†x̃/�1V̂�q�W1�p −
q

2�1
�

− W1�p −
q

2�2
�V̂†�q�e−iq†x̃/�2	

− K0
−1Rj

�

�xj
W̄ −

�

�xj
W̄RjK0

−1. �38�

ote again that F is invariant under the simultaneous
ransformations of Hermitian conjugation † and fre-
uency exchange �1↔�2. We can, but need not, solve Eq.
37) explicitly as Eq. (34). However, in order for the sec-
nd perturbation �W2 to vanish in the limit �→0, F must
atisfy the solvability condition

lim
�→0

Tr�G†K0FK0� = 0 �39�

or all random stationary matrices G satisfying Eq. (25).
his can be seen by transforming Eq. (37) into
r�G†K0�37�K0�, which by Eq. (25) implies
�Tr�G†K0W2K0�=Tr�G†K0FK0� and hence Eq. (39).
Fortunately, we do not need to work with the full solv-

bility condition (39). It suffices to require that Eq. (39) to
e fulfilled by all deterministic G, independent of x̃, such
hat

K0
−1pjRjG − GpjRjK0

−1 = 0. �40�

n other words, as in Eq. (29), we consider only a subspace
f the solution space of Eq. (25) and replace Eq. (39) with
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lim
�→0

Tr�D�,��†
�p,p��F�x,x̃,p��� = 0, ∀ �,�,�,p,x,x̃,

�41�

here D�,�� are defined in Eq. (31). As noted above, Eqs.
23), (33), and (38) are invariant under the simultaneous
ransformations of Hermitian conjugation † and fre-
uency exchange �1↔�2, and therefore Eq. (41) must
lso be invariant under the same transformations.
To summarize, we have constructed the three-term ex-

ansion W̄+��W1+�W2, which is an approximate solu-
ion of the 2f Wigner–Moyal equation in the sense that
he left-hand side of Eq. (23) subtracting from the right-
and side of Eq. (23) equals exactly

��− 2W1 + K0
−1Rj�xj

W1 + �xj
W1RjK0

−1�

− 2i��� �eiq†x̃/�1V̂�q�W2�p −
q

2�1
�

− W2�p −
q

2�2
�V̂†�q�e−iq†x̃/�2	dq

+ �− 2W2 + K0
−1Rj�xj

W2 + �xj
W2RjK0

−1�,

hich vanishes in a suitable sense as �→0 [1].
With Eqs. (35), (36), and (38), Eq. (41) is an implicit

orm of the 2f-RT equations that determines the leading-
rder coherence matrix. Our next step is to write Eq. (41)
xplicitly in terms of the spectral densities of the medium
uctuations.

. 2f-RT EQUATIONS
alculation with the left-hand side of Eq. (41) is tedious
ut straightforward, as it involves only the second-order
orrelations of V. This is carried out in Appendix B.

To state the full result in a concise form, let us intro-
uce the following quantities. Define the scattering ten-
ors S��p ,q�= S����

� �p ,q�� as

S����
� �p,q� = ds

�,�*�p�ei
�,��q�	sifg���p − q��df

�,��p�eg
�,�*�q�.

�42�

sing Eqs. (15)–(18), one can derive the alternative ex-
ressions for S:

S����
� �p,q� = eg

�,�*�p�df
�,��q�
fgsi

* ���q − p��ds
�,��p�ei

�,�*�q�

= ds
�,�*�p�ei

�,��q�
fgsi���q − p��eg
�,��p�df

�,�*�q�.

�43�

ith Eqs. (15), (16), and (43) it is also straightforward to
heck that

S����
�* �p,q� = S����

� �p,q� = S����
� �q,p�. �44�

For any Mp-valued field G�p�, define the �� ,�� compo-
ent of the tensor S��p ,q� :G�q� as

S��p,q�:G�q���� = �
�,�

S����
� �p,q�G���q�.

efine the tensors ��= ���
� � analogously to the total scat-

ering cross section as
���p� = �� ����p� − ��q��S��p,q�:Idq

− i
W

− ���p� − ��q��−1S��p,q�:Idq. �45�

he 2f-RT equation then reads as

�p� · �xW̄� = 2��3� ����p� − ��q��

� e−i��q − p�†xS��p,q�:W̄��q�dq

− �3����p�W̄��p� + W̄��p���†�p��, ∀ �.

�46�

ntroducing the new quantity

W� = e−i�p†xW̄��p�,

e recast Eq. (46) into the following form:

�p� · �xW
� + i�p · �p�W�

= 2��3� ����p� − ��q��S��p,q�:W��q�dq

− �3���p�W��p� + W��p���†�p��. �47�

his is the Rayleigh-type scaling behavior typical of a
andom dielectric. The cubic, instead of quartic, power in
is due to the appearance of � as the scaling factor in the

efinition of 2f-WD [Eq. (19)]. The quartic-in-� law is re-
overed upon replacing x with x /� on the left-hand side of
q. (47).

. Decoupling: Scalar 2f-RT Equation
lthough, in view of Eq. (27), the zero eigenvalue 0=0
as multiplicity two in general, the nonzero eigenvalues

n media other than the simplest isotropic medium often
ave multiplicity one, as we shall see in Section 6. This is
losely related to the birefringence effect. Under such cir-
umstances, the 2f-RT equations take a much simplified
orm, which we now state.

Because j, j=1,2,3,4 are simple (multiplicity one),
xpression (29) reduces to

W̄�x,p� = �
�

W̄��x,p�E��p,p�.

n other words, the coherence matrices become scalars
nd the different polarization modes decouple. Conse-
uently, Eq. (46) becomes a scalar equation,

�p� · �xW̄� = 2��3� ����p� − ��q��

� e−i��q − p�†xS��p,q�W̄��q�dq

− 2�3���p�W̄��p�, ∀ �, �48�

here

S��p,q� = ds
�*�p�ei

��q�	sifg���p − q��df
��p�eg

�*�q�, �49�
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���p� = �� ����p� − ��q��S��p,q�dq. �50�

ote that the Cauchy singular integral term in Eq. (50)
isappears whenever �� and W̄ commute as in the scalar
ase. From Eq. (48) we can derive the scalar equation for
he quantity W�=e−i�p†xW̄��p� as before.

. SPECIAL MEDIA
n this section, we consider the eigenstructure of the dis-
ersion matrix K0

−1pjRj associated with the various back-
round media for which the scattering tensor can be com-
uted explicitly. Throughout Subsections 6.B, 6.C, and
.D, the symbol � stands for the cross (vector) product.

. Isotropic Medium
n the simplest case of an isotropic medium, there are two
onzero eigenvalues: +�p�=c0�p�, −�p�=−c0�p�, each of
ultiplicity two. Let p̂=p / �p� and let p̂�

+ , p̂�
− be any pair

f unit vectors orthogonal to each other and to p̂ so that
p̂�

+ , p̂�
− , p̂� form a right-handed coordinate frame. Let

q̂�
+ , q̂�

− , q̂� be similarly defined. The eigenvectors are

e+,+�p� = �
1

�2�0

p̂�
+

1

�2�0

p̂�
−�, e+,−�p� = �

1

�2�0

p̂�
−

−
1

�2�0

p̂�
+� ,

e−,+�p� = �
1

�2�0

p̂�
+

−
1

�2�0

p̂�
−�, e−,−�p� = �

1

�2�0

p̂�
−

1

�2�0

p̂�
+� .

Denote the spectral densities of �̃ and �̃ by 	� and 	�,
espectively, and denote the cross spectral densities by
��, 	��. We have S�= S����

� � with

S����
� �p,q� =

1

4
	����p − q��p̂�

�†q̂�
� q̂�

�†p̂�
�

− 	�����p − q��p̂�
�†q̂�

� q̂�
−�†p̂�

−�

− 	�����p − q��p̂�
−�†q̂�

−�q̂�
�†p̂�

�

+ 	����p − q��p̂�
−�†q̂�

−�q̂�
−�†p̂�

−�� �51�

or � ,� ,� ,� ,�=±. Equation (46) can now be written as

c0p̂ · �xW̄± = ±
��3�p�2

4c0
�2� e−i��q − p�†x���p� − �q��

�S±�p,q�:W̄±�q�dq̂

−� ���p� − �q��S±�p,q�:Idq̂W̄±

− W̄±� ���p� − �q��S±�p,q�:Idq̂	 . �52�
roperty (44) and expression (51) imply that S����
� �p ,q�

S����
� �q ,p� and hence the Cauchy principal value term in

q. (45) disappears.
Often, in a scattering atmosphere for instance, �̃=0 is a

ood approximation and in such cases the only nonzero
erm in the scattering kernel is

S����
� �p,q� =

1

4
	����p − q��p̂�

�†q̂�
� q̂�

�†p̂�
� �53�

his is the setting for which Chandrasekhar originally de-
ived his famous equation of transfer [20], and Eq. (52) is
ust the two-frequency version of Chandrasekhar’s equa-
ion.

In the same setting, the new features in Eq. (52) be-
ond Chandrasekhar’s transfer equation are the fre-
uency shift � and the general form of the power spec-
rum 	�. In Chandrasekhar’s and other cases, the
edium consists of randomly distributed particles of size

maller than the wavelength [3,21]. Such a discrete me-
ium corresponds to a random field V that is a sum of
-like functions randomly distributed according to the
oisson point process whose spectral density tensor � can
e calculated.

. Chiral Medium
chiral medium is a reciprocal, biisotropic medium with

he constitutive matrix

K0 = � �0I i�I

− i�I �0I
	

here ��R is the magnetoelectric coefficient. To main-
ain a positive-definite K0 we assume �2��0�0. We then
ave

K0
−1pjRj =

c0

1 − �2� zI − i�I

i�I z−1I 	� 0 − p�

p� 0 	 , �54�

here z=��0 /�0�0 is the impedance and �=�c0 is the
hirality parameter. The four nonzero simple eigenvalues
re 1=c0�p��1+��−1, 2=c0�p��1−��−1, 3=c0�p���−1�−1,
4=c0�p��−�−1�−1 and their corresponding eigenvectors
re

e1 � �
− ip̂�

1 + p̂�
2

−
p̂�

1

z
− i

p̂�
2

z
�, e2 � �

ip̂�
1 + p̂�

2

−
p̂�

1

z
+ i

p̂�
2

z
� ,

e3 � �
− ip̂�

1 + p̂�
2

p̂�
1

z
+ i

p̂�
2

z
�, e4 � �

ip̂�
1 + p̂�

2

p̂�
1

z
− i

p̂�
2

z
� ,

here p̂�
1 = p̂�

+ , p̂�
2 = p̂�

− . Note also that 4=−1, 3=−2.
s ����1 (since �2��0�0), e1 ,e2 are the forward-
ropagating modes and e3 ,e4 the backward-propagating
odes.
For the medium fluctuation V we may use the biisot-

opy form
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� aI i�0bI

− i�0bI aI
	 ,

here a ,b�R are stationary random functions of x with
ower spectral densities 	a ,	b and cross-spectral density
ab. This particular form is derived from the commutativ-

ty relation (10).
The splitting into two distinct positive dispersion rela-

ions is a case of birefrigence where two distinct phase ve-
ocities, c0 / �1±��, arise depending on the polarization. As
iscussed in Subsection 5.A, due to the birefringence the
hiral medium does not depolarize the electromagnetic
aves. For the sake of space, we leave to the reader to
ork out the scattering tensor from Eqs. (49) and (50).

. Birefrigence in Anisotropic Crystals
enerally speaking, an anisotropic medium permits two
onochromatic plane waves with two different linear po-

arizations and two different velocities to propagate in
ny given direction [10]. This again gives rise to the bire-
ringence effect.

The only optically isotropic crystal is the cubic crystal.
ll the other types of crystals are optically anisotropic in
eneral. In the system of principal dielectric axes, the
ermitivity–permeability tensor of a crystal, which is al-
ays a real, symmetric matrix, can be diagonalized as
0=diag�x ,�y ,�z ,1 ,1 ,1�. One type of anisotropic crystal

s the uniaxial crystal for which �x=�y=����z=�� (if the
istinguished direction, the optic axis, is taken as the z
xis). There exist two distinct dispersion relations for the
orward modes:

o =
�p�

���

, e =�p3
2

��

+
p1

2 + p2
2

��

.

he backward modes correspond to −0 ,−e. The corre-
ponding wave-vector surface consists of a sphere and an
valoid, a surface of revolution. o corresponds to the or-
inary wave with a velocity independent of the wavevec-
or, and e corresponds to the extraordinary wave with a
elocity depending on the angle between the wave vector
nd the optic axis [10].
Let do ,de be the associated left eigenvectors. Set K0

�

diag�� ,�� ,��� and let a� solve the following symmetric
igenvalue problem:

− p � �K0
��−1p � a� = ���2a�, � = e,o. �55�

hen the left eigenvectors d� can be written as

d� � �− p � a�

�a� �, � = e,o. �56�

he same formula applies to the backward modes. Equa-
ion (55) has the following solutions:

ae = �− p2,p1,0�†, ao = �p1,p2,−
p1

2 + p2
2

p3
�†

,

rom which we see that the wave is linearly polarized.
The other type of anisotropic crystal is the biaxial crys-

al for which there are also two distinct, but more compli-
ated, dispersion relations, both associated with the ex-
raordinary waves [10]. In contrast, the two distinct
ispersion relations of a chiral medium give rise to two or-
inary waves, as the two-wave-vector surface consists of
wo concentric spheres centered at p=0.

It should be emphasized that a plane wave propagating
n an anisotropic crystal is linearly polarized in certain
lanes, whereas a plane wave propagating in the isotropic
edium is in general elliptically polarized and is linearly

olarized only in particular cases. In the anisotropic as
ell as the chiral media, the different polarizations de-

ouple in the RT equations, and the depolarization effect
s absent.

. Gyrotropic Medium
n the presence of a static external magnetic field Hext,
he permittivity tensor K0

� is no longer symmetrical; it is
enerally a complex Hermitian matrix. Here we consider
he simplest such constitutive relation,

D = �0E − ig � E, B = H, �57�

here g= fHext, f�R, is the gyration vector. Equivalently,
e can write

E =
1

�0
2 − �g�2��0D + ig � D −

1

�0
gg†D� .

n this case there are two distinct forward dispersion re-
ations [9]

1 = c0�p +
1

2
g�, 2 = c0�p −

2

2
g� ,

here c0=1/��0. Clearly the wave-vector surface consists
f two spheres of the same radius but different centers.
his should be contrasted with the case of chiral media

or which the wave-vector surface consists of two concen-
ric spheres of different radii.

The associated (left) eigenvectors d� ,�=1,2 can be
ritten as in Eq. (56) with a� solving Eq. (55) and K0

� cor-
esponding to Eq. (57). Let g=g1p̂�

1 +g2p̂�
2 +g3p̂. We can

rite the three-dimensional vector a� as a�= p̂�
1 +��p̂�

2

ith

�� =
g2

2 − g1
2 − �− 1����g1

2 + g2
2�2 + 4�0

2g3
2

2�g1g2 − i�0g3�
, � = 1,2.

e see that the wave is in general elliptically polarized or
inearly polarized when g is orthogonal to the wave vector

and circularly polarized when g is parallel to p. Again,
he simplicity of the eigenvalues implies that depolariza-
ion is absent in the gyrotropic media.

. GEOMETRICAL 2f-RT
e have seen in Subsection 5.A how a scalar 2f-RT equa-

ion naturally arises in a birefringent medium. In this
ection, we show that a scalar 2f-RT equation can also
rise in a depolarizing medium such as the isotropic me-
ium discussed in Subsection 6.A. Depolarization can mix
ifferent polarization modes and result in scalar-like co-
erence matrices W̄��W̄�I ,�=± (see Subsection 6.A for
otation). The other purpose of this section is to show
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mooth transition from Eq. (46) to the Fokker–Planck
quation, previously derived for the scalar waves [1,7], in
eometrical optics through rapid depolarization.

Let us start with the general setting and replace ��·� in
q. (47) with �−4��· /��, where the small parameter � is

oughly the ratio of the wavelength to the correlation
ength of the medium fluctuations. In other words, we
onsider the geometrical optics regime. The quartic power
n � is indicative of Rayleigh-type scattering. Consider the
hange of variable q=p+�k in the scattering term of Eq.
47). With this and the ansatz W�=e−i�p†xW̄�, the scatter-
ng term becomes approximately

2��3�−1� dk����p + �k� − ��p��ds
�,�*�p�df

�,��p�

�	sifg��k��
�

ei
�,��p + �k�eg

�,�*�p + �k�

��W��p� + �k · �pW��p� +
�2

2
klkj�pl

�pj
W��p�	 .

�58�

he first term in Eq. (58) cancels exactly with
��p�W��p�+W��p���†�p� on the right-hand side of Eq.

47). The second term in Eq. (58) yields the first-order dif-
erential operator

���3ds
�,�*df

�,��
�

ei
�,�eg

�,�*�pl
�pj

��

�� klkj���k · �p��	sifg��k�kdk

+ 2��3ds
�,�*df

�,��
�

�pl
ei

�,�eg
�,�*�

�� kl��k · �p��	sifg��k�kdk	 · �pW�, �59�

here �� is the derivative of the Dirac delta function. The
hird term in Eq. (58) yields the second-order differential
perator

��3ds
�,�*df

�,��
�

ei
�,�eg

�,�*� ��k · �p��

�	sifg��k�kmkndk�pm
�pn

W�. �60�

In order to match the left-hand side of Eq. (47), which is
scalar in the case of complete depolarization, Eq. (60)

nd each term in Eq. (59) must be proportional to ��,� as
ell. This happens, for instance, for the isotropic medium
ith Eq. (53). In this case,

�59� = ���,�

�3

4 � k · �p�k · p̂����k · p̂�	���k�kdk · �pW�,

�60� = ���,�

�3

4c0
� ��k · p̂�	���k�kmkndk�pm

�pn
W�,

nd hence the 2f-RT equation (47) becomes
±c0p̂ · �xW
± ± i�c0�p�W± = �p · D�pW±

ith the diffusion coefficient

D =
��3

4c0
� ��k · p̂�	���k�kk†dk, �61�

hich is the same Fokker–Planck-type equation derived
y a rigorous, probabilistic method from the geometrical
ptics of the scalar wave previously [6].

Applying the same procedure to the scalar 2f-RT equa-
ion for the quantity W� of the birefringence case dis-
ussed in Subsection 5.A, we obtain

�p� · �xW
� + i�p · �p�W� = �p · D�pW�,

here the diffusion coefficient D is given by

D�p� = ��3ds
�*�p�ei

��p�df
��p�eg

�*�p�

�� ��k · p̂�	sifg��k�kk†dk.

. CONCLUSION
tarting with the symmetrical Wigner–Moyal equation

23), we have systematically derived the 2f-RT equations
46)–(48) in the radiative transfer regime characterized
y weak-coupling scaling (9). The main assumptions
bout the medium are that the background is uniform
nd has a either positive or negative definite constitutive
atrix and that the fluctuations are zero-mean statisti-

ally homogeneous processes.
We now turn to the antisymmetrical Wigner–Moyal

quation (24) and discuss the consequence of its leading-
rder terms, which are

2W̄ = K0
−1pjRjW̄ + W̄pjRjK0

−1.

n view of Eq. (29) this is equivalent to 1=��p�. Note
gain that the variable p has the dimension of inverse ve-
ocity. Therefore the two-space–time correlations of the
ime-dependent polarized wave field u are given approxi-
ately by

u�t1,x1�u†�t2,x2��

� �
�,��

�� ei��te−i��/��
��p�=1

eip†�y+�x�W��
� �x,p�

�E�,���p,p�d�p�d�d�, �62�

ith x=��x1+x2� /2 ,y=��x1−x2� /�, where W�= W��
� � is

he solution to Eq. (47) and d�p� is the area element of
he surface ��p�=1.

Parallel to the case of scalar waves, one can also work
ut the implications of the polarization on the problems of
maging and time-reversal communications, as discussed
n the Introduction and references therein, from the 2f-RT
heory developed here.
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PPENDIX A: DERIVATION OF THE
IGNER–MOYAL EQUATION

pplying the operator Rj� /�xj to W we have
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ntegrating by parts with the second integral and using
6) we obtain
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nserting the spectral representation of K into the equa-
ion and using definition (19), we then obtain Eq. (7).
PPENDIX B: CALCULATION OF EQ. (41)
. Propagation Terms
e first show that

TrD�,��†�K0
−1Rj�xj

W̄ + �xj
W̄RjK0

−1�� = 2�p� · �xW̄��
� .

onsider the following calculation:
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pon the operation TrD�,���·�� the second term vanishes,
hile the first term reduces to �p� ·�xW̄��

� by Eq. (28)
nd the fact that d�,� is a left eigenvector of the matrix

0
−1pjRj with the eigenvalue �.
The other term, TrD�,��†�xj

W̄RjK0
−1�, gives the identical

esult.

. Scattering Kernel
he �s , j� element of the matrix
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sing the identity

lim
�→0

1

x − i�
= i���x� +

1

x

nd the symmetry properties (15), (16), and (27), we ob-
ain in the limit �→0 Eq. (46) from Eq. (41).
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