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We use Tartar’s weak convergence method in conjunction with a variational
principle to prove a sharp homogenization theorem for diffusion in steady
random flows. The flow has a stationary and square integrable stream matrix. The
key of our approach is introducing approximate correctors by means of a saddle
point variational principle. We also obtain the two-term asymptotics.  © 1998
Academic Press

Key Words: Convection; diffusion; homogenization.

Contents.

. Introduction.

. Notation and formulation. 2.1. Stationary stream matrix. 2.2. Function spaces.

. The boundary value problem.

. The abstract cell problem.

. Proof of Theorem 1.1: Homogenization.

. Proof of Theorem 1.2: Two-term asymptotics.

. Variational principles. A.1. The cell problem: Proof of Theorem 4.1. A.2. Two
identities for the effective diffusivity. A.3. Cut-off and convergence. A.4. Approximate
correctors: Proof of Lemma 4.1.

P o bW —

1. INTRODUCTION

Let v(x), with V.v(x)=0, be an incompressible velocity field in R,
d>=2, and let T(¢, x) be the temperature distribution in the fluid with the
velocity v(x) and some microscopic heat conductivity . The temperature
satisfies the convection-diffusion equation

%TJrv(x)-VT:aAT, (1.1)

with T(0, x) = Ty(x).
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We shall study the long time, large space scale behavior of T(¢, x) described
by Eq. (1.1) under the influence of both the velocity »(x) and the micro-
scopic conductivity . We rescale Eq. (1.1) with the diffusive scaling

X > X/e, t— t/e? (1.2)

and let the initial data varying with the slow variable x. Thus Eq. (1.1)
becomes

or, 1
f+—v(x/e)-VT,=0 AT,, (1.3)
ot ¢

with 7,(0, x) = T,(x). This is particularly relevant when the velocity field
has a repetitive structure as, for example, when it is a periodic or a station-
ary random function with zero mean. Under appropriate conditions an
overall diffusive behavior with an effective diffusion constant is expected.
When this happens, Eq. (1.1) is said to homogenize.

The sharp condition under which the effective diffusion takes place is
best formulated in terms of the stream matrix H(x, w) which is skew-
symmetric and satisfies

V- -H(x, w) =v(x, w), (1.4)

where w denotes the randomness of the flows. Such matrix H always exists,
because v(x, w) is incompressible and has mean zero, but may not be
stationary even though v(x, w) is stationary. This is due to the random
nature of the velocity. But if the dimension is bigger than two and the
velocity correlation decays sufficiently fast, say, like a power higher than
two, then a square integrable stationary stream matrix H(x, w) can be
constructed from v(x, ). In two dimension, a random stationary velocity
field generally gives rise to logarithmic divergence in the variance of stream
matrix. For such a non-stationary stream matrix, non-diffusive long time
behavior is to be expected (see, for examples, Avellaneda er al. [2],
Bouchaud and Georges [4], Fannjiang [ 7], Fisher et al. [9], Koch and
Brady [11], Kravtsov et al. [12]) so the diffusive scaling (12) is not
appropriate.

The L*stationarity of stream matrix is the exact condition of homogeniza-
tion for steady flows in all dimensions. The sharpness of the condition was
demonstrated for steady shear layer flows by Avellaneda and Majda [1].
The homogenization theorems for general steady flows under such a general
condition was proved by Fannjiang and Papanicolaou [ 8]. The purpose of
the present paper is to establish similar homogenization theorems for a
weaker notion of solutions (1.10) using a simpler alternative method.
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We assume throughout this paper that the velocity field comes from a
square integrable, stationary stream matrix H(x, w)

(H, 17y <00, Vi j (1.5)

and (1.4) is meant in the weak sense. In terms of the stream matrix,
Eq. (1.3) can be written in divergence form

aTL’( t’ X! w)

Py =V.[(cl+H(x/e, w)) VT (1, x, w)], (1.6)

where I is the identity matrix. One expects that, as ¢ tends to zero, T, tends
to the solution 7°

T(0,x)=To(x) (1.7)

in a suitable sense, where ¢}, is a constant matrix called the effective

diffusivity.
Since the stream matrix is time independent we work entirely with time
independent problems through the Laplace transform of (1.6)

(4 X, ) = jw e Tt x w)dl, >0 (18)

0
which satisfies
—V-[(I+H(x/e, ) VT, (2 x, 0)] + AT (4 x, 0) = Ty(x),  (1.9)

for xe R?. This is a resolvent equation for the evolution Eq. (1.6). The
Dirichlet problem has the weak form

j (1+ H(x/e, ) V(2 x, ©) - Vd(x, ©) dx + 2 j T.(4 x, @) $(x, )

=j To(x) $(x, ) dx (1.10)

for every test function ¢ €% (D). The space (D) of test functions is
natural in view that we are seeking solutions in the space W (D) and
H(x, ®) is in L*(D) almost surely. Since ¥ (D) is dense in % (D) one can
work entirely with smooth test functions with compact support.
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The proof of Fannjiang and Papanicolaou [ 8] relies on nonlocal varia-
tional principles for the resolvent Eq. (1.10). In bounded domains where
boundary conditions are present, the nonlocality of the variational prin-
ciples requires subtle construction of cut-off functions to treat boundary
behaviors. With this complication, the evaluation of nonlocal functionals in
the limit ¢ > 0 is a hard calculation. The gain is the well-posedness result
in a suitable space which is not obvious at all problems with unbounded
coefficients.

The case of bounded random coefficients is solved by Papanicolaou and
Varadhan [14]. Their approach is based on Tartar’s weak convergence
method with oscillatory test functions. Tartar’s method is desirable in that
it avoids the trouble of dealing with boundary behaviors and thus make
the passing to the limit ¢ > 0 a relatively simple matter. The difficulty in
applying this method for unbounded random coefficients is justifying the
use of correctors as legitimate test functions.

Tartar’s method was reconsidered by Avellaneda and Majda [1] in the
case of unbounded random coefficients. They proved the weak convergence

lim jo L) (T (s, %, ) — T(s5. X)) $(s, X)> =0,

e—>0

V¢ e L*((0, ), L*(D)), Vt>0 (1.11)
for unbounded flows satisfying
<|vk(xa')|(5+tl/2>+<|Hi,‘j(x9')|p><m: i9j9k=15 2a evey d’ (112)

for some 6 >0 where p=2+9, if d=2 and p=d for d>3. Here {-)
denotes the ensemble average w.r.t. w.

The condition (1.12) is needed (cf. Avellaneda and Majda [1]) to show
that the correctors are legitimate test functions. Moreover, to control the
asymptotic behaviors of the correctors as ¢ - 0 the ensemble average in
(1.11) is taken. The sharp homogenization theorem for square integrable
stream matrices can not be obtained this way because the correctors are
only known to be W' 2, not €', functions.

To overcome this drawback one clearly should use approximate correctors
of better regularity. In the present paper we obtain the suitable approximate
correctors by means of a saddle-point variational principle on the probability
space of stream matrices. Our objective is to establish homogenization
theorems for the weakest solutions of the convection-diffusion equation
with the most general stream matrices. We shall accomplish this by Tartar’s
energy method with the use of approximate correctors.
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THEOREM 1.1. Let the stream matrix H be stationary and square integrable.
Let Tye L*(D). Then

1. Equation (1.10) admits a weak solutions T,(J, t,x) (1.10) satisfying
the energy estimate (3.7).

2. Any weak solutions {T (A, t, X)} satisfying the energy estimate (3.7)
converges strongly

1imj T4 %, @) — T(, x)|> dx =0 (1.13)
D

e—>0

for almost all w, where f(;u, t, X) is the solution of the resolvent equation for
the heat equation (1.7) with the effective diffusivity a* given in (4.3).

If the assumption of the energy estimate (3.7) is strengthened to that of
the energy equality (3.8) then a stronger result holds:

THEOREM 1.2. Let the stream matrix H be stationary and square integrable.
Let Ty(x) be a €7 (D) function. Then any weak solutions T, satisfying the
energy equality (3.8) have the two-term asymptotics

lim

e—>09Yp

a—T X) Vyi(x/z) 2o (1.14)

VT.(), x)—VT(], X) Z

for almost all ®. Here y;, i=1,2,3,..,d are the correctors defined in

(4.8)-(4.9).

Besides the simplicity of this approach, the homogenization theorem
obtained here is more general since the notion of weak solutions considered
in the present paper is weaker than that of Fannjiang and Papanicolaou
[8]. For this notion of weak solutions we do not know if solutions are
unique. Nevertheless, the solutions have a unique deterministic limit point
which is the solution of the effective equation. Also, the solution produced
in Fannjiang and Papanicolaou [ 8] satisfies the energy equality (3.8) and
hence the statements of Theorem 1.2.

The approach advocated in the present paper may be generalized to the
case of time dependent flows for which the evolution equation can not be
reduced to a resolvent equation and thus the approach of [8] would not
work directly. It is not clear what the sharp homogenization condition is
for time dependent flows. We plan to address this problem in a forthcoming

paper.
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2. NOTATION AND FORMULATION

2.1. Stationary Stream Matrix

Let us review the theory of stationary processes in this section.

Let (2, %, P) be a probability space and let H(x, w) be a strictly
stationary random skew-symmetric matrix of x € R? such that each element
H, is a L* function

CH(x, )17 < oo, Vi, Jj, (2.1)

where < -) denotes the average or integral with respect to the measure P.
By strict stationarity we mean that the joint distribution of H;(x,, w),
H;(x,, w), .., H;(x,,w) for any points X,,X,,..,X,€R’ and that of
H,(x, +[ o), H;(x,+1, w), .., H;(x,+1, ) for any le R? is the same, so
the averages in (2.1) are independent of x. Without loss of generality (see
Doob [5]), we may assume that there is a group of transformations 7,
x € R? from Q into 2 that is one to one and preserves the measure P. That
is, 7,7y =17,,, and P(t,4)=P(A) for any Ae F. We may also suppose
that there is a square integrable (w.r.t. P) matrix function H(w) such that

H(x, v)=H(t_ o), xe R, weQ. (2.2)

We assume that the group of transformations 7, is ergodic with respect to
the probability measure P.

The random stationary divergence free velocity v which we consider in
this paper is given by

—v(x, w) =V -H(x, o). (2.3)

In two dimension the matrix H has the form

0 —h
H=<h o> (2.4)

where h= h(x, w) is the usual stream function. In three dimensions, H has
the form

H= h, 0 —h | (2.5)
—h, h, 0

where h(x, w)=(h,(x, w), h,(X, w), h5(X, w)) is the vector potential of the
flow v so that V-H= —V xh= —v.
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We denote the space of square integrable functions on  L*(Q, %, P) by
A which is a Hilbert space with the inner product

(f.8)=<{J&> = Lz P(do) f(w) &(w),  [.ge. (2.6)

The group of translations 7, induces a group of unitary transformations U,
on J given by

(U, NHlw)=fr_ o), x eR’ weg. (2.7)

The unitarity of U, follows from the measure-preserving of 7. In fact, U,
is unitary on all the spaces L”(Q, 7, P), 1<p<oo. {U,} have closed
densely defined infinitesimal generators V;

V,:=— U, (2.8)

i x=0

in each direction i =1, 2, ..., d with domains &; = #. The closed subset of #

d
N2 (29)

i=1

becomes a Hilbert space with the inner product

(7.2, =] Po) fl) g+ X [ P, Fo) Vg(@). (210)

i=1

The ergodic hypothesis on 7, implies that the only functions in J# that are
invariant under U, are the constant functions.

Let H(R“; #) be the space of all stationary random processes f(X, @)
on R such that |, P(dw) f?(x, @) =const. < oo. Clearly H(R; #') is in
one-to-one correspondence with # since it is simply the space of all
translates of ., that is, f(x,w)e H(R"; #) iff f(x,w)=U, f(w
flw)e . Similarly, we may identify #' with the set of mean square
differentiable, stationary processes H!(R; #). In particular, if f€ H!, then
its derivatives are also a stationary processes and

PED)_ 4 @, f)iw) (2.11)
0Xx:

i

V,-f(X, CO) =

with equality holding dx x P almost everywhere. Thus, we have H!(R“; #)
=H/(R"; A").
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2.2. Function Spaces

Let ¥~ and 7, denote the spaces of square integrable and uniformly
bounded vector fields on (2, &, P) respectively, i.e.,

¥ = (LA, P))? (2.12)
V= (L*(Q, P))". (2.13)

We define the spaces 7, of square integrable gradient fields and its zero
mean subspace 7,

v, = {Fe? |VxF=0 weakly} (2.14)
¥, = {Fev,|<F)=0}. (2.15)
Complementary to the gradient fields are the space of the curl fields:
v, :={Fey|V.F=0 weakly} (2.16)
Vo= {Fev |(F)=0}. (2.17)

According to the Helmholtz decomposition theorem, the space ¥~ admits
the orthogonal decomposition of gradient fields, curl fields and constants

V=1, ®V.®R, (2.18)
where R“ represents the space of constant vector fields.
Next we consider some dense subspaces in ¥, which we will be working
with. The first is the space 4, of bounded gradient fields
By =V NV, (2.19)
The second is the space %, of bounded, continuous gradient fields

€, = {Fes,|F(r_ 0)e(4(D) ac. w}. (2.20)

Let us consider the stream matrix H as a multiplicative transformation
from 7, to ¥":

H: Fev, - HAF. (2.21)

The transformation H is densely defined since its domain includes 4,, the
space of bounded gradient fields.
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Consider the orthogonal projection operator I” from 7~ to W’g with the
spectral representation given by

[k|? (2.22)
0 if k=0.

We claim

Lemma 2.1. THI(I'H) is a closable operator on ¥ (17,).

Proof.  We need to check that if a sequence E, - 0 in 7, and THE, > G
in 7, for some G then G =0. This follows from

By = lim —<E,-AF> =0 (2.23)

for all Fe v, which is dense in 7". ||
The square integrability of H is just enough to make sense all the
expressions in (2.23). By an abuse of notation, we still denote its closure by
T'H, which is the Friedrichs® extension of a skew-symmetric operator and
so is skew-adjoint on 77. _
Because of Lemma 2.1, the space ¥,(H)
v (H):={Fev, I TAFe v} (2.24)
is a Hilbert space with the inner product
(F,G)y :=<F-G) +(TAF.-THG), VF,Gev (H). (225
The norm associated with the inner product (, )g is denoted by | -| 5, i.c.,

|F||E :=<(F-F) +(THF.-THF), VFev (). (2.26)

Clearly "/Q,(ﬁ) is a proper subspace of ¥, unless H is uniformly bounded.

3. THE BOUNDARY VALUE PROBLEM

For simplicity we set ¢ to be one.
Dropping the hat and 4 from 7(/, X, @) in (1.10) the Dirichlet problem
has the weak form
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j (1+ H(x/e, ©)) VT,(x, ®) - VH(X) dX + / j T.(x, @) ¢(x)

D D

= [ Tux) p(x) dx (3.1)

D

for every test function ¢ € (D).

We construct solutions of (3.1) by a truncation argument: First we
introduce the level M truncation H*) of the stream matrix:

OO - H,-.j,~ for |I;I,.’j|<M

=/ sig(H, ;) M, for |H, ;=M

for all i, j. Thus [H™)| <M, Vi, ;.
By the individual ergodic theorem [ 5], the space averages converge to
the ensemble average

d

e 1 X .
Lo —— [\ (X e 33
DAL |D|jD ,,j<8,w>ﬁ< 2 (33)

as ¢— 0 for almost all realizations. Without loss of generality we may
assume that H(x, w) is locally square integrable for almost all realizations.
Thus the truncated stream matrix converges to H(x, w) locally in the L?
sense.

We consider the similar boundary value problem (3.1) associated with
the truncated stream matrix H™), namely,

f (1+ HM(x/e, ) VT M(x, ©) - V(X) dX + /. f TO(x, ) $(x)

D D

:J To(x) ¢(x, w) dx (3.4)

D

for any test function ¢ in € (D). In fact, the space of test functions for (3.4)
can be enlarged to include H (D) functions but we will not be able to pass
to the limit with the latter class of test functions.

We note that the left side of (3.4) defines a bounded coercive bilinear
form on H (D) for almost all w. On the other hand, the right side of (3.4)
defines a bounded linear functional on H (D) for T,e L*(D). Thus by the
Lax-Milgram lemma, (3.4) has a unique solution in H (D) for each M > 0.
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Subsituting ¢ = T, using the skew-symmetry of H*’ and applying the
Cauchy-Schwartz inequality we obtain

jVT;_M%VTgM)H[ (T},_M))zgﬂ (Tf%)zﬂ T2, (3.5)

D D D

Applying the Poincaré inequality and solving the quadratic inequality we
get the uniform bound

| vreo.vron | (renp<c| T (3.6)
D D D

with the Poincaré constant C > 0 independent of M, & and T,. Thus there
is a weakly convergent subsequence, denoted by 7", with which we will
pass to the limit M — oo in (3.4). Let the weak limit of 7™" be denoted
by T,. Note that H® tends to H strongly in L* D) for almost all w.
Thanks to the restriction of test functions to % (D; #) we can pass to the
limit M — oo in (3.4) and obtain a solution for (3.1) for almost all w.
Furthermore, passing the limit in inequality (3.6) we get the energy inequality

jD VTS-VTSHJD Tgscjn T2, (3.7)

Namely, the energy bound is scale independent. Any families of solutions
T, of (3.1) satisfying the energy inequality (3.7) with the constant C
independent of ¢ are said to have uniformly bounded energy.

When the stream matrix H is bounded, it is known that the solution
of (3.1) satisfying the energy estimate (3.7) is classical and unique (cf.
Ladyzhenskaya and Uralceva [ 13]). In the case of square integrable stream
matrices, the uniqueness for weak solution of (3.1) is a nontrivial issue. In
contrast, Fannjiang and Papanicolaou [8] construct a solution in a
stronger sense and the solution is unique for all ¢ >0 almost surely.

In the present paper we deal with the limits of any weak solutions of
(3.1) with the energy estimate (3.7).

A weak solution T, of (3.1) is said to satisfy the energy equality if

L VT€~VT€+/1L Tf,:L T,T.. (3.8)

Clearly (3.8) implies (3.7). The solution produced by the variational methods
in ([8]) always satisfies the energy equality (3.8). We do not know if the
solution produced by the truncation argument satisfies (3.8). For the
solutions satisfying the energy equality (3.8) the corrector result (1.2) holds.
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4. THE ABSTRACT CELL PROBLEM

On the probability space (€2, 7, P) let us consider the abstract cell
problem: For each k=1, .., d find a gradient field E, € "@(ﬁ) which has
zero mean

(B =0 (4.1)
and satisfies the equation

(E,-F) +(TH(E, +e,)-F)=0, VFev, (4.2)
where the space “Vé',(ITI) is defined in (2.24).
We define the effective diffusivity o} ; as

0'1*j=<(l+ﬁ)(el+ﬁ,)ej>, ls]=1a2a 9d (43)
=0, ,;+(HE, ¢;) (4.4)

The connection between the cell problem and homogenization follows
from the usual multiple scale arguments. The cell problem is formally the
same in the random as in the periodic case [3, 10]. On physical grounds,
the cell problem can be understood as macroscopic concentration gradients
e, that induce through the flow microscopic concentration fluctuations y,
which in turn lead to enhanced fluxes —(I +H) Vy, by Fourier’s law. The
average of the enhanced flux is the macroscopic diffusivity (4.3).

We shall show in the Appendix A the existence and uniqueness of the cell
problem:

THEOREM 4.1. There exist unique solution Eke“Vg(I:l), k=1,2,..,d to
the abstract cell problem (4.1)-(4.2)
Similarly, the adjoint cell problem

CE-Fy —(TH(E) +e,)-Fy=0, VFev,, VFev, (45)
(E}>=0 (4.6)

admits a unique solution E|, e “//;,(ITI).
The effective diffusivity o* defined by (4.3) equals
of ,=C(I—H)(e;+E})-¢)>, i /=12 .4d. (4.7)

J

The primitive function y, of the solution E, to the abstract cell problem
(4.1)-(4.2)

Vidx, o) =E(x, 0), i=1,23,..d (4.8)
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is called the corrector. The primitive function y} of the solution E) to the
adjoint cell problem (4.5)—(4.6) is called the adjoint corrector. They are
nonstationary and are unique when normalized by

10, 0)=0, i=1,23,..d (4.9)
X;c(o’ Cl)) = 03 = 1, 2, 3,..., d (410)

for almost all w.

It can be shown (cf. Lemma A.l that the unique solution to the abstract
cell problem is the weak limit in ¥, of the sequence of solutions to the
truncated cell problem:

CI+HM)(e, +EM).-Fy=0, VFev, (4.11)
CEPY =0 (4.12)

where the stream matrix H* is the level M truncation, defined by (3.2),
of the original stream matrix H.

Now we state the crucial estimate used in the proof of the main theorem.
It says, in essence, that the cell problem and its adjoint can be solved
approximately in the appropriate sense in the space %, of bounded gradient
fields.

LEMMA 4.1. Given 6 >0 there exists bounded gradient field G, and ¥, in
B, such that

(GY=0 (4.13)

(FY=0 (4.14)

(G, +TH(G,+e,)|?) <o (4.15)
F,—THF, +e)>) < 6> (4.16)
IK(I+H)(e,+G,) e —o*,| < /<E;-E}) (4.17)
[K(I—H)(e;,+F,) e,y —o*,| <0 /<E,-E. (4.18)

Here EJ’ and Ej are as given in Theorem 4.1.

The proof of Lemma 4.1 is given in the Appendix.

Naturally we call the primitive functions g;(x,w) and f;(x, w) of
bounded gradient fields G, and F, in Lemma 5 approximate correctors and
approximate adjoint correctors, respectively.

For the approximate correctors and the adjoints we have the following
L~ bound.
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LEMMA 4.2. Let Fe(g has zero mean and let Vf(x,w)=Vf(x, ),
f(0, w)=0. Then, f(Xx, w) agrees with a continuously differentiable function
in X for almost all w. Moreover,

lim &f(x/e, w) =0 (4.19)

e—0

in the space €(D) of continuous functions.

Proof. The first part of the lemma is evident. Let us turn to the
convergence statement.
Set f%(x, w) =¢f(x/e, ). By definition,

Viix, w)=F(r_,,0)e%,. (4.20)

Hence /¢ s uniformly bounded on D:

|fA(x, 0)| < Ox VY, w)-dy| < Clx|. (4.21)

Thus it follows from (4.20) and (4.21) that f* is uniformly bounded in the
space €'(D) for almost all . By the compact imbedding

%\(D) <> %(D) (4.22)

there is a convergent subsequence, still denoted by f*, in (D).
On the other hand, {Vf*} is precompact in the weak-star topology in
(L'*(D))? The limit can be identified by applying the averaging Lemma 4.3:

lim | F(r_ ) G(x)=<F>f G=0 (4.23)

e—>0Jp

for almost all w.
Therefore the convergent subsequence f° must also converge to a
constant in view of (4.23). But this constant must be zero by the condition

S0, 0)=0. 1
We now state the averaging lemma used in the proofs of Lemma 4.2 and
Theorem 1.1.

LEMMA 4.3. Suppose f(w)e # and ¢(x) e LA (D). Then

| UseTt@)dx)~<7> | ¢ (424)

for almost all .
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Proof. The lemma holds in case when ¢(x) is a characteristic function
of an interval since that is in essence the statement of the Individual
Ergodic Theorem for a multiparameter commuting group of contractions
(cf. Dunford and Schwartz [6]). We can therefore easily generalize the
conclusion of the lemma to the linearly dense subset L of L*(D) consisting
of all finite linear combinations of such functions. Now let ¢ € L*(D) and
5 >0 be chosen arbitrarily. Let ¢ € L and

¢ — Bl L2y <O (4.25)

We can write then that
‘ | n Tt g0 —<P> | ¢‘
~ 172 ~
<| [, 1072 @) 16l

] Ui 80~ <F> [ 3]+ <IT1 16,

Allowing ¢ | 0 we obtain, thanks to the Individual Ergodic Theorem and
(4.25), that

lim sup
el0

| U T g0 —<T> qus‘ <O 1D (1 20 + 1T 1)

Since J >0 was chosen arbitrarily this implies the lemma. |

5. PROOF OF THEOREM 1.1: HOMOGENIZATION

We modify Tartar’s argument ([ 15, 14]) with the use of approximate
correctors.

By the condition (3.7) of uniformly bounded energy the solution 7, is
pre-compact weakly in H (D, #) and pre-compact strongly in L*(D, #).
Extracting a convergent subsequence in both spaces, still denoted by T,
and let T be the limit.

Define the flux
Q,:=—(I+H,) VT, (5.1)
with

H.(x, o) =H(x/e, w). (5.2)
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The flux Q, is uniformly bounded in (L'(D))“ for almost all e since both
H, and VT, are uniformly bounded in (L*(D))¢ for almost all . We shall
regard L'(D) as a subspace of M(D), the space of Radon measures on D.
By Helly’s selection theorem, Q, is pre-compact in the weak-star topology
of (M(D))“. Extracting a convergent subsequence, still denoted by Q,, and
passing to the limit we obtain some limit flux Q(dx) e (M(D))%, which is a
finite, vector-valued Radon measure.

The remaining question for homogenization is to identify the relation
between the limit solution VT and the limit flux Q. The goal is to show
that Q is absolutely continuous with respect to the Lebesque measure and
is linearly related to VT with the proportionality given by o*.

Passing to the limit in Eq. (3.1) we obtain

—jDQ-VqSHJD qu:jp ) (5.3)

for any ¢ € €,(D). This is the step which would not go through for the
bigger test function space such as W “(D).
Let f;(x, w) be an approximate adjoint corrector

Vf.(x, ) =F,(x, w) (5.4)
f:0,0)=0 (5.5)

with F,(x, w)=F(t_,w)e(%(D))? as stated in Lemma 4.1. Consider the
test function

w;(X, ) =x-e;+f;(x, w) (5.6)
and the scaled version
Wix, @) = aw,(x/e, @) =X - €, + &f (x/e, ). (5.7)

By Lemma 4.2, both w; and w? are in the space %(D).
From inequality (4.16) in Lemma 4.1 and the individual ergodic theorem
it follows that

L) [Vive —e,— TH,Vw]> < 8 (5.8)

for sufficiently small ¢, almost all w and any given ¢ >0. Applying the
Cauchy-Schwartz inequality we have that
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f (1—H,) ij:UVqﬁ‘ (5.9)

D

| ra—rn,)vw:—e1-vo

<o /jD|v¢|2 (5.10)

for any ¢ € (D). Note here that j pe;- Vo =0 for ¢ with vanshing boundary
data.

Let O(x, ) be any function in ¥ (D). It is clear that both 07T, and Ow?
are admissible test functions for (5.9) and (3.1) respectively. Inserting them

respectively we have
<5 /f IV(0T,)|? (5.11)
D

—j QL.-V(BW;:')HJ Tfl.vaj.":f Ty 0w". (5.12)
D D D

j (1+H,) V(0T,) - Vw*

Subtracting (5.11) from (5.12) we obtain

fD T.V0.(1—H,) wa—fb WweQ, VO + ) jD TEHW‘,?—JD T, 0w

<9 f IV(OT,)|>< C,0 (5.13)
D

where the constant C, depends on the energy bound C in (3.7) and the
function 6. Lemma 4.19 (regarding the asymptotic behavior of w?) and the
strong convergence of T, to T in L*(D) allow us to pass to the limit in
inequality (5.13):

f T,V0(I—H,) ij:'—>f TVO-((1—H)e,+F,)> (5.14)
D D
JW‘EQ3~V0—>J 0-Vix-e, (5.15)
D D
Aj Tﬂw?—nlf Tox -e, (5.16)
D D

L) T00w§—>JD T,0x -e, (5.17)
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and it follows that

‘—j TCI—HA)e,+F,)>-vo— J(_)-Vﬁxe,--k/lf Tex.e,.—fDTOex.e,.

D D

<C,o (5.18)

for any ¢ > 0.

The convergence (5.14) is justified by Lemma 4.3 and the strong con-
vergence of T, in L*(D). The convergence of (5.15)—(5.17) is justified by the
convergence of w’ to x-e; in the space %,(D) (Lemma A.l).

In view of (4.18) in Lemma 4.1, we let J tend to zero and obtain the
equality from (5.18)

fj TZ—U* fj Q~V9x-e,-—|—}vf THx-e,-:J T,0x-e;. (5.19)
D D D

Inserting ¢ = 0x - ¢, in the Eq. (5.3) we also have that
fj (_)~e,-07f Q-V9x~e,-+ij T0x~e,-=j T,0x-e;. (5.20)
D D D D
Subtracting (5.19) from (5.20) yields

f Za, ’5x f (5.21)

for any 0e 45 (D). Because ¥°(D) is dense in %y(D), (5.21) identifies the
limit flus Q, after integration by parts, as a L>-function

T _
2 —=Q-e (5.22)
Inserting the identity (5.22) into Eq. (5.3) gives
oT a9
fz”a T )qus jTO (5.23)

for all ¢ € €'(D). Restricting to ¢ € ¥ °(D) and integrating by parts, we see
that only the symmetric part of ¢}, contributes to the first integral. So we
rewrite Eq. (5.23) in the symmetric form

fDZ(afﬁqf)iajwlj[)m:j[)n(p (5.24)

for g €€ (D).
The proof of Theorem 1.1 is now complete. ||
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6. PROOF OF THEOREM 1.2: TWO-TERM ASYMPTOTICS

Notice that for T,e €~ (D) the solution T of (5.24) is also in the space
%*(D). All we need here is the boundedness of the second derivatives of T.

For any 6 >0 let g,(x, w) be the approximate correctors with gradients
Vg.(x, w) =G;(x, w) as asserted in Lemma 4.1. Then by Lemma 4.3 and
4.1 we have that

oT .
im (225 (072000 —Vg,»<x/e>>>

i

~iim | <z B OO(E (/) — ,-(x/s)>>2

oT -~ 2 oT\?
= E,—G; <do? — . 1
D(gax (x)<(E, G,)>> o jg(axi) (6.1)
Thus, to prove Theorem 1.2 it is sufficient to show that

lim sup f (VT,(x)—VT(x)—Y ‘;CT

e—0 D i i

(x) Vg,—(X/S)>2<C5 (6.2)

for some ¢ > 0 independent of J.
Due to the skew symmetry of H, the integral on the left side of (6.2) is
equal to

_ oT
L) <VTC(x) R ES

(x) Vg,-(X/S)>

i

=fDVTS-VT£—jD<I+H<>>VT< ( +Z x) Vg, X/8>>

- fD VL0 (14 H00) (VI + 2 50

5T6

X) Vg, x/e))

G (x/e) +e;) - (G,(x/e) +e;). (6.3)

Note here that VT is bounded on D so the integrals are well defined.
By the assumed energy equality and the previously proved strong con-
vergence of T, the first integral in (6.3) becomes, in the limit ¢ — 0,

1imj VT, VT—hm“ TOTS—ZJ Tg}zj TOT—AI T2 (64)
D D D D

e—>0 e—0
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Rewrite the second integral in (6.3) as

| B0 VT ) < +2 x) Vg, x/£)>

:fD(IJrHE(x))VTS() < +8Z

-] aen Z x) g,(x/e). (6.5)
By (3.1) and (5.1), (6.5) now becomes
— jD T,(x) < [(x/s)>

_ oT
+£Tam<(m () )

+[ 0% ZGLT 2,(x/z). (6.6)

Note that 07/(dx; 0x;) is bounded on D so the last integral is well defined.
Passing to the limit in (6.6) with the strong convergence of 7, and
Lemma 4.19 we have that

lim j (1+H,(x)) VT,(x) - (VT(X) n S—XT (x) Vg,-(x/s)>

e—>0Jp
= _AJD T2+L) T,T. (6.7)

The third integral in (6.3) can be written as

oT
| V133

i i

(x)(I+H,(x))(e, + G;(x/¢))

0
=3 [ V(755 ) 00 B e+ G

X

OVT

) - (I+H,(x))(e; + G,(x/¢)) (6.8)

By Lemma 4.1, we have the inequality, similar to (5.9),

[ a+Hx0)e,+ Gi(x/e)) v¢‘<é [ 1v91° (69)
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for all ¢ € €4(D) and sufficiently small &. Consequently,

oT
2 [ v (7.50) 00 (4 HNe + Gy i)
oT\|?
<5§ L) V<T*"ax,> <0 (6.10)
due to the energy bound (3.7) and the boundedness of the second derivatives

of T.
Passing the limit in the second term in (6.8) with the strong convergence

of T, and Lemma 4.3 we have that

hme T,——

e—>0

0 VT )-(I+ —H,(x))(e; + G;(x/¢))

70 _ ~
—Zf VT )-{(I+H)(e; +G)). (6.11)

Hence,
ovT — 0
im 3 1S e G - | T o)
e—0 E/‘ i D 5 X
oT T

_8 T
e, (U Gy + | Yot o020

Zj TaaZT(x).<(1+ﬁ)(e,.+éi)>—zj T2+j TOT’<c25
° ‘ ’ ° (6.12)

following from Lemma 4.1 and (5.23).
Thus, by (6.8), (6.10) and (6.12) we have

.
RZECDY aXT (x)(1+ H,(x)(e, + Gi(x/z))

i i

lim sup

e—0

I+H)(e+G)>’

jVTx)Z

< lim sup

e—0

X (1+ H(X))(e, + G,(x/e) +4 [ T2 TOT‘

<cd. (6.13)
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For the fourth integral in (6.3) we apply Lemma 4.3 in passing to the limit
and Lemma 4.1

tim [, % ng (G,(x/2) +e) - (Gy(x/) +¢))
=] Z(%Tg< G,)-(e+G))
=ID[j2f§§<(ei+ﬁf>~(e,+ﬁf>>
Sng e.+G,) (e,+G))>—<(e,+E;) - (e,+E))>)
—f Z (o} 2T2T+c45
— ) jD T2+ L) Ty T+ c4d. (6.14)

Here we have used also the identity (A.29).
Now (6.2) clearly follows from (6.4), (6.7), (6.13) and (6.14). This
concludes the proof. [

A. APPENDIX: VARIATIONAL PRINCIPLES

A.l. The Cell Problem: Proof of Theorem 4.1

Let {e,;} be an orthonormal basis of R’ We define the continuous,
saddle, bi-quadratic functionals ¥ (F, F’), Vi, j=1, 2, ..., d on the product
space 7, (H)® 7,(H):

(K, F F'):=(TF.-TF) —2(THTF - F') —(T'F . TF) + (F -TH(e, —e;))
7<FH(ei+ej)-F’> (A.1)
VE, F' e “@(I?I). It is clear that yf_-,-(l?‘, F’) is convex in F, concave in F’ and

continuous in F, F'.
Let us consider the variational problems:

J(e, e):= inf sup  (F, ) (A2)
Fev,(H) Fev,(H)
K(e;, e;):= sup inf ,%/-(17", ). (A.3)

Fe ‘p;(ﬁ) Fe %(ﬁ)
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By the von Neumann Minimax Theorem and its generalization (cf. Zeidler
[16], Chapter 2.13, Theorem 2.G and Proposition 1), we know

ProposITION A.l. The functional % has a saddle point (E,-J-, E, ;) with
respect to ¥ (H) x Vg(H) and the relcmon

Iy(E, ;B ) =Jle;, e)=K(e;, €)) (A4)
holds true.
By a saddle pom (E, i E ;) of & with respect to V(H) x"/(ﬁ) we
mean that E, J» e, (ﬁ) and the 1nequa11t1es hold

F(E,, )< S(E,, E, )< S(FE, ), VEFevy (H). (AS)

ijs ij> ij

Note that The bilinear form J has the following symmetry property:

J(e;,, —e

J

)=J(—e;, ej): —J(e;, ej)' (A.6)
For fixed F e "Vg(ﬁ), the supremum in (A.2) is given by

e[—l—ejeﬂV

F=-TATF-TH
2 g

(A7)

F is uniq~ue if the mean (F') is specified. In general, F’ is not in the
space 7 (H).
Upon substituting (A.7) in (A.2), we obtain

. e e S O A,
J(e;, e;)= inf {(FF-FF>+<FH<FF+ >

Fev,(f)

-~ e€;,te; ~ o~
-FH<FF+ ~’>>+<F-rﬂ(e,.—¢,)>}. (A.8)

2

Similarly, we eliminate the infimum in (A.3) by solving

IF=-TAMF -TA——ev,. (A.9)

We obtain
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By the duality theorem (cf. Zeidler [ 16], Chapter 2.12, Theorem 2.F) we
know

ProrposiTION A.2. If (E, s E’ ;) is a saddle point of &, . Is a mini-
mizer of (A.8) and E’_ is a maximizer of (A.10). The conuerse holds true

provided that
J(e;, e;)=Kl(e;, e)). (A.11)

It is straightforward to check that the functionals in (A.10) and (A.8) are
strictly convex in "V;',(H) and so the pair of minimizer and maximizer is
unique up to a constant. Thus we have

PROPOSITION A.3.  The saddle point (E, ;, E ;) of %;, and so the minimizer

i jo ij>

(maximizer) of (A.8)((A.10)), exists and is umque up to constant.

The uniqueness of the saddle point can also be shown as follows. The
necessary condition for the minimizer of (A.8) is the Euler-Lagrange
equation of (A.8):

- - e e a~Cte ...
(TE, - TF) + (TATE, j-rHrF>+< > FHFF>
-~ ~~€,—¢€;
+<F-FH 5 f>:0 (A.12)

for all Fe7,(H). By the Riesz representation theorem applied to 7, (H),
the minimizer E; ; exists and is the unique, up to a constant.

Similarly, the max1m12er ; of (A.10) is the unique, up to a constant,
solution of the Euler— Lagrange equation of (A.10):

~ -~ ~ e~~~ ~ o~~~ ~~e,‘_e ~ o~~~
(TE; ,-TF') +(TATE, .- TATF') <FH 5 ! FHFF/>
~ ~~€te;
+<F’ TH— >=0 (A.13)

for all F' e V(ﬁ)
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It is easy to see now that

sup %(Ell’ F,):%(Ez E:/): inf ‘%(Fa E:/) (A.14)

Frev (i) Fevy ()

and thus the following Euler-Lagrange equations (cf. (A.7), (A.9)) hold

— SO ~~e+te;
IE, = -THTE, -TH— (A.15)
o e I
IE,,= —THTE, - TH— (A.16)

(A.15) and (A.16) are understood in the weak sense. Adding and subtracting
(A.15) and (A.16) we have

TE,= —THTE, - THe, (A.17)
IF'E;=THIE;+ T'He, (A.18)
where
E,:=TE,,+TE}, (A.19)
E =TE,  -TE, . (A.20)

Equations (A.17) and (A.18) are precisely the cell problem and its adjoint.
Note that~l~3i, E}E“Vg(ﬁ) because E; o 173}, JE “Vg(I:I). Thus on the solution

space 7,(H), the Euler-Lagrange Eqgs. (A.15), (A.16) are equivalent to the
cell problem and its adjoint via (A.19), (A.20), or, equivalently,

.. E+FE

TE,= ! (A21)
- 2

~ o~ Ei_ ~,'

TE;=— 2, (A22)

The existence and uniqueness of the saddle point, up to a constant, imply
the existence and uniqueness of the cell problem and its adjoint if the mean
fields are specified

(E>=0 (A.23)
CE)y=0. (A.24)
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A.2. Two Identities for the Effective Diffusivity
It is now straightforward to check that J,+ J(e;, e;) = o

(VA

In terms of (A.21) and (A.22), J(e,, ¢;) can be wrltten as

J(ee;)=S(E,; ;, K. ;) (A.25)
=((TE,+THTE,+ THe,) - E;> —(E,-THe,)  (A26)
=(HTE, ¢ (A.27)
=(HE, ¢, (A.28)

The weak form of Eq. (A.17) is used in the derivation. The last expression
plus J; yields g} ; by the Definition (4.3).

In general the effective diffusivity matrix ¢* is not symmetric but only
the symmetric part appears in the homogenized equation.

Let us derive another useful identity for o7,

%(aj‘fj+a;’ji)=l+<]~£[~]72j> (A.29)

if the mean filed (A.23) is satisfied.
For the diagonal entries where i=j, reversing the derivation in
(A.26)—(A.28) we have

o¥,=1+CHE, e, (A.30)
=1+ ((TE,+THTE,+THe,)-E;) —(E, - THe,> (A31)
=14 (TE,-E,> +(THTE, -E,) (A.32)
—14+(TE,-TE,) (A33)

For the off-diagonal entries where i # j, reversing the derivation in (A.26)
we have

of,=<HE, ¢ (A.34)
=((TE,+THTE,+THe,) -E,> — (E, THe,) (A.35)
=(TE, E,) +(THTE, -E,> + (THe;-E,) —<E, - THe,>. (A36)

Hence,

(TE, -TE,) =¢} ,— (THTE, - E,) — (T'He;-E,) + (E, - THe,>. (A37)

But the expression on the left side of (A.37) is symmetrical with respect to
i and j, so we have also

(TE, TE,) =0}, — (THTE,; E,) — (THe;- E,> + (E,-THe,> (A38)
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by interchanging the indexes. The identity (A.29) follows by adding (A.37)
and (A.38), and using the skew-adjointness of the operator THT.

A3, Cut-Off and Convergence

Since the space “Vg(ﬁ) is the domain of the graph closure of the operator
THT on the domain

={Ge7,;HGev} (A.39)

the variations in (A.2), (A.47) and (A.10) can be restricted to Z,.
Note that for any F e %, we have

(LEH-HA")F]*) >0. (A.40)
as M — oo. Consequently,
(TH-HAM)TF-T(H-HAH)TF) -0 (A41)

as M — oo. Here the stream matrix H* is the level M truncation of H.
Let us consider the analogous variational problem with the M-level
truncated stream matrix H'*, defined in Section 2,

Jule;, e;):= inf sup %, (F, F), (A42)

Fe Vg F E"t/é

where

Sy (E F):=<(TF -TF) —2<THMTF .- F'> —(TF -TF)
+(F - TH™(e,—¢,)y —(TH™(e; +e¢,) - F') (A43)

for any F, F" € 7. Note that 7,(H*") =7, because of the boundedness of
HM. ,/(F, F' ) can also be simply wrltten as
ST = (BB —2CAME By —(F . F (A.44)
with
~ e +e; ~, e,—e;
<F> =5 CF') = B (A.45)

By Proposition A.1,

Jule,e):=  sup inf Su(F, F) (A.46)
Fe I/g Fe //
(' = (e —¢)/2 CFD> = (e +e )/2
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The same procedure leading to (A.8), (A.10) now gives

~~ €,te;
lwwnm=;£{kn?nw+<1vwow+2f>

g

e +e; ~ ~n~

TR <fF +

—  inf {<F.F>+<fﬁw>ﬁ.fﬁ<wi>
Fev,
<F> =(e;fep2

SPNG e, —e;|?
—(H"F - (e;—¢;)) — 3 ‘ (A.47)
and
I AR B N OO M) [ 5 ¢i—¢
Jule, e)=sup { —<T'F.-TF') —( TH" (TF' + :
‘ l:"e‘//:g 2
T CUNE y R PS8 3 (0]
: + ) —<F"- (e;+e))

— ap {_@ By - (PRACOF . PROOE
F'e
(F >—(8%*L’)/2

~ e e +el?
+<{H"F'-(e;+e,))> + B } (A.48)
Next we prove the convergence lemma:
Lemma A.l.
lim J,l(e;, e)=J(e;,e;), Vi, j. (A.49)

M — o

Proof. We first show the upper bound: lim sup ,, , . Jle;, €;) < J(e;, ¢)),
Vi, j, using the minimum principles (A.47) and (A.8).
In view of (A.8), for given J >0 there exists a F € 9, such that

e ~ o e, +e ~~ € +te; o~
<FF-FF>+<FH<FF+ 5 >FH<FF+ 5 >>+<F-FH(e,-ej)>

<Jle, e,)+0. (A.50)
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For the same F, and sufficiently large M the left-side of (A.50) is bigger
than

S~ ~ ~ ~~ ei+84 ~ ~ — el._|_e,
<FFFF>+<FH(M) <FF+21>_FH(M) <FF+ > />>

+(F-TH"(e;,—e¢;)> —0 (A.51)
which in turn is bigger than
Jule;, e;)—0 (A.52)
in view of the minimum principle (A.47). Thus we have that
J(e;, e;) =Ty le;, e;)+20 (A.53)

for sufficiently large M. This proves the upper bound.

We turn to the lower bound: liminf,,_, , Jy/(e;, e;) = J(e;, e;), Vi, j.

By the maximum principle (A.10), there exists F' € 9, for given 6 >0,
such that

e e e (e €€\ .. e€,—e
J(e,e)—o< —<ITF - TF) - (I'H(I'F + > -TH|{T'F + >
_(F - TH(e 4 e))).

The right side of (A.54) is bounded by

(T TRy — <fﬁ<M> <fF' ﬁ;ef) RO <fﬁ' . ‘"‘;"-">>
—(F' - TH™ (e, +e,)> +0 (A.54)
for sufficiently large M, which, in turn, is bounded by

Jyule, e)+0o (A.55)

i» &y

by the maximum principle (A.48). Thus, we have

J(e,, e;) — 20 <lim inf J (e,, e;) (A.56)

M — o

for any ¢ > 0. This proves the lower bound. |

We now show that the trial functions for the variational principles (A.47)
and (A.47) can be restricted to bounded gradient fields. The proof
essentially follows from Lemma A.l and the density of %, in 7.
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LeMMA A.2. The minimum (A.8) (maximum in (A.10)) is achieved in the
space of bounded gradient fields %, .

Proof. For the minimum principle, suffice it to show that given J >0,
there exists bounded gradient field I with {(F) = (e, + ¢,)/2 such that

>.rﬁ <fF+e’;"f>>

+(F-TH(e,—e,)). (A.57)

ete

0¥, + 0> (TF.TF) + <fﬁ (fF+

By Lemma A.1, we have that

0
af‘j+§>(75f‘f} (A.58)

for sufficiently large M. By the remark in the beginning of the section, there
exists k' € 4, such that

~e -~ -~ €;FeN o o -~ e€;,te;
of,—0=2<IF-TF) + <FH(M) <FF +2’> -TH™ <FF +2’>>

+(F-TH™(e,—e¢))). (A.59)
Moreover, (A.59) is valid uniformly in M by (A.40) and (A.41). Equations
(A.58), (A.59) together with (A.40), (A.41) imply (A.57).

We turn to the maximum principle. Suffice it to show that given J >0,
there exists F’ € %, with (F'y = (e;—e;)/2 such that

e o~ e (e €=\ .. e —e¢
ot =0 < —(TF.TF) — (TR (TF -~ . TR (TF + -~
—(F"-TH(e,+e¢)). (A.60)

By Lemma A.1, we have that

al’.’jj—g<0§f‘f) (A1)

for sufficiently large M. Thus it follows from (A.48) and the density of %4,
for bounded H™ that there exists F' € %, such that

e (e, €€
¥, —0< —(TF .TF) - (TA™ (TF + 7
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Note that (A.62) is valid for all sufficiently large M due to (A.40) and
(A.41). Thus, (A.60) follows by passing to the limit M — co. ||
Note that the space of bounded, continuous gradient fields %, is dense
in ;. By the same argument, we have
LemMA A.3. The minimum in (A.8) (maximum in (A.10)) is achieved in
the space of bounded continuous gradient fields ,.
Let us turn to the proof of Lemma 4.1.
A.4. Approximate Correctors: Proof of Lemma 4.1
Writing a general trial field G in the form
G=E, ,+F (A.63)

and substituting it in the functional in (A.8) we have by straightforward
calculation using (A.12) that

J(e, e,)+<TF.-TF)y + (THF - THF). (A.64)

By Lemma A.3, for given 0 >0 there exists (~}i, ;€ %, such that

(TF,,-TF,,) +(THF,, THF,,)> <o (A.65)
where

F,,:=G,,—E,. (A.66)

Or, equivalently, there exist Cm in the space %, such that <(~}i, ;> =0 and
(G +e,—E, ;|*> <5%2 (A.67)
(TH(G, ;+e,—E, ,)|>> <d?)2 (A.68)

Likewise, there exist (~;§’,-e %, such that <(~;,-q ;> =0 and
G +e,—E;1?> <52 (A.69)
(TH(G,,; +e,— E; ,)|?> <6%/2. (A.70)

Thus it follows from (A.67), (A.70), (A.15) and (A.16) that

(|G, ;+THG, >y <% (A.71)
Similarly,
(G, +TH(G, ; +e;)|*> <52 (A.72)
follows from (A.68), (A.69), (A.15), and (A.16).
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Hence for the sum

o
Il
2
S
@

(A.73)
we have
(G, +TH(G,+¢,)|*) <> (A.74)

which is inequality (4.15).

The proof of (4.16) follows from the similar argument and the version of
Lemma A.3 for the adjoint cell problem (i.e. with H replaced by —H).

To show inequality (4.17) let us consider the following identities:

=((I-H)(Ej+e¢) e
—<(I H)(Ej+¢) (G +e))
=(Ej+e)-(I+ FI)(G,-+e,~)>
=((I+H)(G,+e,)-¢,>+(I+H)G,+e;,)-E>. (A7)

This leads to the identity
<(I+ﬁ)((~;i+ei)'ej> _U?fj: _<(I+ﬁ)(ci+ei)'ﬁ}>
= *<r‘(l+ﬁ)(éi+ei)'E;>
=—{(G,+TH(G,+e,))-E)>. (A76)

Thus we have by the Cauchy—-Schwarz inequality that

KX+ H)(G,+e,) e —o* | < /CE-E) /G, +THG, +e¢,)*>
(Ej-E)) (A7)

which is the desired inequality (4.17). The inequality (4.18) can be similarly
proved. |
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