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Abstract

We prove limit theorems for small-scale pair dispersion in synthetic velocity fields with power-law spatial spectra and
wavenumber dependent correlation times. These limit theorems are related to a family of generalized Richardson’s laws with
a limiting case corresponding to Richardson’st3- and 4/3-laws. We also characterize a regime of positive dissipation of passive
scalars.
© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

The celebrated Richardson’st3-law [36] states that a pair of particles located at(x(0)(t), x(1)(t)) ∈ R
2d being

transported in the incompressible turbulence satisfies

E|x(1)(t)− x(0)(t)|2 ≈ CRε̄t
3 for 	1 � |x(1)(t)− x(0)(t)| � 	0, (1)

where ε̄ is the energy dissipation rate,CR the Richardson constant and	0 and 	1 are respectively the integral
and viscous scales. Here and belowE stands for the expectations w.r.t. the ensemble of the velocity fields. This
law has been confirmed experimentally[22,31,39]and numerically[4,11,18,43]. A stronger statement is that the
relative diffusivity of the tracer particles is proportional to the 4/3 power of their momentary separation, and this
is called Richardson’s 4/3-law[36], see also[1,7,29,32]. This paper presents several small-scale limit theorems
(Theorems 1–3) related to the Richardson’s laws for a family of colored-noise-in-time velocity fields that have
Kolmogorov-type spatial spectra and wavenumber dependent correlation times. The other aspect of the scaling limit
concerns the dissipation of the scalar field in the limit of vanishing molecular diffusion (Corollaries 1 and 2).
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The nature of time correlation in fully developed turbulences in the inertial range is not entirely clear (see[30]
and the references therein). But it seems reasonable to assume that, to the leading order, the temporal correlation
structure of theEulerianvelocity fieldu(t, x) is determined by the energy-containing velocity components above the
integral scale, consistent with Taylor’s hypothesis commonly used in the fluid flow measurements in the presence
of a mean flow or the random sweeping hypothesis in the absence of a mean flow (see[35,40]). In both cases the
temporal correlation function on the small scales is anisotropic and depends on external forcing. The more robust
features of small-scale turbulence can be revealed by considering the relative velocity fieldU(t, x) = u(t, x +
x(0)(t))−u(t, x(0)(t)), with respect to a reference fluid particlex(0)(t), which tends to preserve invariance properties
of the fluid equations. The velocity fieldu(t, x+ x(0)(t)) as viewed from a fluid particle, which is a useful tool for
turbulence modeling[2,23], is called the quasi-Lagrangian velocity field in the physics literature and is an example
of the general notion of the Lagrangian environment process[15,33,34].

We assume[13,16] that the two-time structure function ofU(t, x) has the power-law form

E[U(t, x)− U(t, y)] ⊗ [U(s, x)− U(s, y)]
=

∫
Rd

2[1− cos(k · (x− y))] exp(−a|k|2β|t − s|)E(	1,	0)(α, k)|k|1−d dk,

α ∈ (1,2), β > 0, a > 0 (2)

with the energy spectrum

E(	1,	0)(α, k) =


E0(I− k ⊗ k|k|−2)|k|1−2α for |k| ∈ (	−1

0 , 	−1
1 ),

0 for |k| /∈ (	−1
0 , 	−1

1 ),
	0 <∞, 	1 > 0, E0 > 0, (3)

where	1 and	0 are respectively the viscous and integral scales. The assumed temporally stationary vector field
U(t, x) has homogeneous spatial increments and its expectationEs[U(t, x)], conditioning on the events up to time
s < t, is assumed to admit the spectral representation

Es[U(t, x)− U(t, y)] =
∫
R

[1− exp(ik · (x− y))] exp(−a|k|2β|t − s|)Û(s,dk), s < t, (4)

whereÛ(t, k) is a time-stationary process with uncorrelated increments overk such that

E[Û(t,dk)Û∗(t,dk′)] = E(	1,	0)(α, k)δ(k − k′)dk dk′ ∀t, k, k′. (5)

The exponential form of the temporal correlation in(2) and (4)is not important for us; it can be replaced by a more
general one like

ρ(a|k|2β|t − s|)
with an integrable functionρ(τ) decaying to zero asτ →∞. Since the exponential form seems to agree well with
the Lagrangian measurements (see[37] for the Reynolds number around 100 and[41] for high Reynolds numbers)
we will use it for the sake of simplicity.

Set the rescaled velocity

Uλ(t, x) ≡ λ1−αU(λ2βt, λx). (6)

ThenUλ(t, x) has the energy spectrum

E(	1λ
−1,	0λ

−1)(α, k) =
{
E0(I− k ⊗ k|k|−2)|k|1−2α for |k| ∈ (	−1

0 λ, 	−1
1 λ),

0 else.
(7)
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However, we donotassume in this paper the full scale-invariance, namely,

Uλ(t, x)
d=U(t, x) for 	1 = 0, 	0 = ∞, (8)

where=d means the identity of the distributions. Instead, we assume the weaker assumption of the 4th order
scale-invariance, i.e. that up to the 4th moments of the velocity field can be estimated in term of the energy spectrum
as in the case of Gaussian fields.

The viscous and integral scales	1 and	0 can be related to each other via the Reynolds numberReas

	0

	1
∼ Re1/(4−2α)

by using the positivity of kinetic energy dissipation of fluid in the limitRe→∞. The correlation timea−1|k|−2β

decreases as the wavenumberk increases. The spatial Hurst exponent of the velocity equalsα−1 in the inertial range
(	1, 	0). It should be noted that because of the temporal stationarity of the Lagrangian fieldu(t, x+x(0)(t)) [15,42],
U(t, x) has the same one-time statistics as the Eulerian velocityu(t, x); in particular they share the same energy
spectrum, but their multiple-time statistics are usually different. We could work with the modified von Karman
spectrum but it is irrelevant for our purpose since we are concerned with transport in the inertial-convective range.

It is convenient to express the coefficientsE0, a in terms ofU0, the root mean-squarelongitudinal velocity
increment over the integral length	0, as

E0 ≈ CαU2
0	

2−2α
0 , a ≈ c0	2β−1

0 U0 as
	0

	1
→∞ (9)

with dimensionless constantsc0 and

Cα = (4π)d/222α−3(2α− 2)Γ(α+ d/2)
(d − 1)Γ(2− α) , (10)

whereΓ(r) is the Gamma function.
Assuming that the lifetime (i.e. correlation timeτ(k) = a−1|k|−2β) of eddy of size|k|−1 is same as its turnover

time one gets the relation

α+ 2β = 2. (11)

Assuming that the energy flux given byE(	1,	0)|k|/τ(k) is constant across the scales in the inertial range one gets
the relation

α− β = 1. (12)

The values of parameters satisfying bothEqs. (11) and (12)correspond to the Kolmogorov spectrum withα = 4/3,
β = 1/3. For the Kolmogorov spectrum, one has the expression, by estimatingε̄ byU3

0	
−1
0 ,

E0 ≈ Cαε̄2/3, a ≈ c0ε̄1/3. (13)

Writing x(t) = x(1)(t)−x(0)(t) and adding the molecular diffusivityκwe have the following It̂o’s stochastic equation
for the pair separationx(t)

dx(t) = [u(t, x(0)(t)+ x(t))− u(t, x(0)(t))] dt +√κ dw(t) = U(t, x(t))dt +√κ dw(t),

wherew(t) is the standard Brownian motion inRd . It is also useful to consider the associated backward stochastic
flow which is the solution of the backward stochastic differential equation

dΦts(x) = −U(s,Φts(x))ds+√κ dw(t), 0 ≤ s ≤ t, (14)



164 A.C. Fannjiang / Physica D 179 (2003) 161–182

Φtt(x) = x. (15)

Denote byM the expectation with respect to the molecular diffusion and consider the scalar fieldT(t, x)

T(t, x) ≡ M[T0(Φ
t
0(x))], (16)

which satisfies the advection–diffusion equation

∂T(t, x)

∂t
= U(t, x) · ∇T(t, x)+ κ

2
$T(t, x), T(0, x) = T0(x). (17)

We interpretEq. (17)in the weak sense

〈T(t, ·), θ〉 − 〈T0, θ〉 = κ̃

2

∫ t

0
〈T(s, ·),$θ〉ds−

∫ t

0
〈T(s, ·), V(s, ·) · ∇θ〉ds (18)

for any test functionθ ∈ C∞c (Rd), the space of smooth functions with compact supports.
To study the small-scale behavior we introduce the following scaling limit. First we assume that the integral and

viscous scales of the fieldU are	0 = εL, 	1 = ε/K with L,K tending to∞ in a way to be specified later. Then
we re-scale the variablesx→ εx, t→ ε2qt amounting to consider the re-scaled pair separation

xε(t) = ε−1x(ε2qt).

The scaling parameterε will tend to zero, indicating that we are considering the emergent inertial range of scales
	1 � |x| � 	0 (sinceK,L→∞) as a result of a large Reynolds number. We also set

κ = ε2−2qκ̃ with κ̃ = κ̃(ε). (19)

After re-scaling, the advection–diffusion equation becomes

∂T ε

∂t
= ε2q−1U(ε2qt, εx) · ∇T ε + κ̃

2
$Tε. (20)

We take the initial dataT ε(0, x) = T0(x) ∈ L∞(Rd) ∩ L2(Rd). Let

V(t, x) = ε1−αU(ε2βt, εx).

As before (cf.(7)) the energy spectrum of the rescaled fieldV is given by

EK,L(α, k) =
{
E0(I− k ⊗ k|k|−2)|k|1−2α for |k| ∈ (L−1,K),

0 else.

We rewriteEq. (20)in terms ofV as

∂T ε

∂t
= ε2q+α−2V(ε2(q−β)t, x) · ∇T ε + κ̃

2
$Tε, T ε(0, x) = T0(x). (21)

A simple, non-trivial scaling limit is the white-noise limit when

q < β (22)

and

q = 2− α− β (23)

resulting from equating 2q+ α− 2 andq− β. Inequalities(22) and (23)then gives the condition

α+ 2β > 2. (24)
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Note that for

α+ β < 2 (25)

and thusq > 0 we have a short-time limit; otherwise, it is a long time (but small spatial scale) limit.
The paper is organized as follows. InSection 2we state the main results and discuss their implications. InSection

3 we discuss the meaning of solutions for the colored-noise and white-noise models and prove the uniqueness for
the latter. InSection 4, we proveTheorem 1: we prove the tightness of the measures inSection 4.1and, inSection
4.2, identify the limiting measure by the martingale formulation. InSection 5, we proveTheorem 2. The method
of proof is the same as that in[14] (see also[5]). We refer the reader to[26] for the full exposition of the perturbed
test function method used here. We note that the method of Kunita[24] requires sub-Gaussian behavior and spatial
regularity of the velocity field and is not applicable here.

2. Main theorems and interpretation

Let us begin by briefly recalling the Kraichnan model. The model has a white-noise-in-time incompressible
velocity field which can be described as the time derivative of a zero mean, isotropic Brownian vector fieldBt with
the two-time structure function

E[Bt(x)− Bt(y)] ⊗ [Bs(x)− Bs(y)] = min(t, s)
∫

2[1− cos(k · (x− y))]a−1ĒL(η+ 1, k)|k|1−d dk,

η ∈ (0,1) (26)

with

ĒL(η+ 1, k) = lim
K→∞

EK,L(η+ 1, k).

In this paper, we interpret the corresponding advection–diffusion equation for the Kraichnan model in the sense of
Stratonovich’s integral

dTt(x) = [∇Tt(x)]† ◦ [dBt(x)− dBt(0)] + κ0

2
$Tt(x)dt, κ0 ≥ 0, T(0, x) = T0(x), (27)

which can be rewritten as an Itô’s SDE

dTt =
(
κ0

2
∆+ 1

a
B̄

)
Tt dt +

√
2a−1/2∇Tt · dW̄(1)

t , (28)

whereW̄(1)
t (x) is the Brownian vector field with the spatial covariance

Γ̄ (1)(x, y) =
∫

[exp(ik · x)− 1][exp(−ik · y)− 1]ĒL(η+ 1, k)|k|1−d dk, η = α+ β − 1 (29)

and the operator̄B is given by

B̄φ(x) =
∑
i,j

Γ̄
(1)
ij (x, x)

∂2φ(x)

∂xi∂xj
, φ ∈ C∞(Rd). (30)

We will discuss the meaning of solutions for the Kraichnan model and prove the uniqueness property inSection
3. The Kraichnan model for passive scalar has been widely studied to understand turbulent transport in the inertial
range because of its tractability (see, e.g.,[6,10,12,19,20,28,30,38]and the references therein). The tractability of
this model lies in the Gaussian and white-noise nature of the velocity field.
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Theorem 1. Supposeα+2β > 2.LetL <∞be fixed and letK = K(ε) such thatlimε→0K = ∞.Letκ̃ = κ̃(ε) > 0
such thatlimε→0 κ̃ = κ0 <∞. LetT0 ∈ L∞(Rd)∩L2(Rd). If, additionally, any one of the following conditions is
satisfied:

(i) α+ 2β > 4;
(ii) α+ 2β = 4, limε→0 κ̃ε

2
√

logK = 0;
(iii) 3 < α+ 2β < 4, limε→0 κ̃ε

2K4−α−2β = 0;
(iv) α+ 2β = 3, limε→0 κ̃ε

2K = limε→0 ε
√

logK = 0;
(v) 2< α+ 2β < 3, limε→0 κ̃ε

2K4−α−2β = limε→0 εK
3−α−2β = 0.

Then for the exponent q given in(23) the solutionT εt of (21) converges in distribution, as ε → 0, in the space
D([0,∞);L∞w∗(Rd)) to the scalar fieldTt for pair dispersion in the Kraichnan model in the time interval[0, t0] ∀t0 <
∞. The limiting Kraichnan model has the spatial covariance given by(29). HereD([0,∞);L∞w∗(Rd)) is the space
ofL∞(Rd)-valued right continuous processes with left limits endowed with the Skorohod metric[3] andL∞w∗(R

d)

is the standard spaceL∞(Rd) endowed with the weak∗ topology.

Remark 1. In addition to the assumptions stated inSection 1and in the theorem, we use in the proof of
Theorem 1the assumption

sup
t<t0

∫
|x|≤M

|Ṽ εt (x)|dx = o

(
1

ε

)
, ε→ 0 ∀0< M <∞ (31)

with a random constant possessing a finite moment where

Ṽ εt (x) =
1

ε2

∫ ∞

t

Etε−2V
( s
ε2
, x

)
ds.

For Gaussian velocity fields one has

Md sup
|x|≤M
t≤t0

∣∣∣Ṽ ( t
ε2
, x

)∣∣∣ ≤ CLα+2β−2 log

[
Mdt0

ε2

]
= o

(
1

ε

)
, (32)

where the random constantC has a Gaussian-like tail by Chernoff’s bound. Condition(31) allows certain degree
of intermittency in the velocity field.

Note that, inTheorem 1, whenκ0 > 0 and 2< α+2β < 3, limε→0 κ̃ε
2K4−α−2β = 0 implies limε→0 εK

3−α−2β =
0. Also,α+2β < 3 contains the regimeα+β < 2 in which the limiting Brownian velocity field is spatially Hölder
continuous and has a Hurst exponentη = α+β−1 ∈ (1/2,1), i.e. the limiting velocity field has apersistentspatial
correlation.

If we let L → ∞ in the Kraichnan model, we see that it gives rise to a Brownian velocity fieldB̄t with the
structure function

E[B̄t(x)− B̄t(y)] ⊗ [B̄s(x)− B̄s(y)] = min(t, s)
∫

2[1− cos(k · (x− y))]a−1 ¯̄E(α+ β, k)|k|1−d dk, (33)

where

¯̄E(α+ β, k) = lim
L→∞

ĒL(α+ β, k).

The spectral integral in(33) is convergent only forα + β < 2. The convergence of the integral in(33) means that
the limiting Brownian velocity fieldB̄t has spatially homogeneous increments.
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We can prove the convergence to the Kraichnan model with velocity fieldB̄t in the simultaneous limit ofε →
0,K,L→∞ if additional conditions are satisfied.

Theorem 2. Supposeα + β < 2 and all the assumptions ofTheorem 1(thus, only regime(v) is relevant) except
for the finiteness of L. Instead, letL = L(ε)→∞ such that

lim
ε→0

L2(α+2β−2)ε = 0. (34)

Then the same convergence holds as inTheorem 1. The limiting Brownian velocity field̄Bt has the structure function
given by(33).

Remark 2. In addition to the assumptions ofTheorem 1(cf. Remark 1) we use in the proof ofTheorem 2the
assumption

sup
t<t0

∫
|x|≤M

|Ṽ εt (x)|2 dx ≤ CL2(α+2β−2) 1

ε
, ε→ 0, L→∞ ∀0< M <∞ (35)

with a random constantC possessing a finite moment. For Gaussian velocity fields one has

sup
t<t0

∫
|x|≤M

|Ṽ εt (x)|2 dx ≤ CL2(α+2β−2)
(

log
1

ε

)2

, ε→ 0, L→∞ ∀0< M <∞.

One sees that condition(35) is in some sense more tolerant of intermittency than(31) is.

Due to the divergence-free property of the velocity field, the pre-limit scalar field satisfies the energy identity[29,
Chapter III, Theorem 7.2]∫

|T εt (x)|2 dx+ κ̃
∫ t

0

∫
|∇T εt |2(x)dx ds =

∫
|T0(x)|2 dx (36)

provided thatT0 ∈ L2(Rd). From(36)we have the estimates

‖T εt ‖2
2 < ‖T0‖2,

∫ t

0
‖T εs ‖2

H1 ds ≤
(
t + 1

κ̃

)
‖T0‖2

2, t > 0,

where‖·‖H1 is the norm of the standard Sobolev spaceH1(Rd)of square-integrable functions with square-integrable
first derivative. Thus the law ofT ε is naturally supported by the space of continuousL2(Rd)-valued processes which
are also inL2

loc([0,∞);H1(Rd)). Following[5] we consider the space

Ω = D([0,∞);L2
w(R

d) ∩ L∞w∗(Rd)) ∩ L2
w,loc([0,∞);H1

w(R
d)),

where the subscripts w and loc denote the weak and the local topologies, respectively.
In the case of̃κ > 0, κ0 > 0 the above observation and the tightness argument forTheorems 1 and 2then imply

the tightness ofT εt in the spaceΩ. We have the following corollary.

Corollary 1. If κ0 > 0 andT0 ∈ L∞(Rd) ∩ L2(Rd) then the convergence holds in the spaceΩ in the following
regimes:

Case 1: LetL <∞ be fixed andK→∞ asε→ 0.

(i) α+ 2β > 4;
(ii) α+ 2β = 4, limε→0 ε

2
√

logK = 0;



168 A.C. Fannjiang / Physica D 179 (2003) 161–182

(iii) 2 < α+ 2β < 4, limε→0 ε
2K4−α−2β = 0.

Case 2: Supposeα+ β < 2< α+ 2β and L,K→∞ asε→ 0 such that

lim
ε→0

ε2K4−α−2β = lim
ε→0

L2(α+2β−2)ε = 0.

In particular,

‖T0‖2
2− lim sup

ε→0
E[‖T εt ‖2

2] = lim inf
ε→0

κ̃

∫ t

0
E[‖∇T εs ‖2

2] ds ≥ κ0

∫ t

0
E[‖∇Ts‖2

2] ds > 0,

t > 0, unlessTs ≡ 0, 0 ≤ s ≤ t, (37)

whereTt is the solution of the corresponding Kraichnan model.

In the case of̃κ > 0,κ0 = 0 andT0 ∈ L2∩L∞, the limiting Kraichnan model conserves theL2-norm ofTt . The
energy identity(36) then implies

‖T εt ‖2
2 ≤ ‖T0‖2

2 = ‖Tt‖2
2 ∀ε > 0 ∀t > 0,

which in turn implies limε→0‖T εt ‖2 = ‖Tt‖2. Hence the weak sense of convergence inTheorems 1 and 2can be
strengthened to the strongL2 convergence.

Corollary 2. If κ0 = 0 andT0 ∈ L∞(Rd)∩L2(Rd) then the convergence holds in the spaceD([0,∞);L2(Rd)∩
L∞w∗(R

d)) in the respective regimes listed inTheorems 1 and 2. In particular,

‖T0‖2
2− lim

ε→0
E[‖T εt ‖2

2] = 0, t > 0 a.e.

We see that in the context ofCorollary 1there is positive dissipation(37) while there is none in the context of
Corollary 2. The conditions of the limit theorems set a constraint for the presence of positive dissipation: on the
observation scaleε, if the molecular diffusionκ is of orderε2−2q, then there is always positive dissipation no matter
how slow	1 vanishes. On the other hand, ifκ� ε2−2q (i.e.κ0 = 0) and the dissipation is positive, then

	1 = O(εν), ν = 4− α− 2β

3− α− 2β

with ν ∈ (2,∞) in the regimeα + β < 2 < α + 2β (cf. (41)). An open question is whether there is a positive
dissipation asε, κ → 0 with 	1 = 0 at the outset. If there is, then the Kraichnan model(27) is unlikely to be the
governing equation of the scaling limit (if exists).

In the case of̃κ = 0, a still stronger sense of convergence holds since nowEq. (21)is of first order and any
locally bounded measurable functionφ(T ε) of the scalar field satisfies the sameequation (18)with κ̃ = 0. The same
argument for the proof ofTheorems 1 and 2will then yield the following theorem.

Theorem 3. Assume the conditions stated inRemarks 1 and 2. Let κ̃ = 0,T0, φ(T0) ∈ L∞(Rd)∩L2(Rd) andφ is
a locally bounded measurable function fromR to R. ThenT εt , φ(T εt ) converge in the spaceD([0,∞);L∞w∗(Rd) ∩
L2(Rd)) to the corresponding Kraichnan model in the following regimes.

Case 1: LetL <∞ be fixed andK→∞ asε→ 0.

(i) α+ 2β > 3;
(ii) α+ 2β = 3, limε→0 ε

√
logK = 0;
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(iii) 2 < α+ 2β < 3, limε→0 εK
3−α−2β = 0.

Case 2: Supposeα+ β < 2< α+ 2β andL,K→∞ asε→ 0 such that

lim
ε→0

εK3−α−2β = lim
ε→0

L2(α+2β−2)ε = 0.

Remark 3. The assertions ofTheorems 1–3andCorollaries 1 and 2hold true for random as well as deterministic
initial data.

When the parameters are in the regimeα+ β < 2< α+ 2β, by taking the expectation in the Itô’s equation with
the Brownian velocity field̄Bt one sees readily that thelongitudinalrelative diffusion coefficient is given by

κ0

2
+ 1

a

x

|x| ·
¯̄Γ (1)(x, x) · x|x| ≈

1

a
C−1
α+βE0|x|2η for κ0 � 1, η = 1− q = α+ β − 1 ∈

(
1

2
,1

)
(38)

with

¯̄Γ (1)(x, x) = lim
L→∞

Γ̄ (1)(x, x) = C−1
α+βE0|x|2η

[(
1+ 2(α+ β − 1)

d − 1

)
I− 2(α+ β − 1)

d − 1
x⊗ x|x|−2

]
,

whereCα+β is defined as in(10), except withα replaced byα+ β. The exponentq is related to the exponentp in
the expression for the mean-square pair separation as follows:

E|x|2(t) ∼ a−pEp0 tp, p = 1

q
= 1

2− α− β (39)

up to a dimensionless constant depending only onα+β. Expressions(38) and (39)can be viewed as the generalization
of Richardson’st3- and 4/3-laws, respectively. In general,p ∈ (2,∞), indicating super-ballistic (i.e. accelerating)
motion as a result of a scale-dependent relative diffusivity.

We now remark on the range of scales for whichTheorem 2is proved and Richardson’s laws can be reasonably
interpreted. Letε be the scale of dispersion. Then the limit theorem holds in the range

ε� min

[
	
γ

1,

(
1

	0

)2(α+2β−2)/(5−2α−4β)
]
, γ =




3− α− 2β

4− α− 2β
if κ0 = 0,

4− α− 2β

6− α− 2β
if κ0 > 0.

(40)

In the usual situation with	0 = O(1) the range of scales covered by the limit theorem has an upper limit of

	
γ

1 with γ ∈


(0, 1

2) if κ0 = 0

(1
3,

1
2) if κ0 > 0

for α+ 2β > 2> α+ β, (41)

which is limited to the low end of the inertial range depending onα, β, κ0. It is not clear whether this is physical
or a technical matter. Qualitatively similar restriction of Richardson’s laws in synthetic flows has been observed in
numerical calculation (cf.[4,18]).

If we stretch the validity of(38) and (39)by taking the limitα→ 4/3, β→ 1/3 from within the valid regime,
the resulting exponents arep = 3, 2η = 4/3 in accordance with Richardson’s laws. On the boundaryα+ 2β = 2
the scaling exponentq should be given by

q = β = 1− 1
2α, (42)
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which also coincides with the limiting value of(23). With (42) andK,L → ∞, the solution of(21) converges
to that of the advection–diffusion equation with the molecular diffusivityκ0 = limε→0 κ̃ and the time-stationary,
spatially Hölder continuous velocity field̄V whose two-time correlation function is

E[V̄ (t, x)⊗ V̄ (s, y)] =
∫
Rd

[exp(ik · x)− 1][exp(−ik · y)− 1] exp(−a|k|2−α|t − s|) ¯̄E(α, k)|k|1−d dk,

α ∈ (1,2),

which has the self-similar structure

E[V̄ (λ2βt, λx)⊗ V̄ (λ2βs, λy)] = λ2α−2
E[V̄ (t, x)⊗ V̄ (s, y)].

In view of the 4th order scale-invariance property it is reasonable to postulate the temporal self-similarity on the
mean-square relative dispersion asκ0 → 0

E|x(t)|2 = f(E0, a)t
1/β,

which has the same exponent as the limiting case of(39) asα+ 2β→ 2, where the unknown functionf satisfies
the relation

f(E0, λa)λ
−1/β = f(λ−2E0, a) ∀λ > 0.

Dimensional analysis with(9) then leads to the relation

E|x(t)|2 = C̄RC
−1/2β
α E

1/2β
0 t1/β,

whereC̄R is the generalized Richardson constant. Forβ = 1/3 the exponentp is 1/3 as predicted by Richardson’s
t3-law. However, since the limiting velocity field is non-white-in-time, the notion of relative diffusivity is not strictly
well defined. Therefore the temporal memory persists on small or intermediate time scales and the notion of relative
diffusivity does not describe accurately the process of relative dispersion on the boundaryα + 2β = 2 (cf., e.g.,
[18,21,30]).

Let us consider the regimeα+ 2β < 2. The correct scaling is to set

2q+ α− 2= 0 or q = 1− 1
2α. (43)

Then the exponent 2(q−β) of the temporal scaling in(21) is positive due toα+2β < 2, meaning the time variable
is slowed down asε→ 0. It is easy to see by a regular perturbation argument that the solutionT εt converges in the
sense described inTheorem 1to the solutionT̄t of the following equation:

∂T̄t

∂t
= V(0, x) · ∇T̄t + κ0

2
$T̄t, T̄0 = T0 ∈ L∞(Rd)

if κ0 > 0. If, however,κ0 = 0, the above equation probably have multiple solutions for a given initial condition.
The relation(43) is consistent with the numerical simulation using two-dimensional frozen velocity fields with
Kolmogorov-type spectrum[11].

Unlike the previous regime, for eitherα + 2β = 2 or α + 2β < 2 there is no restriction on the vanishing rate
of 	1.
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3. Formulation

From the general theory of parabolic partial differential equations[17], for any fixedκ̃ > 0, ε > 0, there is a
uniqueC2+η-solutionT εt (x), 0 < ∀η < α − 1. But the solutionsT εt may lose all the regularity as̃κ → 0, ε→ 0.
So we consider the weak formulation of the equation:

〈T εt , θ〉 − 〈T0, θ〉 = κ̃

2

∫ t

0
〈T εs ,$θ〉ds−

1

ε

∫ t

0

〈
T εs , V

( s
ε2
, ·

)
· ∇θ

〉
ds (44)

for any test functionθ ∈ C∞c (Rd), the space of smooth functions with compact support. On the other hand, the
energy identity(36) implies T εt ∈ L2([0, t0];H1(Rd)) if T0 ∈ L2(Rd). Hence forL2 initial data the pre-limit
measurePε is supported in the spaceL2([0, t0];H1(Rd)) and, by the tightness result (Section 4.1), the limiting
measureP is supported inL2

w([0, t0];H1
w(R

d)).
As in (14) and (16)the solutionsT εt can be represented as

T εt = M[T0(Φ
t,ε
0 (x))], (45)

whereΦt,εs (x) is the unique stochastic flow satisfying

dΦt,εs (x) = −
1

ε
V

( s
ε2
, Φt,εs (x)

)
ds+

√
κ̃ dw(t), 0 ≤ s ≤ t, (46)

Φ
t,ε
t (x) = x. (47)

In the case of̃κ = 0,Φt,ε0 (x)∀t, is almost surely a diffeomorphism ofR
d andT εt = T0(Φ

t,ε
0 (x)). Moreover, for any

locally bounded measurable functionφ : R → R, φ(T εt (x)) = (φ ◦ T0)(Φ
t,ε
0 (x)).

In view of the averaging in the representation(45)we have the following proposition.

Proposition 1.

‖T εt ‖∞ ≤ ‖T0‖∞ a.s.

Clearly,Proposition 1holds for the case of̃κ = 0 as well.
For tightness as well as identification of the limit, the following infinitesimal operatorAε will play an important

role. LetVεt ≡ V(t/ε2, ·). LetF εt be theσ-algebras generated by{Vεs , s ≤ t} andE
ε
t the corresponding conditional

expectation w.r.t.F εt . LetMε be the space of measurable function adapted to{F εt ∀t} such that supt<t0 E|f(t)| <∞.
We sayf(·) ∈ D(Aε), the domain ofAε, andAεf = g if f, g ∈Mε and forf δ(t) ≡ δ−1[Eεt f(t + δ) − f(t)] we
have

sup
t,δ

E|f δ(t)| <∞, lim
δ→0

E|f δ(t)− g(t)| = 0 ∀t.

Forf(t) = φ(〈T εt , θ〉), f ′(t) = φ′(〈T εt , θ〉)∀φ ∈ C∞(R) we have the following expression from(44)and the chain
rule:

Aεf(t) = κ̃

2
f ′(t)〈T εt ,$θ〉 −

1

ε
f ′(t)〈T εt ,V εt (θ)〉, (48)

where

V εt (θ) ≡ Vεt · ∇θ. (49)
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A main property ofAε is that

f(t)−
∫ t

0
Aεf(s)ds is anF εt -martingale∀f ∈ D(Aε). (50)

Also,

E
ε
sf(t)− f(s) =

∫ t

0
E
ε
sA

εf(τ)dτ ∀s < t a.s. (51)

(see[25]).
Likewise we formulate the solutions for the Kraichnan model(28)as the solutions to the corresponding martingale

problem. Find a measureP (of Tt) on the spaceD([0,∞);L∞w∗(Rd)) such that

f(〈Tt, θ〉)−
∫ t

0

{
f ′(〈Ts, θ〉)

[
κ0

2
〈Ts,$θ〉 + 1

a
〈Ts, B̄∗θ〉

]
+ 1

a
f ′′(〈Ts, θ〉)〈θ, K̄(1)Ts θ〉

}
ds

is a martingale w.r.t. the filtration of a cylindrical Wiener process, for each f ∈ C∞(R), (52)

whereB̄
∗

is the adjoint ofB̄ and

〈θ, K̄(1)Ts θ〉 =
∫∫

Ts(x)Ts(y)∇θ(x) · Γ̄ (1)(x, y) · ∇θ(y)dy (53)

with Γ̄ (1)(x, y) given, respectively, by(29)and

Γ̄ (1)(x, y) =
∫

[exp(ik · x)− 1][exp(−ik · y)− 1] ¯̄E(η+ 1, k)|k|1−d dk, η = α+ β − 1 (54)

for L <∞ andL = ∞. To identify the limit for the proof of convergence one needs the uniqueness of solution to
the martingale problem(52)which can be easily obtained as follows.

Taking expectation of(52)with f(r) = rn, n ∈ N we get for then-point correlation function

Ftn(x1, x2, x3, . . . , xn) ≡ ET0[Tt(x1)Tt(x2) · · · Tt(xn)]
the equation

〈Ftn,⊗nθ〉 − 〈F0
n ,⊗nθ〉

=
∫ t

0


∑

j

κ0

2
〈Fsn, θ(x1) · · ·$θ(xj) · · · θ(xn)〉 +

∑
j

1

a
〈Fsn, θ(x1) · · · B̄∗θ(xj) · · · θ(xn)〉

+
∑
i<j

2

a
〈Fsn, Γ̄ (1)(xi, xj) : θ(x1) · · · ∇θ(xi) · · · ∇θ(xj) · · · θ(xn)〉


 ds,

which induces a weakly continuous (hence strongly continuous) sub-Markovian semigroup onLp(Rnd)∀p ∈
(1,∞). The sub-Markovianity property is inherited from the pre-limit processT εt . The generator of the semigroup
is given formally as

LnΦ(x1, . . . , xn) ≡ κ0

2

n∑
j=1

$xjΦ+
1

a

n∑
i,j=1

Γ̄ (1)(xi, xj) : ∇xi∇xjΦ, Φ ∈ C∞c (Rnd), κ0 ≥ 0 (55)

with the spatial covariance tensorΓ̄ (1)(xi, xj) given by(29) and (54), respectively, forL < ∞ andL = ∞. Note
that the symmetric operatorLn (55) is an essentially self-adjoint positive operator onC∞c (RN),N = ndwhich then
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induces auniquesymmetric Markov semigroup of contractions onL2(RN). The essential self-adjointness is due to
the sub-Lipschitz growth of the square-root ofΓ̄ (1)(x1, x2) at large|x1|, |x2| (hence no escape to infinity)[8].

By Theorem 1.4.1 of[9] this semigroup induces a sub-MarkovianC0-semigroup onLp(RN), p ∈ [1,∞). The
uniqueness holds for these semigroups in their respective space as well but we will not pursue it here.

4. Proof of Theorem 1

4.1. Tightness

In the sequel we will adopt the following notation

f(t) ≡ f(〈T εt , θ〉), f ′(t) ≡ f ′(〈T εt , θ〉), f ′′(t) ≡ f ′′(〈T εt , θ〉) ∀f ∈ C∞(R).
Namely, the prime stands for the differentiation w.r.t. the original argument (nott) of f, f ′, etc.

A family of processes{T ε,0 < ε < 1} ⊂ D([0,∞);L∞w∗(Rd)) is tight if and only if the family of processes
{〈T ε, θ〉,0< ε < 1} ⊂ D([0,∞);L∞w∗(Rd)) is tight for allθ ∈ C∞c (Rd). We use the tightness criterion of Kushner
[28, Chapter 3, Theorem 4], namely, we will prove: firstly,

lim
N→∞

lim sup
ε→0

P{sup
t<t0

|〈T ε, θ〉| ≥ N} = 0 ∀t0 <∞. (56)

Secondly, for eachf ∈ C∞(R) there is a sequencef ε(t) ∈ D(Aε) such that for eacht0 < ∞{Aεf ε(t),0 < ε <

1,0< t < t0} is uniformly integrable and

lim
ε→0

P{sup
t<t0

|f ε(t)− f(〈T ε, θ〉)| ≥ δ} = 0 ∀δ > 0. (57)

Then it follows that the laws of{〈T ε, θ〉,0< ε < 1} are tight in the space ofD([0,∞);L∞w∗(Rd)).
Condition(56) is satisfied as a result ofProposition 1. Let

f ε1(t) ≡
1

ε

∫ ∞

t

E
ε
t f
′(t)〈T εt ,V εs(θ)〉ds

be the first perturbation off(t). We obtain

f ε1(t) =
ε

a
f ′(t)〈T εt , Ṽ

ε

t (θ)〉 (58)

with

Ṽ
ε

t (θ) = Ṽ εt · ∇θ, (59)

Ṽ εt ≡ Ṽ
( t
ε2
, ·

)
≡ 1

ε2

∫ ∞

t

E
ε
t V

ε
s ds, (60)

whereṼ has the power spectrumEK,L(α+ 2β, k) by the spectral representation

E
ε
t V

ε
s =

∫
[eix·k − 1] e−a|k|

2β|s−t|ε−2
V̂ εt (dk) ∀s ≥ t. (61)

Note that whileVεt loses differentiability asK→∞, Ṽ εt is almost surely aC1,η-function in the limit with

0< ∀η < α+ 2β − 2

and has uniformly bounded localW1,p-norm,p ≥ 1.
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Proposition 2.

lim
ε→0

sup
t<t0

E|f ε1(t)| = 0, lim
ε→0

sup
t<t0

|f ε1(t)| = 0 in probability.

Proof. By Proposition 1we have

E[|f ε1(t)|] ≤
ε

a
‖f ′‖∞‖T0‖∞‖θ‖∞

∫
|x|≤M

E|Ṽ εt |dx (62)

and

sup
t<t0

|f ε1(t)| ≤
ε

a
‖f ′‖∞‖T0‖∞‖θ‖∞ sup

t<t0

∫
|x|≤M

|Ṽ εt |dx. (63)

By the temporal stationarity of̃Vεt we can replace the termsE|Ṽ εt (x)| in (62) by E|Ṽ (0, x)|. By assumption (cf.
(31), Remark 1), we have the desired estimate.Proposition 2now follows from(31), (62) and (63). �

Setf ε(t) = f(t)− f ε1(t). A straightforward calculation yields

Aεf ε1 = −
κ̃ε

2a
f ′′(t)〈T εt ,$θ〉〈T εt , Ṽ

ε

t (θ)〉 +
κ̃ε

2a
f ′(t)〈T εt ,$Ṽ

ε

t (θ)〉 +
1

a
f ′′(t)〈T εt ,V εt (θ)〉〈T εt , Ṽ

ε

t (θ)〉

− 1

a
f ′(t)〈T εt ,V εt (Ṽ

ε

t (θ))〉 −
1

ε
f ′(t)〈T εt ,V εt (θ)〉

and, hence

Aεf ε(t) = κ̃

2
f ′(t)〈T εt ,$θ〉 +

1

a
f ′(t)〈T εt ,V εt (Ṽ

ε

t (θ))〉 −
1

a
f ′′(t)〈T εt ,V εt (θ)〉〈T εt , Ṽ

ε

t (θ)〉

+ κ̃ε
2a

[f ′′(t)〈T εt ,$θ〉〈T εt ,V εt (θ)〉 − f ′(t)〈T εt ,$Ṽ
ε

t (θ)〉] = Aε1(t)+ Aε2(t)+ Aε3(t)+ Aε4(t), (64)

whereAε2(t) andAε3(t) are the O(1) statistical coupling terms.
For the tightness criterion stated in the beginning of the section, it remains to show the folowing proposition.

Proposition 3. {Aεf ε} are uniformly integrable and

lim
ε→0

sup
t<t0

E|Aε4(t)| = 0.

Proof. We show that{Aεi }, i = 1,2,3,4 are uniformly integrable. To see this, we have the following estimates:

|Aε1(t)| =
κ̃

2
|f ′(t)〈T εt ,$θ〉| ≤

κ̃

2
‖f ′‖∞‖T0‖∞‖$θ‖1.

ThusAε1 is uniformly integrable since it is uniformly bounded:

|Aε2(t)| =
1

a
|f ′(t)〈T εt ,V εt (Ṽ

ε

t (θ))〉| ≤
C

a
‖f ′‖∞‖T0‖∞

[∫
|x|<M

|Vεt |2 dx

]1/2 [∫
|x|<M

|∇Ṽ εt |2 dx

]1/2

.

Similarly,

|Aε3(t)| =
1

a
|f ′′(t)〈T εt ,V εt (θ)〉〈T εt , Ṽ

ε

t (θ)〉| ≤
C

a
‖f ′‖∞‖T0‖2

∞

[∫
|x|<M

|Vεt |2 dx+
∫
|x|<M

|Ṽ εt |2 dx

]
.
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ThusAε2 andAε3 are uniformly integrable in view of the uniform boundedness of the 4th moment ofVεt , Ṽ
ε
t and

∇Ṽ εt asL <∞ is fixed andK→∞ (the 4th order scale-invariance):

|Aε4| =
κ̃ε

2a
|f ′′(t)〈T εt ,$θ〉〈T εt , Ṽ

ε

t (θ)〉 − f ′(t)〈T εt ,$Ṽ
ε

t (θ)〉

≤ Cκ̃ε

2a
×

[
‖f ′′‖∞‖T0‖2

∞

[∫
|x|<M

|Ṽ εt |2 dx

]1/2

+ ‖f ′‖∞‖T0‖∞

×
[∫
|x|<M

|Ṽ εt |2 dx+
∫
|x|<M

|∇Ṽ εt |2 dx+
∫
|x|<M

|$Ṽεt |2 dx

]1/2
]
. (65)

The most severe term in the above argument as a result ofK→∞ is

κ̃ε

2a
|f ′(t)〈T εt ,$Ṽ

ε

t (θ)〉|,

whose second moment can be bounded as

κ̃ε

2a

√
E|f ′(t)〈T εt ,$Ṽ

ε

t (θ)〉|2 ≤ C1
κ̃ε

2a
‖f ′‖∞‖T0‖∞

(∫
|x|<M

E[|$Ṽεt |2] dx

)1/2

≤ C2κ̃ε



K3−α−2β for α+ 2β < 3,√

logK for α+ 2β = 3,

1 for α+ 2β > 3,

(66)

and, thus, vanishes in the limit by the assumptions of the theorem. The 4th moment behaves the same way by the
4th order scale-invariance. HenceAε4 is uniformly integrable. Clearly

lim
ε→0

sup
t<t0

E|Aε4(t)| = 0. �

4.2. Identification of the limit

Once the tightness is established we can use another result in[28, Chapter 3, Theorem 2]to identify the limit. Let
A be a diffusion or jump diffusion operator such that there is a unique solutionωt in the spaceD([0,∞);L∞w∗(Rd))
such that

f(ωt)−
∫ t

0
Af(ωs)ds (67)

is a martingale. We shall show that for eachf ∈ C∞(R) there existsf ε ∈ D(Aε) such that

sup
t<t0,ε

E|f ε(t)− f(〈T εt , θ〉)| <∞, (68)

lim
ε→0

E|f ε(t)− f(〈T εt , θ〉)| = 0 ∀t < t0, (69)

sup
t<t0,ε

E|Aεf ε(t)−Af(〈T εt , θ〉)| <∞, (70)

lim
ε→0

E|Aεf ε(t)−Af(〈T εt , θ〉)| = 0 ∀t < t0. (71)

Then the aforementioned theorem implies that any tight processes〈T εt , θ〉 converge in law to the unique process
generated byA. As before we adopt the notationf(t) = f(〈T εt , θ〉).
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For this purpose, we introduce the next perturbationsf ε2 , f
ε
3 . Let

A
(1)
2 (φ) ≡ 〈θ,K(1)φ θ〉, (72)

A
(1)
3 (φ) ≡ 〈φ,E[V εt (Ṽ

ε

t (θ))]〉, (73)

where the positive-definite operatorK(1)φ is defined as

K(1)φ θ =
∫
θ(y)∇φ(x) · Γ (1)(x, y)∇φ(y)dy, (74)

Γ (1)(x, y) =
∫

[exp(ik · x)− 1][exp(−ik · y)− 1]EK,L(α+ β, k)|k|1−d dk (75)

such that

〈θ1,K(1)Tt θ2〉 =
∫∫

φ(x)φ(y)G
(1)
θ1,θ2

(x, y)dx dy, (76)

G
(1)
θ1,θ2

≡
∑
i,j

∂2

∂xi∂yj
[θ1(x)θ2(y)Γ

(1)
ij (x, y)] (77)

(cf. (53)).
It is easy to see that

A
(1)
2 (φ) = E[〈φ,V εt (θ)〉〈φ, Ṽ

ε

t (θ)〉], (78)

A
(1)
3 (φ) = 〈Bφ, θ〉, (79)

where the operatorB is given by

Bφ(x) =
∑
i,j

Γ
(1)
ij (x, x)

∂2φ(x)

∂xi∂xj
.

Define

f ε2(t) ≡
1

a
f ′′(t)

∫ ∞

t

E
ε
t [〈T εt ,V εs(θ)〉〈T εt , Ṽ

ε

s(θ)〉 − A(1)2 (T εt )] ds,

f ε3(t) ≡
1

a
f ′(t)

∫ ∞

t

E
ε
t [〈T εt ,V εs(Ṽ

ε

s(θ))〉 − A(1)3 (T εt )] ds.

Let

G
(2)
θ1,θ2

(x, y) ≡
∑
i,j

Γ
(2)
ij (x, y)

∂θ1(x)

∂xi

∂θ2(y)

∂yj
, 〈θ1,K(2)φ θ2〉 ≡

∫∫
φ(x)φ(y)G

(2)
θ1,θ2

(x, y)dx dy,

where the covariance functionΓ (2)(x, y) ≡ E[Ṽ εt (x)⊗ Ṽ εt (y)] has the spectral densityEK,L(α+ 2β, k). Let

A
(2)
2 (φ) ≡ 〈θ,K(2)φ θ〉, A

(2)
3 (φ) ≡ 〈φ,E[Ṽ

ε

t (Ṽ
ε

t (θ))]〉.
Noting that

E
ε
t [V

ε
s (x)⊗ Ṽ εs (y)] =

∫∫
[eix·k − 1][e−iy·k′ − 1] e−a|k|

2β|s−t|ε−2
e−a|k

′|2β|s−t|ε−2
V̂ εt (dk)⊗ ˆ̃

V
ε∗
t (dk

′)

+
∫

[eix·k − 1][e−iy·k − 1][1− e−2a|k|2β|s−t|ε−2
]EK,L(α+ β, k)dk, (80)
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we then have

f ε2(t) =
ε2

2a2
f ′′(t)[〈T εt , Ṽ

ε

t (θ)〉2− A(2)2 (T εt )] (81)

and similarly

f ε3(t) =
ε2

2a2
f ′(t)[〈T εt , Ṽ

ε

t (Ṽ
ε

t (θ))〉 − A(2)3 (T εt )]. (82)

Proposition 4.

lim
ε→0

sup
t<t0

E|f ε2(t)| = 0, lim
ε→0

sup
t<t0

E|f ε3(t)| = 0.

Proof. We have the bounds

sup
t<t0

E|f ε2(t)| ≤ sup
t<t0

ε2

2a2
‖f ′′‖∞‖T0‖2

∞‖∇θ‖2
∞

[∫
|x|<M

E|Ṽ εt |2(x)dx+
∫
|x|<M

|Γ (2)(x, x)|dx
]
≤ C1ε

2,

sup
t<t0

E|f ε3(t)| ≤ sup
t<t0

ε2

2a2
‖f ′‖∞‖T0‖∞

[
‖∇θ‖∞

∫
|x|<M

E|Ṽ εt |2(x)dx+ ‖θ‖∞
[∫
|x|<M

E|Ṽ εt |2(x)dx

]1/2

×
[∫
|x|<M

E|∇Ṽ εt |2(x)dx

]1/2
]
≤ C2ε

2K2−α−2β

both of which tend to zero. �

We have

Aεf ε2(t) =
1

a
f ′′(t)[−〈T εt ,V εt (θ)〉〈T εt , Ṽ

ε

t (θ)〉 − A(1)2 (T εt )] + Rε2(t),

Aεf ε3(t) =
1

a
f ′(t)[−〈T εt ,V εt (Ṽ

ε

t (θ))〉 − A(1)3 (T εt )] + Rε3(t)
with

Rε2(t) =
f ′′′(t)

2

[
ε2κ̃

2a2
〈T εt ,$θ〉 −

ε

a2
〈T εt ,V εt (θ)〉

]
[〈T εt , Ṽ

ε

t (θ)〉2− A(2)2 (T εt )]

+ f ′′(t)〈T εt , Ṽ
ε

t (θ)〉
[
κ̃ε2

2a2
〈T εt ,$Ṽ

ε

t (θ)〉 −
ε

a2
〈T εt ,V εt (Ṽ

ε

t (θ))〉
]

− f ′′(t)
[
κ̃ε2

4a2
〈T εt ,$G(2)θ T εt 〉 −

ε

a2
〈T εt ,V εt (G(2)θ T εt )〉

]
, (83)

whereG(2)θ denotes the operator

G
(2)
θ φ ≡

∫
G
(2)
θ,θ(x, y)φ(y)dy,

and similarly

Rε3(t) = f ′′(t)
[
κ̃ε2

4a2
〈T εt ,$θ〉 −

ε

2a2
〈T εt ,V εt (θ)〉

]
[〈T εt , Ṽ

ε

t (Ṽ
ε

t (θ))〉 − A(2)3 (T εt )]

+ f ′(t)
[
κ̃ε2

4a2
〈T εt ,$Ṽ

ε

t (Ṽ
ε

t (θ))〉 −
ε

2a2
〈T εt ,V εt (Ṽ

ε

t (Ṽ
ε

t (θ)))〉
]

− f ′(t)
[
κ̃ε2

4a2
〈T εt ,$E[Ṽ

ε

t (Ṽ
ε

t (θ))]〉 +
ε

2a2
〈T εt ,V εt (E[Ṽ

ε

t (Ṽ
ε

t (θ))])〉
]
.
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Proposition 5.

lim
ε→0

sup
t<t0

E|Rε2(t)| = 0, lim
ε→0

sup
t<t0

E|Rε3(t)| = 0.

Proof. The argument is entirely analogous to that forProposition 4. The most severe term without the prefactorκ̃

occurs in the expression forRε3(t) and can be bounded as

εE|〈T εt ,V εt (Ṽ
ε

t (Ṽ
ε

t (θ)))〉| ≤ ε‖T0‖∞E|V εt (Ṽ
ε

t (Ṽ
ε

t (θ)))| ≤ C1ε‖T0‖∞
(∫

|x|<M
E|Vεt |2 dx

)1/2

×
(∫

|x|<M
{E[|Ṽ εt |4]E[|∇2Ṽ εt |4]}1/2 dx+

∫
|x|<M

E[|∇Ṽ εt |4] dx

)1/2

(84)

by assumption. The right-hand side of the above tends to zero if either

α+ 2β > 3

or

α+ 2β = 3, lim
ε→0

ε
√

logK = 0 (85)

or

α+ 2β < 3, lim
ε→0

εK3−α−2β = 0 (86)

is satisfied. The term involvingε〈T εt ,V εt (G(2)θ T εt )〉 can be similarly estimated.
The most severe term involving the prefactorκ̃ occurs inRε3 and can be bounded as

κ̃ε2
E|〈T εt ,$Ṽ

ε

t (Ṽ
ε

t (θ))〉| ≤ Cκ̃ε2‖T0‖∞
(∫

|x|<M
E[|∇3Ṽ εt |2]

)1/2

∼



κ̃ε2 for α+ 2β > 4,

κ̃ε2
√

logK for α+ 2β = 4,

κ̃ε2K4−α−2β for α+ 2β < 4,

(87)

the right-hand side of which tends to zero if either

α+ 2β > 4

or

α+ 2β = 4, lim
ε→0

κ̃ε2
√

logK = 0

or

3< α+ 2β < 4, lim
ε→0

κ̃ε2K4−α−2β = 0 (88)

or

2< α+ 2β < 3, lim
ε→0

κ̃ε2K4−α−2β = lim
ε→0

εK3−α−2β = 0.

Note that forα+ 2β ≤ 2 the condition(85)or (86) implies that

lim
ε→0

ε2K4−α−2β = 0. �
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Set

Rε(t) = Aε4(t)− Rε2(t)− Rε3(t).

It follows from Propositions 3 and 5that:

lim
ε→0

sup
t<t0

E|Rε(t)| = 0.

Recall that

Mε
t (θ) = f ε(t)−

∫ t

0
Aεf ε(s)ds = f(t)− f ε1(t)− f ε2(t)− f ε3(t)−

∫ t

0

κ̃

2
f ′(t)〈T εt ,$θ〉ds

−
∫ t

0

1

a
[f ′′(s)A(1)2 (T εs )+ f ′(s)A(1)3 (T εs )] ds−

∫ t

0
Rε(s)ds

is a martingale. Now that(68)–(71)are satisfied we can identify the limiting martingale to be

Mt(θ) = f(t)−
∫ t

0

{
f ′(s)

[
κ0

2
〈Ts,$θ〉 + 1

a
Ā
(1)
3 (Ts)

]
+ 1

a
f ′′(s)Ā(1)2 (Ts)

}
ds, (89)

where

Ā
(1)
2 (φ) = lim

K→∞
A
(1)
2 (φ), Ā

(1)
3 (φ) = lim

K→∞
A
(1)
3 (φ)

(cf. (72) and (79)).
Since〈T εt , θ〉 is uniformly bounded

|〈T εt , θ〉| ≤ ‖T0‖∞‖θ‖1,

we have the convergence of the second moment

lim
ε→0

E{〈T εt , θ〉2} = E{〈Tt, θ〉2}.

Usef(r) = r andr2 in (89)

M
(1)
t (θ) = 〈Tt, θ〉 −

∫ t

0

[
κ0

2
〈Ts,$θ〉 + 1

a
Ā
(1)
3 (Ts)

]
ds

is a martingale with the quadratic variation

[M(1)(θ),M(1)(θ)]t = 2

a

∫ t

0
Ā
(1)
2 (Ts)ds = 2

a

∫ t

0
〈θ, K̄(1)Ts θ〉ds,

whereK̄
(1)
Tt

is a positive-definite operator given formally as

K̄
(1)
Tt
θ =

∫
θ(y)∇Tt(x) · Γ̄ (1)(x, y)∇Tt(y)dy, (90)

(cf. (74)). Therefore,

M
(1)
t =

√
2

a

∫ t

0

√
K̄
(1)
Ts

dWs,
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whereWs is a cylindrical Wiener process (i.e. dWt(x) is a space–time white-noise field) and
√
K̄
(1)
Ts

the square-root
of the positive-definite operator given in(90). From(72) and (79)we see that the limiting processTt is the (assumed
unique) distributional solution to the martingale problem(52)of the Itô’s equation

dTt =
(
κ0

2
∆+ 1

a
B̄

)
Tt dt +

√
2a−1K̄

(1)
Tt

dWt =
(
κ0

2
∆+ 1

a
B̄

)
Tt dt +

√
2a−1/2∇Tt · dW̄(1)

t ,

where the operator̄B is given by(30)andW̄(1)
t is the Brownian vector field with the spatial covarianceΓ̄ (1)(x, y).

5. Proof of Theorem 2

As we letL→∞ along withε→ 0 the proof of the uniform integrability ofAε[f(t)− f ε1(t)] (the first part of
Proposition 3) breaks down. In this case, we work with the perturbed test function

f ε(t) = f(t)− f ε1(t)+ f ε2(t)+ f ε3(t).

Proposition 6.

lim
ε→0

sup
t<t0

E|f εj (t)| = 0, lim
ε→0

sup
t<t0

|f εj (t)| = 0 in probability ∀j = 1,2,3. (91)

Proof. The argument for the case off ε1(t) is the same asProposition 2. Forf ε2(t) andf ε3(t) we have the bounds

sup
t<t0

E|f ε2(t)| ≤ sup
t<t0

ε2

2a2
‖f ′′‖∞‖T0‖2

∞‖∇θ‖2
∞

[∫
|x|<M

E|Ṽ εt |2(x)dx+
∫
|x|<2M

|Γ (2)(x, x)|dx
]

≤ C1ε
2L2(α+2β)−4,

sup
t<t0

E|f ε3(t)| ≤ sup
t<t0

ε2

2a2
‖f ′‖∞‖T0‖∞

[
‖∇θ‖∞

∫
|x|<M

E|Ṽ εt |2(x)dx+ ‖θ‖∞
[∫
|x|<M

E|Ṽ εt |2(x)dx

]1/2

×
[∫
|x|<M

E|∇Ṽ εt |2(x)dx

]1/2
]
≤ C2ε

2L2(α+2β)−4

both of which vanish under the assumptions of the theorem. Here we have used the fact that∫
|x|<M

E|Ṽ εt |2(x)dx = O(L2(α+2β)−4), L→∞.

As for estimating supt<t0|f εj (t)|, j = 2,3, we can use

Md

∫
|x|<M

|Ṽ εt |2(x)dx in place of
∫
|x|<M

E|Ṽ εt |2(x)dx

in the above bounds and obtain by assumption (cf.(35), Remark 2) the desired estimate which have a similar order
of magnitude with an additional factor of 1/ε and a random constant possessing a finite moment. �

We have

Aεf ε(t) = κ̃

2
f ′(t)〈T εt ,$θ〉 −

1

a
f ′′(t)A(1)2 (T εt )−

1

a
f ′(t)A(1)3 (T εt )+ Rε1(t)+ Rε2(t)+ Rε3(t) (92)
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with

Rε1(t) =
κ̃ε

2a
[f ′′(t)〈T εt ,$θ〉〈T εt ,V εt (θ)〉 − f ′(t)〈T εt ,$Ṽ

ε

t (θ)〉] (93)

andRε2(t), R
ε
3(t) as before.

Proposition 7.

lim
ε→0

sup
t<t0

E|Rεj(t)| = 0, j = 1,2,3.

Proof. The proof is similar to that ofProposition 5with the additional consideration due toL → ∞. These
additional terms can all be estimated by

C1ε

∫
|x|<M

E[|Ṽ εt (x)Ṽ εt (x)|] dx ≤ C2εL
2(α+2β−2),

which tends to zero under the assumptions of the theorem. �

For the tightness it remains to show the following proposition.

Proposition 8. {Aεf ε} are uniformly integrable.

Proof. We shall prove that each term in the expression(92) is uniformly integrable.
The first three terms are clearly bounded under the assumption ofα+β < 2. The last three terms can be estimated

as inProposition 7by

C1ε sup
t<t0

∫
|x|<M

|Ṽ εt (x)Ṽ εt (x)|

whose second moment behaves likeε2L4(α+2β−2), by the 4th order scale-invariance property, and tends to zero.�

Now we have all the estimates needed to identify the limit as in the proof ofTheorem 1.
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