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Abstract

We prove limit theorems for small-scale pair dispersion in synthetic velocity fields with power-law spatial spectra and
wavenumber dependent correlation times. These limit theorems are related to a family of generalized Richardson’s laws with
alimiting case corresponding to Richardsarisand 4/3-laws. We also characterize a regime of positive dissipation of passive
scalars.
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1. Introduction

The celebrated Richardsor'®law [36] states that a pair of particles located @ (1), P (r)) € R% being
transported in the incompressible turbulence satisfies

ElxP @) — xO0 12~ crer® for €1 < 1xP @) — xQ1)| « ¢o, (1)

whereeg is the energy dissipation rat€r the Richardson constant adg and ¢1 are respectively the integral

and viscous scales. Here and belBvstands for the expectations w.r.t. the ensemble of the velocity fields. This
law has been confirmed experimentd2,31,39]and numericall\j4,11,18,43] A stronger statement is that the
relative diffusivity of the tracer particles is proportional to the 4/3 power of their momentary separation, and this
is called Richardson’s 4/3-lay86], see alsd1,7,29,32] This paper presents several small-scale limit theorems
(Theorems 1-Brelated to the Richardson’s laws for a family of colored-noise-in-time velocity fields that have
Kolmogorov-type spatial spectra and wavenumber dependent correlation times. The other aspect of the scaling limit
concerns the dissipation of the scalar field in the limit of vanishing molecular diffuSioro{laries 1 and 2
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The nature of time correlation in fully developed turbulences in the inertial range is not entirely clefQfsee
and the references therein). But it seems reasonable to assume that, to the leading order, the temporal correlatic
structure of thé&ulerianvelocity fieldu(z, x) is determined by the energy-containing velocity components above the
integral scale, consistent with Taylor's hypothesis commonly used in the fluid flow measurements in the presence
of a mean flow or the random sweeping hypothesis in the absence of a mean fl¢85(469. In both cases the
temporal correlation function on the small scales is anisotropic and depends on external forcing. The more robust
features of small-scale turbulence can be revealed by considering the relative velocity(field = u(¢, x +
x©@ @) —u(r, x@(r)), with respect to a reference fluid partial® (1), which tends to preserve invariance properties
of the fluid equations. The velocity field, x + x© (1)) as viewed from a fluid particle, which is a useful tool for
turbulence modelinfR,23], is called the quasi-Lagrangian velocity field in the physics literature and is an example
of the general notion of the Lagrangian environment profEs83,34]

We assum¢l3,16]that the two-time structure function éf(z, x) has the power-law form

E[U(t, x) = U(t, »)] ® [U(s, x) — U(s, )]
= /R 21— cos(k - (x — y)] exp(—alkl|t = s)Ey (et k) K~ dk,
ael,2, >0, a>0 (2)
with the energy spectrum
Eo(I — k ® kIk| =) |k for |k| e (57, 1),
Ey.e0) (0, k) = 1 1 lop<oo, £1>0, Eg>0, )
0 for |k| ¢ (5™, €17),

where{; and/{g are respectively the viscous and integral scales. The assumed temporally stationary vector field
U(t, x) has homogeneous spatial increments and its expect@f[df(z, x)], conditioning on the events up to time
s < t, is assumed to admit the spectral representation

E,[U(, x) — U1, y)] = / [1— exp(ik - (x — y)]exp(—alk|?P|t — s)U (s, dk), s <1, (4)
R

whereU (1, k) is a time-stationary process with uncorrelated incrementsiosach that
E[U(zr, do)U*(t, dk')] = Eey.00) (. K)8(k — k') dk Ak’ Vi, k, K. (5)

The exponential form of the temporal correlation{Z) and (4)is not important for us; it can be replaced by a more
general one like

plalk|?P|r — s))

with an integrable functiop(t) decaying to zero as — oo. Since the exponential form seems to agree well with
the Lagrangian measurements (E&4 for the Reynolds number around 100 gAd)] for high Reynolds numbers)
we will use it for the sake of simplicity.

Set the rescaled velocity

Ui (t, x) = AUt wx). (6)
ThenU, (¢, x) has the energy spectrum
Eo(I — k @ klk|=2) |k} for |k| € (5 r, 710),

Eepp-1t g1y (@ k) = @)
0 else



A.C. Fannjiang/Physica D 179 (2003) 161-182 163
However, we dmotassume in this paper the full scale-invariance, namely,
d
U, (t, x)=U(,x) for £1 =0, £g= 00, (8)

where =9 means the identity of the distributions. Instead, we assume the weaker assumption of the 4th order
scale-invariance, i.e. that up to the 4th moments of the velocity field can be estimated in term of the energy spectrum
as in the case of Gaussian fields.

The viscous and integral scalésand¢g can be related to each other via the Reynolds nurRiears

to _ pd/@-20

141
by using the positivity of kinetic energy dissipation of fluid in the liRié¢— oo. The correlation time (k| =%
decreases as the wavenumbgrcreases. The spatial Hurst exponent of the velocity equalkin the inertial range
(¢1, £o). It should be noted that because of the temporal stationarity of the Lagrangian(field- x© (¢)) [15,42],
U(t, x) has the same one-time statistics as the Eulerian vela¢ity); in particular they share the same energy
spectrum, but their multiple-time statistics are usually different. We could work with the modified von Karman
spectrum but it is irrelevant for our purpose since we are concerned with transport in the inertial-convective range.

It is convenient to express the coefficierig, a in terms ofUp, the root mean-squatdengitudinal velocity

increment over the integral length, as

_ £
Eo~ CuUSZ ™%, a~cot Uy as e_: — o0 ©)
with dimensionless constants and
_ (4m)22232q — )N + d/2)
- d—-1DI2 -«
whererl(r) is the Gamma function.

Assuming that the lifetime (i.e. correlation timé) = a~1|k|~2#) of eddy of sizek|~! is same as its turnover
time one gets the relation

a+28=2. (11)

Cq , (10)

Assuming that the energy flux given By, (o) |k|/z(k) is constant across the scales in the inertial range one gets
the relation

a—pB=1 (12)

The values of parameters satisfying bEiis. (11) and (12yorrespond to the Kolmogorov spectrum with= 4/3,
B = 1/3. For the Kolmogorov spectrum, one has the expression, by estinidb'mglgeal,

Eo~ Co8?3, a=~ coe*®. (13)

Writing x(1) = xP (1) —x©@ () and adding the molecular diffusivitywe have the following &’s stochastic equation
for the pair separation(r)

dr() = [u(t, xQ @) + x(0) — u@t, xO ()] dr + Vi dw(r) = U(t, x(2)) dt + /x dw(?),

wherew(r) is the standard Brownian motion Rf'. It is also useful to consider the associated backward stochastic
flow which is the solution of the backward stochastic differential equation

ddl(x) = —U(s, @L(x)) ds + Vkdw(r), 0<s<t, (14)
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Pl (x) = x. (15)
Denote byM the expectation with respect to the molecular diffusion and consider the scaldf(fietdl

T(t, x) = M[To(@p(x))], (16)

which satisfies the advection—diffusion equation
a1, x)

ot
We interpretEg. (17)in the weak sense

— Ut x) - VT, x) + gAT(r, X, T0,x) = To(x). 17)

t

= ot
(T(z, ), 0) — (To, 0) = g/ (T(s, -), AG)ds — / (T(s, +), V(s,-) - V) ds (18)
0 0

for any test functiod € C° (R%), the space of smooth functions with compact supports.
To study the small-scale behavior we introduce the following scaling limit. First we assume that the integral and
viscous scales of the field arefg = ¢L, £1 = ¢/K with L, K tending tooo in a way to be specified later. Then
we re-scale the variablas— ex, t — ¢2t amounting to consider the re-scaled pair separation
X6 (1) = e La(e?n).
The scaling parameterwill tend to zero, indicating that we are considering the emergent inertial range of scales
{1 < |x] € € (sinceK, L — o0) as a result of a large Reynolds number. We also set
k= e’k with & = k(e). (19)
After re-scaling, the advection—diffusion equation becomes
oT® K
Brzﬁfhmﬁamyvﬁ+gAﬁ. (20)
We take the initial datd (0, x) = To(x) € L>®(R%) N L2(RY). Let

V(t, x) = XUt ex).

As before (cf.(7)) the energy spectrum of the rescaled fi€lis given by

Eo(l — k @ k|k|=2)|k|*=%  for |k| e (L7, K),
Ek,L(a, k) =
0 else
We rewriteEg. (20)in terms ofV as
T _ 2qta—2y,2—P) ey Kare e
s =TTV P x) - VT + EAT ,  T%(0, x) = To(x). (22)
A simple, non-trivial scaling limit is the white-noise limit when
q<p (22)
and
g=2—-a—p (23)

resulting from equating@+ « — 2 andg — 8. Inequalitieg22) and (23Yhen gives the condition
o+ 28> 2. (24)
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Note that for
a+p<2 (25)

and thus; > 0 we have a short-time limit; otherwise, itis a long time (but small spatial scale) limit.
The paper is organized as follows.$ection 2ve state the main results and discuss their implicatiorSelition
3 we discuss the meaning of solutions for the colored-noise and white-noise models and prove the uniqueness for
the latter. InSection 4 we proveTheorem 1we prove the tightness of the measureSattion 4.1and, inSection
4.2, identify the limiting measure by the martingale formulationSection 5 we proveTheorem 2 The method
of proof is the same as that [h4] (see alsd5]). We refer the reader {@6] for the full exposition of the perturbed
test function method used here. We note that the method of Ki24ifaequires sub-Gaussian behavior and spatial
regularity of the velocity field and is not applicable here.

2. Main theorems and interpretation

Let us begin by briefly recalling the Kraichnan model. The model has a white-noise-in-time incompressible
velocity field which can be described as the time derivative of a zero mean, isotropic Brownian vectBy Vit
the two-time structure function

E[B;(x) — Bi(y)] ® [By(x) — By(y)] = min(z, s) / 2[1— cos(k - (x — y]a €L (n+ 1 k) k"~ dk,

ne @1 (26)
with

ELin+1,k) = K'inoo Ex.r(n+1,k).

In this paper, we interpret the corresponding advection—diffusion equation for the Kraichnan model in the sense of
Stratonovich’s integral

d7,(x) = [VL] T o [dB:(x) — dB,(0)] + K—Z"ATt(x) dt, «0=0, T(0,x) = To(x), (27)
which can be rewritten as arbls SDE
1- -
d7, = ("_2% + —B) T, dt + 24 Y2V T, - dw®, (28)
a
Wherer(l) (x) is the Brownian vector field with the spatial covariance
I'Y,y) = f[exp(ik x) — lexp(—ik - y) —NEL+ L kT dk, n=a+p—-1 (29)
and the operataB is given by
- jae 3 @(x) d
Bop(x) = Z (6,0 ¢ € CURY. (30)

We will discuss the meaning of solutions for the Kraichnan model and prove the uniqueness profexdtian

3. The Kraichnan model for passive scalar has been widely studied to understand turbulent transport in the inertial
range because of its tractability (see, €6,10,12,19,20,28,30,3&|nd the references therein). The tractability of

this model lies in the Gaussian and white-noise nature of the velocity field.
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Theorem 1. Suppose+28 > 2.LetL < cobefixedandlekK = K(¢) suchthatim,_,o K = co.Letk = k(¢) > 0
such thalim,_.gk = kg < 0o. LetTp € L®°(RY) N L2(RY). If, additionally, any one of the following conditions is
satisfied

(i) a+28> 4
(i) o+ 28 =4,lim,_oke?/logK =0;
(i) 3 <a+2B < 4,lim,_gke?K**28 = 0;
(V) a+ 28 =3, lim,_oke’K = lim,_g&/logK = 0;
(V) 2<a+2B <3, lim_oke?K** 2 = lim,_,geK3 2 = 0.

Then for the exponent g given {B3) the solution7? of (21) converges in distributionase — 0, in the space
D([0, 00); L (R%)) to the scalar field; for pair dispersion in the Kraichnan model in the time interi@lzo] Yz <
oo. The limiting Kraichnan model has the spatial covariance give(@8y. Here D([0, co); L2 (R%)) is the space
of L (R%)-valued right continuous processes with left limits endowed with the Skorohod {B¢tiud Loy (RY)
is the standard space™ (R¢) endowed with the we#kopology

Remark 1. In addition to the assumptions stated $ection 1and in the theorem, we use in the proof of
Theorem 1the assumption

~ 1
sup |Vf(x)|dx=0(—>, e—>0V0<M< o0 (31)
t<to Jix|<M €

with a random constant possessing a finite moment where

- 1 [ s
Vtg(x) = 8—2/ IE,sz (8—2, X) ds.
t

For Gaussian velocity fields one has

- m? 1
M? sup |V (Lz x)‘ < CL¥*%~2|og |:—2t0} =0 (—) , (32)
Ixl<m ! \E € €
1<ty

where the random consta@thas a Gaussian-like tail by Chernoff's bound. Condit{dfh) allows certain degree
of intermittency in the velocity field.

Note that, inTheorem Jwhenkg > 0and 2< a+28 < 3,lim,_oke2K*~2~28 = Oimplieslim_,geK3 2 2f =
0. Also,a + 28 < 3 contains the regime+ 8 < 2 in which the limiting Brownian velocity field is spatially Holder
continuous and has a Hurst exponest «+ 8—1 € (1/2, 1), i.e. the limiting velocity field has persistenspatial
correlation.

If we let L — oo in the Kraichnan model, we see that it gives rise to a Brownian velocity Bglaith the
structure function

E[B;(x) — B;(y)] ® [ Bs(x) — By(y)] = min(z, s) / 2[1— cos(k - (x — y))]aflé(a + B, )k dk,  (33)
where
S+ B, k) = lim Ex(+ B, k).

The spectral integral i{83) is convergent only fow + 8 < 2. The convergence of the integral(83) means that
the limiting Brownian velocity fieldB; has spatially homogeneous increments.
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We can prove the convergence to the Kraichnan model with velocity figld the simultaneous limit of —
0, K, L — oo if additional conditions are satisfied.

Theorem 2. Supposer + 8 < 2 and all the assumptions dtheorem 1(thus only regime(v) is relevanj except
for the finiteness of L. Instealbt L = L(¢) — oo such that

lim L2@t26-2, _ (34)

e—0
Then the same convergence holds a&iaorem 1The limiting Brownian velocity fiel®, has the structure function
given by(33).

Remark 2. In addition to the assumptions @heorem 1(cf. Remark } we use in the proof oTheorem 2the
assumption

3 1
sup |VE@)[2dy < CL2@HF2A=22 " ¢ 50, L > 00 YO< M < 00 (35)
&

t<to J|x|<M
with a random constar possessing a finite moment. For Gaussian velocity fields one has
N 1\?
sup |Vf(x)|2dx < CL2@+2p-2) (IOg —) , €—0 L—o00V0<M< 0.
t<to J|x|<M &

One sees that conditigB5) is in some sense more tolerant of intermittency t{&f) is.

Due to the divergence-free property of the velocity field, the pre-limit scalar field satisfies the energy [@8ntity
Chapter Ill, Theorem 7.2]

t
/|Tf(x)|2dx+;2/ /|VT,8|2(x) dxds:/lTo(x)lzdx (36)
0
provided thatly € L2(R%). From(36)we have the estimates
IITfH% < IToll%, [ IITSII ds < ( ) ||T0||2a 1> 0,

where| - || ;1 is the norm of the standard Sobolev spa&R¢) of square-integrable functions with square-integrable
first derivative. Thus the law df¢ is naturally supported by the space of continub@€R?)-valued processes which
are also leoc [0, 00); HL(RY)). Following[5] we consider the space

2 = D([0, 00); LZ(RY) N L. (RY)) N L2, 1oc([0. 00); Hy(RY)),

where the subscripts w and loc denote the weak and the local topologies, respectively.
In the case ok > 0, kg > 0 the above observation and the tightness argumefittfeorems 1 and then imply
the tightness of}’ in the space&?. We have the following corollary.

Corollary 1. If kg > 0andTp € L>®([R%) N L?(R%) then the convergence holds in the spazn the following
regimes
Case 1LetL < oo be fixed andK — oo ase — 0.

() a+28> 4
(i) a+28=4,lim._oe?/logK =
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(i) 2 <a+2B <4, lim._oe?K* 2 =0.
Case 2Supposer + 8 <2 < a+2B8and L, K — oo ase — 0 such that

lim 2K =28 — |im [2@+26-2, _ o

e—0 e—0

In particular,

t t
| 7oll3 — lim SUpE|| 7y 3] = nggg/o E[IVTY115] dszlco/O E[|VT;|i5]ds > O,

e—0

t>0, unlessTy;=0, 0<s <1, (37)

whereT; is the solution of the corresponding Kraichnan model

In the case of > 0,xo = 0 andTy € L2 N L, the limiting Kraichnan model conserves thé&-norm of7;. The
energy identity(36) then implies

ITEN5 < I Toll3 = T3 Ve > 0 ¥z > 0,

which in turn implies lim_.o||7f|l2 = || T;|l2. Hence the weak sense of convergencétieorems 1 and 2an be
strengthened to the strorg convergence.

Corollary 2. If ko = 0and Ty € L*®(R?) N L2(R?) then the convergence holds in the sparg0, oo); L2(R%) N
L\j'\f;(Rd)) in the respective regimes listed Tieorems 1 and.2n particular,

IToll3 — lim E[|T¢]3] =0, >0 a.e.
e—0

We see that in the context @orollary 1there is positive dissipatiof87) while there is none in the context of
Corollary 2 The conditions of the limit theorems set a constraint for the presence of positive dissipation: on the
observation scale, if the molecular diffusior is of orders2-2%, then there is always positive dissipation no matter
how slow¢; vanishes. On the other handkikk 2~ (i.e. ko = 0) and the dissipation is positive, then

4—a—28

1 = 0O’ = —
1 ("), v 3 a—2p

with v € (2, 00) in the regimex + 8 < 2 < o + 28 (cf. (41)). An open question is whether there is a positive
dissipation ag, x — 0 with £1 = 0 at the outset. If there is, then the Kraichnan md@e) is unlikely to be the
governing equation of the scaling limit (if exists).

In the case ok = 0, a still stronger sense of convergence holds since Bgw(21)is of first order and any
locally bounded measurable functig(7?) of the scalar field satisfies the saeguation (18yith k = 0. The same
argument for the proof ofheorems 1 and ®ill then yield the following theorem.

Theorem 3. Assume the conditions statedRemarks 1 and.2etk = 0, Tp, ¢(Tp) € L®°(R?) N L2(R?) and¢ is
a locally bounded measurable function frdtrto R. ThenT/, ¢(T;°) converge in the spacB([0, oo); L. (R N
L?%(R%)) to the corresponding Kraichnan model in the following regimes

Case 1LetL < oo be fixed andK — oo ase — 0.

(i) «+28>3;
(i) «+28=3,lim.0¢e/logK = 0;
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(i) 2 <a+2B < 3,lim,_gek3 22/ = 0.
Case 2Supposer + 8 <2 <a+2B8andL, K — oo ase — 0such that

lim ek3%28 = |im L2@+2f-25 = 0.

e—0 e—0
Remark 3. The assertions ofheorems 1-a&ndCorollaries 1 and hold true for random as well as deterministic
initial data.

When the parameters are in the regime g < 2 < « + 28, by taking the expectation in thedls equation with
the Brownian velocity fieldB, one sees readily that thengitudinalrelative diffusion coefficient is given by

K 1x = X 1 1
0O, -2 . F (x,x)-m’&:;CaiﬂEoMlzn for ko < 1, r}zl—q:a—l—ﬁ—le(E,l) (38)

2 + a x|
with

a+p

= (1) L - 20@+p-1) 20@+p-1)
r = lim @ =Cc L Eox?"| (1 I—
(,x) = lim "% (x,x) = C olxl t—1 J-1

X ® x|x|_2:| ,

whereC, g is defined as irf10), except witha replaced byr + 8. The exponeny is related to the exponemptin
the expression for the mean-square pair separation as follows:

2 -ppP 1 1
E|x| (t)~a PEOIP’ pzazm
up to adimensionless constant depending only-p8. Expressioné38) and (39tan be viewed as the generalization
of Richardson’s3- and 4/3-laws, respectively. In generale (2, 00), indicating super-ballistic (i.e. accelerating)
motion as a result of a scale-dependent relative diffusivity.

We now remark on the range of scales for whidieorem s proved and Richardson’s laws can be reasonably
interpreted. Let be the scale of dispersion. Then the limit theorem holds in the range

(39)

$e=2h =0
1\ 2@+26-2)/(5-20—4p) 4—a—28 ko =1,
e < min| ¢}, <—) .y = (40)
|: Lo :| 4—o—28 i 0
6-a 25 " K070

In the usual situation witlip = O(1) the range of scales covered by the limit theorem has an upper limit of

. 0.3) if ko=0
¢f with y e for a+28>2>a+8, (41)
(3.3 if ko>0
which is limited to the low end of the inertial range dependingxof, «o. It is not clear whether this is physical
or a technical matter. Qualitatively similar restriction of Richardson’s laws in synthetic flows has been observed in
numerical calculation (c{4,18)).
If we stretch the validity 0{38) and (39)py taking the limite — 4/3, 8 — 1/3 from within the valid regime,
the resulting exponents ape= 3, 2 = 4/3 in accordance with Richardson’s laws. On the boundaty2g = 2
the scaling exponermtshould be given by

g=p=1-1la (42)
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which also coincides with the limiting value ¢23). With (42) andK, L — oo, the solution of(21) converges
to that of the advection—diffusion equation with the molecular diffusivify= lim._, ¢k and the time-stationary,
spatially Holder continuous velocity field whose two-time correlation function is

E[V(t, 0 @ V(s, y)] = / [exp(ik - x) — L][exp(—ik - y) — 1] exp(—alk[> | — s|)E(er, k) k|2 dk,
Rd
a e (1,2,

which has the self-similar structure
E[V (121, 1x) @ V(3 Fs, 2y)] = 2> 2E[V (1, x) ® V (s, y)].

In view of the 4th order scale-invariance property it is reasonable to postulate the temporal self-similarity on the
mean-square relative dispersion@s— 0

Elx(0)|? = f(Eo, a)t*/?,

which has the same exponent as the limiting cag@@fasa + 28 — 2, where the unknown functiofi satisfies
the relation

f(Eg, »a)A"YP = f(A"Eg,a) Vi > 0.
Dimensional analysis witfB) then leads to the relation
Elx()|? = CrCy P EG?P VP,

whereCr is the generalized Richardson constant. Fet 1/3 the exponenp is 1/3 as predicted by Richardson’s
r3-law. However, since the limiting velocity field is non-white-in-time, the notion of relative diffusivity is not strictly
well defined. Therefore the temporal memory persists on small or intermediate time scales and the notion of relative
diffusivity does not describe accurately the process of relative dispersion on the bounddéy = 2 (cf., e.g.,
[18,21,30).

Let us consider the regime+ 28 < 2. The correct scaling is to set

29+a—-2=0 or g=1- 3o (43)

Then the exponent(g — g) of the temporal scaling i(R1)is positive due ta + 28 < 2, meaning the time variable
is slowed down as — O. Itis easy to see by a regular perturbation argument that the sofftioonverges in the
sense described ifheorem 1to the solution; of the following equation:

aT, - o

L= V0.0 VT + AT, To=Toe LY@
if ko > 0. If, howeverxo = 0, the above equation probably have multiple solutions for a given initial condition.
The relation(43) is consistent with the numerical simulation using two-dimensional frozen velocity fields with
Kolmogorov-type spectrurfil].

Unlike the previous regime, for either+ 28 = 2 ora + 28 < 2 there is no restriction on the vanishing rate

of £1.
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3. Formulation

From the general theory of parabolic partial differential equat[@@$ for any fixedk > 0, & > 0, there is a
uniqueC2+’7-soluti0nTf(x), 0 < Vi < a — 1. But the solutiondy may lose all the regularity as— 0, e — O.
So we consider the weak formulation of the equation:

& ié ! & 1 ! & S
<T,,9)—(To,9>=§/0(TS,M)ds—g[O <TS,V(;,->-V0>ds (44)

for any test functiord € C°(R¢), the space of smooth functions with compact support. On the other hand, the
energy identity(36) implies T¢ e L2([0, to]; H*(R?)) if To € L?(RY). Hence forL? initial data the pre-limit
measureP? is supported in the spade?([0, 1o]; H1(RY)) and, by the tightness resuéction 4.}, the limiting
measure? is supported irL.2 ([0, 7o]; Hx(R?)).

As in (14) and (16}he solutiongT¥ can be represented as

T = M[To(@5° ()], (45)
where®}* (x) is the unique stochastic flow satisfying

1
dobi(x) = -~V (i2 qng(x)) ds + Vidw(), 0<s<t, (46)
& &

P (x) = x. (47)

In the case ok = 0, q>88(x) vt, is almost surely a diffeomorphism & and7y = To(qﬁgg(x)). Moreover, for any
locally bounded measurable functipn R — R, (T (x)) = (¢ o To)((bgg(x)).
In view of the averaging in the representat{@3) we have the following proposition.

Proposition 1.

1T oo < I Tolloc  a.s.

Clearly,Proposition lholds for the case 6f = 0 as well.

For tightness as well as identification of the limit, the following infinitesimal opetdfowill play an important
role. LetVy = V(t/€2, ). Let F? be theo-algebras generated By¢, s < t} andE{ the corresponding conditional
expectation w.r.t77. Let M* be the space of measurable function adaptédfovt} such that sup, E| f(1)| < oo.
We sayf(-) € D(A®), the domain ofA?, and A f = gif f g € M® and for f3(r) = s 1[E¢ f(t + 8) — f(H] we
have

supE| f°(#)| < oo, (!imOIE|f5(t) —g(n|=0 V&
1,8 -

For f(t) = ¢((T}, 0)), f' (1) = ¢ ({(TF, 0)) V¢ € C*(R) we have the following expression frof#4) and the chain
rule:

K 1
Af f(n) = gf/(t)(Tf, AG) — gf/(t)(Ts, Vi), (48)
where

VE@©) = VE - Ve. (49)
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A main property ofA® is that

fH — /Ot A’ f(s)ds isanF?-martingaleV f € D(A°). (50)
Also,

EE f(1) — f(s) = /O r ESA°f(rydr Vs <t as. (51)
(see[25]).

Likewise we formulate the solutions for the Kraichnan md@8) as the solutions to the corresponding martingale
problem. Find a measui®(of 7;) on the spac® ([0, co); L\j'\ji(Rd)) such that

! 1 ¥ 1 1 %
ST 6) —/O {f’<<n,e>> [K—2"<T AB) + (T, B e>] + = [T )6, /C‘T?e)} ds
is a martingale w .t. the filtration of a cylindrical Wiener procesfor each f € C*(R), (52)

whereB" is the adjoint of3 and

(0. K0) = / / LT ()0 - T (x, y) - VO(y) dy (53)
with D (x, y) given, respectively, by29) and

'Y, y) = /[exp(ik - x) — L[exp(—ik - y) — UEm + L, Ok dk, n=a+p—1 (54)

for L < oo andL = oo. To identify the limit for the proof of convergence one needs the uniqueness of solution to
the martingale probler62) which can be easily obtained as follows.
Taking expectation of52) with f(r) = r"*, n € N we get for thez-point correlation function

F(x1, X2, %3, ..., Xp) = Eq[Ti(x1) Ti(x2) - - - Ty (xn)]
the equation

0

_[ KOs 0 AB(x)) -0 Lr g BO(x,) -0
—/0 XJ:E< n 0(x1) -+ - AB(xj) - - - (xn))‘i‘;[;( n 0(x1) -+ (xj)---0(xp))

+ Z S(F,f, IO, xj) 0 0(x1) - - - VOx) - - VO(x;) - - -O(xn)):| ds,

i<j

which induces a weakly continuous (hence strongly continuous) sub-Markovian semigraufBff)Vp e
(1, 00). The sub-Markovianity property is inherited from the pre-limit procE&sThe generator of the semigroup
is given formally as

n n
K0 1 -
La@(x1, o sn) = > Ag®+ - > IO, xj) ViV @, @ e CPRM), ko> 0 (55)
j=1 ij=1

with the spatial covariance tensbf (x;, x;) given by(29) and (54) respectively, fol. < oo andL = co. Note
that the symmetric operatd, (55)is an essentially self-adjoint positive operator@h (RV), N = ndwhich then
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induces ainiquesymmetric Markov semigroup of contractions bA(R"). The essential self-adjointness is due to
the sub-Lipschitz growth of the square-rootiof? (x1, x») at large|x1|, |x2| (hence no escape to infinit{d].

By Theorem 1.4.1 of9] this semigroup induces a sub-Markovi@g-semigroup on.”(RY), p € [1, c0). The
unigueness holds for these semigroups in their respective space as well but we will not pursue it here.

4. Proof of Theorem 1
4.1. Tightness

In the sequel we will adopt the following notation

[ = f(T}, 0)), o= T, 0)), '@ = f'(T5,6) VfeC®R).
Namely, the prime stands for the differentiation w.r.t. the original argument)wbtf, /', etc.

A family of processe$7*,0 < ¢ < 1} C D([0, c0); L2 (R9)) is tight if and only if the family of processes
{(T%,0),0 < & < 1} C D([0, 00); LS. (RY)) is tight for alld € C°(R?). We use the tightness criterion of Kushner
[28, Chapter 3, Theorem dihamely, we will prove: firstly,

lim lim supP{suf(T%,6)| > N} =0 Vi < o0. (56)

N—o0 e—0 t<tp

Secondly, for eaclf € C*°(R) there is a sequencg (1) € D(A®) such that for eacly < co{A® f4(r),0 < ¢ <
1,0 < t < 1o} is uniformly integrable and

lim P{SUpf*() — f(T°.6))] = 8} =0 V5> 0. (57)

t<tp

Then it follows that the laws of(T%, 6), 0 < ¢ < 1} are tight in the space dd([0, co); L3 (R9)).
Condition(56) is satisfied as a result &froposition 1Let

1 o0
o= / EE £/(0)(TE, VE(9)) ds

t

be the first perturbation of(z). We obtain

ORI CI AR C) (58)
with

Vi) =V ve, (59)

/€ / t 1 * eyse

Ve = V(S—Z, ) = 8—2[ E£VE ds, (60)

whereV has the power spectrufix.; (o« + 28, k) by the spectral representation
EVE = f [ek — 1] e akPls—le"2 ey s > 1. (61)
Note that whileV; loses differentiability ak — oo, V¢ is almost surely &-7-function in the limit with

O<Vn<a+28-2

and has uniformly bounded loc#*-7-norm, p > 1.
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Proposition 2.

IlmosupIE|f1 0| = I|m sunf1 0| = in probability.

t<to Or<tg

Proof. By Proposition we have

& ~
E[lf1(0]] < ;IIf/IIoo||To||oo||9||oo/|| MEIVfIdx (62)
and
sud f1 ()] < —IIf lloo 170l oo 101l 00 SUP |V dx. (63)
1<tp t<tg J|x|<M

By the temporal stationarity of® we can replace the terni& V¢ (x)| in (62) by E|V (0, x)|. By assumption (cf.
(31), Remark }, we have the desired estimaRroposition 2how follows from(31), (62) and (63) O

Setf*(t) = f(1) — f{(1). A straightforward calculation yields
& re ke 1 & e )¢ K& / & e 1 1 & yr€ e )¢

A fT = _Zf (O(T; . AO)T,, V, () + Zf (O(T; . AV, () + Zf (T}, YV, ONT;, V,(0))

1 ~e 1
- ;f/(l)(Tfa ViV, (0))) — gf’(t)(Tf’ Vi)
and, hence

A fE@) = gf/(t)<Tf, AB) + - f(t) SV (V ) — —f”(t) (T, ViONT? V )

+ K—ZZ[f"(t)(TE, AONTE, Vi(O) — f(O(Tf AV )] = AT(D) + A5(D) + A3() + AZ(D), (64)

whereA5(r) andA5(¢) are the Q1) statistical coupling terms.
For the t|ghtness criterion stated in the beginning of the section, it remains to show the folowing proposition.

Proposition 3. {A° f} are uniformly integrable and

lim supIE|A 0| =

e—0 t<to

Proof. We show thatA{},i = 1, 2, 3, 4 are uniformly integrable. To see this, we have the following estimates:

|AT(D] = —If (T}, AD)| < —||f lloo [ Tolloo | AB]l 1.

Thus A7 is uniformly integrable since it is uniformly bounded:
1/2 ~ 1/2
|AS(0)] = —If(t)<T8 Vg(V ) = —Ilf lloo 170ll 00 [/II MlVflde} [/II MIVV,EIZdX} .
Similarly,

|A5()| = |f”<t><Tf,v€(9>><T8 Vi) < —||f||oo||To||2 [/ M|Vf|zolx+/| M|Vf|2dx]
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Thus A% and A4 are uniformly integrable in view of the uniform boundedness of the 4th mome¥f o and
VV¢ asL < oois fixed andk — oo (the 4th order scale-invariance):

48] = %f”(x)(Tﬁ AOVTE, VS 0)) — £/ ((TF. AV (0))

Cke 7 2 7€12 vz /
=5, % I/ ool Toll5 [/ IV dX} + 11 f lloo I Toll oo
|x|<M

1/2
X U |\7t‘9|2dx+/ |V\7f|2dx+f |A\~/f|2dxi| . (65)
x| <M x| <M lx|<M

The most severe term in the above argument as a reslt-ef co is
Ke , e ~ &
5|f (T, AV, (D),

whose second moment can be bounded as

s _ 1/2
K_8 / e i 2 K_g / e 2
o VELF T, AV, @) = C1o 1L F ol Tols (/WM DINA ]dx)

K326 for o+ 28 < 3,
< Coke | JlogKk for a+28=3, (66)
1 for « +28 > 3,

and, thus, vanishes in the limit by the assumptions of the theorem. The 4th moment behaves the same way by the
4th order scale-invariance. Hengg is uniformly integrable. Clearly

IimosupE|Ai(t)| =0. O

e—~>Ur<i1g

4.2. ldentification of the limit

Once the tightness is established we can use another regt i@hapter 3, Theorem 2 identify the limit. Let
A be a diffusion or jump diffusion operator such that there is a unique solufionthe spaced([0, oo); Lo (RY))
such that

son = [ Aftwn ds )
is a martingale. We shall show that for eatle C*>°(R) there existsf® € D(A°) such that

:ggElf‘s(t) — fUT. D] < o0, (68)

S”LnoElfg(t) — fUT;, 00 =0 Vit <to, (69)

:nglAgfg(t) — Af(T7, 0)] < oo, (70)

!@OEIAgfe(t) — Af(T;, ) =0 Vi<t (71)

Then the aforementioned theorem implies that any tight procég$e8) converge in law to the unique process
generated byd. As before we adopt the notatigfitr) = f((TF, 9)).
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For this purpose, we introduce the next perturbatignsfs. Let

AP (@) = (0, K30),
@ _ & vyE
Ay () = (@, E[V,(V, (0)]),
where the positive-definite operatkifbl) is defined as

20 = [ 6009000 - IV (Vo0 o

r'u,y = / [exp(ik - x) — 1][exp(—ik - y) — L)€k (@ + B, D) |k[*~ dk
such that
(01, K502) = f / PS(GH, (x, y) drdy,

2
. 1
Gél?Gz = Z oxidy] [91(x)92(y)F( )(x, ]
L]

(cf. (53)).
It is easy to see that

AP (@) = E[(, VE©)) (8, V; )],
AL (¢) = (Bg, 6),

where the operatds is given by

Bo(x) = Zrm( a‘?(x?.

ax’ ox/

Define
1 ~
f50==f"0 / EX[(TF, VEOTE, Vo)) — A (1)) ds,

1
f50 =10 / EE[(TE, VEV5(6)) — ASD(TF)] ds.
t

Let

301.(x) 962(y)
Gy =Y P, y) ;i éf, wLK®®%—/ PGy (x, y) dx dy,
i)

where the covariance functidi® (x, y) = E[V?(x) ® V#(y)] has the spectral densis 1. (« + 28, k). Let
AP @) = 0.KP0),  AD @) = (6. EV;(V; O)]).
Noting that

Ef[Vi (x) ® f/se(y)] = // [eix~k . 1][efiy-k/ —1] efu\klzﬁlsfl\efz efalk’\zﬂ\sftle’z ‘A/'tg(dk) ® ‘:/f* (dk)

+ f [eF — 1)e 7 — 1)1 — e 2T gy ) (o + B, k) ik,

(72)

(73)

(74)

(75)

(76)

(77)

(78)
(79)

(80)
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we then have

2 ~&
£50) = %f”(t)[(Tf, V)2 — AP 1)) (81)
and similarly
2 ~E& ~E
5@ = %f/(t)[(Tf, V(U5 0) — AR (TH)]. (82)
Proposition 4.
I|m sup]E|f2(t)| =0, I|m s:upIE|f3 | =0.
Or<1g Or<ig

Proof. We have the bounds

SUDlElfz(t)|<SUP 2||f”||oo||To|| ||ve||§o[/ E|Vf[?(x) dx + / |r<2>(x,x>|dx]sclez,
t<to [x|<M |x|<M

y 1/2
SUpE| f3 (0| < SUP ||f lloo I Toll 00 |:||V9||oo/ EIV,EIZ(X) dx]

t<tp x|<M

~ 1/2
x [ f E|VVE2(x) dxi| < Cpe?K?=2
|lx|<M

both of which tend to zero. a

E|V¢2(x) dx + [|0]|0o [/|

x|<M

We have

1 ~
A S50 = =~ " OL=(TF. VEONTE. Vi 0) - A TH] + Ry,

1 ~
A f50 = =[O ViV 6) - AT + R5()
with

ua ( t)
2

~

R5(1) =

2 ~&
[Zazm AB) — 2<Tf,v5<9)>}[<Tf,v,(9)>2—A?(Tf)]

&2
+ ' O(TE, Y (9))[ AUE AV;(0)) — %(T,E,Vf(vf(G)))]
f//(t) |: (Tté" AG(Z)T&‘) <'Tt8’ VS(G(Z)T€)>] (83)
WhereGéz) denotes the operator

62 = f G2 x. () dy.

and similarly

R5(0) —f”(t)[ (7, AO) — 222<Tf,Vf(9)>}[<Tf,17fo>f(e>)> — AP (1)

£2

+f(t)[ S (TF, AV, (V; () —

282 (¢, WW?@?(@))»]

e2
-1 [4a2 TE, AE[V, (V; O)]) + 5 (TF, VEEV, (V, ) }
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Proposition 5.

IimosupE|R§(t)| =0, IimosupIE|R§(t)| =0.

e—~>Ur<rg e—=>Ur<tg

Proof. The argument is entirely analogous to thatFPooposition 4 The most severe term without the prefadtor
occurs in the expression f&3(¢) and can be bounded as

5 . . . 1/2
eE[(TE, VIOV, (V; 0N < el TolloBIVEV; (V; 0))] < Ciell Tolloo ( /| | MEIVfIde)

1/2
x ( f {ENVINENVAV 1Y 2 de + f E[IV V1] dx) (84)
|x|<M |x|<M
by assumption. The right-hand side of the above tends to zero if either
a+28>3
or
a+26=3, Iimos,/logK =0 (85)
E—
or
a+28 <3, IimosK?’*"‘*zﬁ =0 (86)
E—>

is satisfied. The term involving(Tf, V¢ (Gfgz) T¢)) can be similarly estimated.
The most severe term involving the prefactarccurs inR5 and can be bounded as

12 ie? for a+ 28 > 4,
IE[|V3\7f|2]) ~ { ke?/logKk  for a +28 =4,

Re?EI(TE, AV; (V,0))] < Cke?| Tolloo (/
|
ke2K42=28  for o+ 28 < 4,

x|<M

(87)

the right-hand side of which tends to zero if either

a+26>4
or

o+ 28 =4, g@oksz\/ﬁ =0
or

3<a+2p<4  lim ke?K42F = 0 (88)
or

2<a+2p<3  lim ke? KA = Sli_r)n08K3_“_2ﬁ =0.
Note that fore + 28 < 2 the condition(85) or (86) implies that

lim e2K4*=2f = 0. 0

e—0
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Set
R*(t) = A3(t) — R5(t) — R5(0).
It follows from Propositions 3 and that:

Iimosup]E|R5(t)| =0.

e—=>Ur<tg

Recall that

M (©) = f°() —/ A°fE(s)ds = f() — f1(0 — f2(0) — f3(0) —f S (O(T, AB) ds
- / ;[f“@)Aé”(Tf) + f1()AS (TH]ds — / R (s) ds
0 0
is a martingale. Now thg68)—(71)are satisfied we can identify the limiting martingale to be

t
M, (6) = f(r) — / {f(S)[ (Ty, A6) + 1A(”(Ts>] +%f”(5)/_\(21)(Tx)} ds
0

where
A7) @)= lim AP@. AP @ = lm AP (g)

(cf. (72) and (79).
Since(T/, 6) is uniformly bounded

KT, 0)] < I Tollec 10111,
we have the convergence of the second moment

lim B{(77, 6)?} = E((T;, 6)2).
£—>
Use f(r) = r andr? in (89)
t 1 _
MP©) = (T, 0) - / [@m, AG) + -Ag}m} ds
0 2 a
is a martingale with the quadratic variation
t
MDD ©6), MY 9)], = / AP (1) ds = / (o, K%)Q) ds,
a a Jo
wherel_C(T? is a positive-definite operator given formally as

5o = f ONVTi(x) - TV (x, YVT(y) dy,

(cf. (74)). Therefore,

2 (/2
M§1)=\/;f JEY dw,
0

179

(89)

(90)
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whereW; is a cylindrical Wiener process (i.eWid(x) is a space—time white-noise field) a(jd_C(Tt) the square-root
of the positive-definite operator given(@0). From(72) and (79)ve see that the limiting procegsis the (assumed
unique) distributional solution to the martingale problé8) of the 11’s equation

d7; = ( SA+ B) T, dt + /241K dw, = (K—ZOA + %B) T, di + v2a~Y2vT, - dW®,

where the operatds is given by(30)and W,(l) is the Brownian vector field with the spatial covariane@ (x, y).

5. Proof of Theorem 2

As we letL — oo along withe — 0 the proof of the uniform integrability of*[ f(r) — f; (1] (the first part of
Proposition 3 breaks down. In this case, we work with the perturbed test function

ffFO=f0- 0+ 30+ ;0.

Proposition 6.

I|m SUpE| f} (0] = I|m sup f; (0| =0 inprobability Vj =1,2,3. (91)

e—0 t<tg <t0

Proof. The argument for the case ¢f (1) is the same aBroposition 2For f5(¢) and f3(r) we have the bounds

supE|f2<r>|<sup ||f”||oo||To|| ||ve||§o[f | E|V1?(x) dx + / |F<2><x,x>|dx]
x|<M

t<tg |x|<2M

&2 _ ~ 1/2
SUPE| 50 < SUP 1 Il ol [nveumfll E V¥ 120) dx + [6]10o [/ EIV¢2(x) dx}
x|<M x|<M

1<tp
. 1/2
x [ / E|VVE|?(x) dx] < Cpe?L?t2h—4
|x|<M

both of which vanish under the assumptions of the theorem. Here we have used the fact that

f E|VE12(x) dx = O(L2@+2D =4 L - oo,

|x|<M

As for estimating su,g,o|fj(t)|, Jj = 2,3, we can use

M / |VE12(x)dx inplace of / E|V#)?(x) dx
|x|<M |x|<M
in the above bounds and obtain by assumption(85), Remark 3 the desired estimate which have a similar order
of magnitude with an additional factor ofdand a random constant possessing a finite moment. O

We have

A fE(n) = gf’<r)<Tf, A6) — f”(t)A(l)(TE f (AP (T?) + R5(1) + R5(0) + R5(0) (92)
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with
ke / / & ¥
RE() = —Lf"(O(TF. AOXTE, VE©) — f/(0(T¢, AV, (6))] (93)
2a

andR5(1), R5(?) as before.

Proposition 7.

lim supIE|Rj-(t)| =0, j=123.

e—0 t<tg

Proof. The proof is similar to that oProposition 5with the additional consideration due fo — oo. These
additional terms can all be estimated by

Cie / E[|VE(x)VE(x)|]dx < CoeL2@+26-2)
|x|<M
which tends to zero under the assumptions of the theorem. O
For the tightness it remains to show the following proposition.
Proposition 8. {A® ¢} are uniformly integrable

Proof. We shall prove that each term in the expresgi®) is uniformly integrable.
The first three terms are clearly bounded under the assumptiof gf< 2. The last three terms can be estimated
as inProposition 7oy

Ciesup |VE(x) VE (x)]

1<to J|x|<M

whose second moment behaves iR&**+26-2) by the 4th order scale-invariance property, and tends to Zero.

Now we have all the estimates needed to identify the limit as in the probfiebrem 1
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