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Abstract. The null vector method, based on a simple linear algebraic concept, is proposed as
an initialization method for nonconvex approaches to the phase retrieval problem. For the stylized
measurement with random complex Gaussian matrices, a nonasymptotic error bound is derived,
stronger than that of the spectral vector method. Numerical experiments show that the null vector
method also has a superior performance for the realistic measurement of coded diffraction patterns
in coherent diffractive imaging.
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1. Introduction. We consider the following phase retrieval problem: Let A =
[aij ] ∈ Cn×N be a full-rank matrix. Let x0 ∈ Cn and y0 = A∗x0. Suppose we are
given A and b := |y0|, where |y0| denotes the modulus vector with |y|(j) = |y(j)| for
all j. The aim of phase retrieval is to find x0.

For this nonlinear inversion problem, simple dimension count shows that, for the
solution to be unique in general, the number of (nonnegative) data N needs to be
at least twice the number n of unknown (complex) components. There are many
approaches to phase retrieval, the most efficient and effective—especially when the
problem size is large—being fixed point algorithms (see [3, 4, 6, 7] and references
therein) and gradient-descent methods [1, 2]. Phase retrieval has a wide range of
applications, including coherent diffractive imaging where A∗ is a Fourier-like matrix
and b a set of diffraction patterns (see [9] for a recent survey).

A key to the success of any nonconvex method is an effective initialization. The
following consideration motivates our approach:

First we reformulate the phase retrieval problem in the isometric form. For a full
rank A, let A∗ = QR be the QR-decomposition of A∗, where Q is isometric and R is
an invertible upper-triangular square matrix. Let z = Rx and z0 = Rx0. The phase
retrieval problem is equivalent to finding a solution z0 to b = |Qz| and then recovering
x0 = R−1z0.

Now sort the signals in terms of their magnitudes and apply a threshold (to
be determined) to separate the “weak” signals from the “strong” signals. Let I ⊂
{1, . . . , N} be the support set of the weak signals and Ic its complement such that
b(i) ≤ b(j) for all i ∈ I, j ∈ Ic. In other words, {b(i) : i ∈ Ic} are the strong signals.
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Let QI and QIc
be the sub-row matrices of Q corresponding to the index sets

I and Ic, respectively. Denote the sub-column matrices consisting of {ai}i∈I and
{aj}j∈Ic

by AI and AIc
, respectively. Clearly, A∗I = QIR and A∗Ic

= QIc
R. Let

bI = |A∗Ix0| and bIc = |A∗Ic
x0|.

Let |I| be the cardinality of the set I. We always assume |I| ≥ n so that A∗I and
QI have a trivial null space and hence preserve the information of x0.

Since bI = |QIz0| is “weak,” the rows of QI are nearly orthogonal to z0. It is
then natural to “linearize” the weak components of the phase retrieval problem and
formulate it as the variational principle

xnull = R−1znull, znull ∈ arg min
{
‖QIz‖2 : z ∈ Cn, ‖z‖ = ‖b‖

}
(1)

(which may have more than one minimizer) or, equivalently,

xnull ∈ arg min
{
‖A∗Ix‖2 : x ∈ Cn, ‖Rx‖ = ‖b‖

}
.(2)

In view of the isometry property

‖z‖2 = ‖QIz‖2 + ‖QIc
z‖2 = ‖b‖2,(3)

minimizing ‖QIz‖2 is equivalent to maximizing ‖QIc
z‖2 over {z : ‖z‖ = ‖b‖}. There-

fore an equivalent alternative variational principle for the null vector is

xnull ∈ arg max
{
‖A∗Ic

x‖2 : x ∈ Cn, ‖Rx‖ = ‖b‖
}
.(4)

Now (4) gives rise to the power method for constructing the null vector as in Algo-
rithm 1.

Algorithm 1: The null vector

1 Input: QR-decomposition of A∗, Ic, ‖b‖.
2 Initialization: z1
3 for k = 1, 2, 3, . . . do
4 z′k ← Q∗(1c �Qzk), where 1c is the indicator function of Ic
5 zk+1 ← z

′

k/‖z
′

k‖
6 until ‖zk+1 − zk‖ is sufficiently small.
7 end
8 Output: xnull = ‖b‖R−1znull, znull = zk+1.

We can enhance the result of Algorithm 1 with the full information of b by the
following procedure:

x̃null = R−1z̃null, z̃null = Q∗
[
b� Qznull

|Qznull|

]
.(5)

The idea in (5) is to enhance the transform phase inherent in znull (i.e., phase retrieval)
with the measured information of the transform magnitude.

The key to the performance of Algorithm 1 hinges on the threshold |I|. To char-
acterize, as precisely as we can, the conditions for a proper choice of |I| in relation to
N and n, we assume independent and identically distributed (i.i.d.) Gaussian mea-
surements for a lower technical barrier of the proof as in [1, 2, 8] and other phase
retrieval literature seeking performance guarantee. The randomness assumption is
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856 PENGWEN CHEN, ALBERT FANNJIANG, AND GI-REN LIU

in line with the empirical fact that increased randomness in the measurement ma-
trix enhances the performance of Algorithm 1. For a more realistic setup, such as
coherent diffractive imaging, this suggests introducing disorder into the structured,
deterministic measurements (e.g., random masking).

To the end of proving the theoretical bound, we consider the following simplified
version of the null vector:

x̂null ∈ arg min
{
‖A∗Ix‖2 : x ∈ Cn, ‖x‖ = ‖x0‖

}
,(6)

which has a behavior similar to xnull when R is close to a scalar matrix. This is
so when the oversampling ratio L of the i.i.d. Gaussian matrix is large or when the
measurement matrix is isometric (hence R = I) as for coded diffraction patterns.
Like xnull, x̂null can also be efficiently computed by the power method by iterating
λ− AIA∗I , where the constant λ is chosen to be around the leading singular value of
AI .

Our theoretical analysis (Theorem 2.1) leads to a nonasymptotic error bound for
x̂null as an estimate of x0 and forms the basic guideline for the choice of |I|:

n < |I| < N < |I|2.

In particular, this can be met for any oversampling ratio L = N/n by the rule

|I| = dnLαe = dn1−αNαe, α ∈ [0.5, 1),(7)

which yields the (relative) error bound O(L(α−1)/2), with probability exponentially
(in n) close to 1, which achieves the asymptotic minimum at α = 1/2 (the geometric
mean rule) for all n and N (Corollary 2.2 and Remark 2.1).

For phase retrieval with randomly coded diffraction patterns where the oversam-
pling ratio L is small and the measurement matrix is isometric (hence x̂null = xnull),
we demonstrate the superior performance of the null vector with the geometric mean
rule (α = 1/2)

|I| = dnL1/2e = d
√
nNe(8)

in section 5.2. Other, more ad hoc rules have also been found to perform well with
coded diffraction patterns [4].

2. Nonasymptotic error bound. In this section, we present the nonasymp-
totic error bound. In addition to theoretical interest, the main purpose is practical: to
characterize the conditions for a proper choice of |I| in relation to N and n, through
probabilistic analysis.

Note that both xnull and the phase retrieval solution is at best uniquely defined
up to a global phase factor. So a standard error metric must be phase-adjusted as in

min
θ∈R
‖eiθxnull − x0‖ =

√
2(‖x0‖2 − |x∗0xnull|).(9)

Alternatively, we can use the error metric

‖x0x
∗
0 − xnullx

∗
null‖ =

√
2(‖x0‖4 − |x∗0xnull|2),(10)

where the left-hand side is measured in the spectral norm.
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Theorem 2.1. Let A = [aij ] ∈ Cn×N , where aij are i.i.d. circularly symmetric
complex standard Gaussian random variables. Let σ, ν, ε, δ, t be any constants con-
strained as follows:

σ :=
|I|
N

< 1, ν =
n

|I| < 1, ε ∈ (0, 1), δ > 0, t ∈ (0, ν−1/2 − 1).(11)

Then for any x0 ∈ Cn and x̂null given by (6) the error bound

‖x0x
∗
0 − x̂nullx̂

∗
null‖2 ≤

[(
2 + t

1− ε

)
σ + ε (−2 ln(1− σ) + δ)

] ‖x0‖4
(1− (1 + t)

√
ν)2

(12)

holds with probability at least

1− 2 exp
[
−1

2
Nδ2e−δ|1− σ|2

]
− exp

[
−2
b|I|εc2
N

]
− 2 exp

[
−cet

4
|I| ln 1

σ

]
− 4e−nt

2/2

(13)

with an absolute constant c.

The proof of Theorem 2.1 is given in section 3.
To unpack the implications of Theorem 2.1, let us consider a regime where the

error bound (12) is arbitrarily small and the success probability bound (13) is expo-
nentially close to one.

For the error bound to be small, we fix ε > 0, t > 0 and let

ν < (1 + t)−2/2,(14)

which can be arbitrarily small.
Next we set δ = c0σ, where c0 is a positive constant. The error bound (12)

becomes

‖x0‖−2‖x0x
∗
0 − x̂nullx̂

∗
null‖ ≤ c

√
σ,(15)

where c is a constant.
The second, third, and fourth terms in (13) are bounded from above by a term

of the form

c1 exp
[
−c2|I|2/N

]
(16)

for some constants c1, c2.
In summary, with ε > 0, t > 0 fixed and arbitrary ν bounded by (14), we obtain

the following estimate.

Corollary 2.2. Under

1 < n < |I| < N < |I|2(17)

the error bound

‖x0‖−2‖x0x
∗
0 − x̂nullx̂

∗
null‖ ≤ c

√
|I|
N

(18)

holds with probability at least

1− c1 exp
[
−c2|I|2/N

]
− 4e−nt

2/2

for some constants c, c1, c2, t.
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Remark 2.1. In the case of large oversampling ratio L = N/n � 1, the relative
error (18) is small with probability exponentially (in n and |I|2/N) close to 1 if

1� n < |I| � N � |I|2.(19)

In particular, for

|I| = dnLαe, α ∈ [0.5, 1),(20)

the error bound (18) becomes

‖x0‖−2‖x0x
∗
0 − x̂nullx̂

∗
null‖ ≤

c

L(1−α)/2 .(21)

Our numerical test of (21) in section 5 confirms the scaling behavior but with an
exponent slightly greater than 0.5 (Figure 1).

3. Comparison with the spectral methods. The spectral method [1, 2, 8]
is another linear algebraic approach to initialization which uses the leading singular
vector xspec of diag[b]A∗:

xspec ∈ arg max
{
‖diag[b]A∗x‖2 : x ∈ Cn, ‖x‖ = ‖x0‖

}
.(22)

The power method for computing (22) is given in Algorithm 2.

Algorithm 2: The spectral vector

1 Input: A, b, ‖x0‖.
2 Initialization: x1
3 for k = 1, 2, 3, . . . do
4 x′k ← A(|b|2 �A∗xk);
5 xk+1 ← x

′

k/‖x
′

k‖;
6 until ‖xk+1 − xk‖ is sufficiently small.
7 end
8 Output: x̂spec = xk‖x0‖/‖x1‖.

The key difference between Algorithms 1 and 2 is the different weights used in
step 4 where the null vector method uses 1c and the spectral vector method uses |b|2.
The truncated spectral vector method uses a still different weighting,

(23) xt-spec ∈ arg max
‖x‖=‖x0‖

∥∥A (1τ � |b|2 �A∗x) ∥∥,
where 1τ is the characteristic function of the set{

i : b(i) ≤ τ ‖b‖2√
N

}
(24)

for some thresholding parameter τ .
The available performance guarantee for the spectral method is weaker than The-

orem 2.1. For example, according to Theorem 4.1 of [8], for any given c0 > 0 and

N =
C1

c20
n ln3 n, n� 1,(25)
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with some constant C1 independent of c0, the spectral method achieves the accuracy

‖x0‖−2‖x0x
∗
0 − xspecx

∗
spec‖ ≤

√
c0,(26)

with probability at least 1 − 4/N2, while, according to Theorem 3.3 of [2], the same
estimate (26) holds with probability at least 1−O(n−2) for

N = C2n lnn, n� 1,(27)

with a sufficiently large C2 depending on c0.
In comparison, for N = Cn lnn and |I| = Cn with any C > 0, Corollary 2.2

implies that
‖x0‖−2‖x0x

∗
0 − x̂nullx̂

∗
null‖ ≤

c√
lnn

,

with probability exponentially (in n) close to one.
As shown by the numerical tests in section 5, the null vector method counter-

intuitively produces more accurate estimate of the signal by using less information (Ic
vs. b). Moreover, because the null vector method depends only on the support set I,
and not explicitly on b, the method is more stable to measurement noise (Figure 3).

4. Proof of Theorem 2.1. Let us begin with the following linear algebraic
inequality.

Proposition 4.1. There exists x⊥ ∈ Cn with x∗⊥x0 = 0 and ‖x⊥‖ = ‖x0‖ = 1
such that

‖x0x
∗
0 − x̂nullx̂

∗
null‖2 ≤

2‖bI‖2
‖A∗Ix⊥‖2

.(28)

Proof. Since xnull is optimally phase-adjusted, we have

β := x∗0xnull ≥ 0(29)

and

x0 = βx̂null +
√

1− β2 z(30)

for some unit vector z∗x̂null = 0. Then

x⊥ := −(1− β2)1/2x̂null + βz(31)

is a unit vector satisfying x∗0x⊥ = 0. Since xnull is a singular vector and z belongs in
another singular subspace, we have

‖A∗Ix0‖2 = β2‖A∗I x̂null‖2 + (1− β2)‖A∗Iz‖2,
‖A∗Ix⊥‖2 = (1− β2)‖A∗I x̂null‖2 + β2‖A∗Iz‖2,

from which it follows that

‖A∗Ix0‖2 − (1− β2)‖A∗Ix⊥‖2(32)
= β2‖A∗I x̂null‖2 + (1− β2)2

(
‖A∗Iz‖2 − ‖A∗I x̂null‖2

)
≥ 0

since ‖A∗Iz‖2 ≥ ‖A∗I x̂null by the variational principle (6). By (32), (10), and ‖bI‖ =
‖A∗Ix0‖, we also have

‖bI‖2
‖A∗Ix⊥‖2

≥ 1− β2 =
1
2
‖x0x

∗
0 − x̂nullx̂

∗
null‖2.(33)
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In view of (28), we seek to give an upper bound on ‖bI‖ and lower bound on
‖A∗Ix⊥‖ as follows.

Without loss of the generality we may assume ‖x0‖ = 1. Otherwise, we replace
x0, x̂null by x0/‖x0‖ and x̂null/‖x0‖, respectively. Let U = [U1 U2 · · · Un] be a unitary
transformation where U1 = x0, or equivalently x0 = Ue1, where e1 is the canonical
vector with 1 as the first entry and zero elsewhere. Since unitary transformations do
not affect the covariance structure of Gaussian random vectors, the matrix A∗U is
distributed as the standard complex Gaussian ensemble.

Proposition 4.2. Let I be any set such that b(i) ≤ b(j) for all i ∈ I and j ∈
Ic = {1, 2, . . . , N} \ I. For any unitary matrix U , let A′ ∈ C|I|×(n−1) be the sub-
column matrix of A∗IU with its first column vector deleted. Then A′ is distributed as
the standard complex Gaussian ensemble.

Proof. First note that A∗IU = (A∗U)I , the row submatrix of A∗U indexed by I.
As noted already, A∗U is distributed as the standard complex Gaussian ensemble.

Since x0 = Ue1 and b = |A∗Ue1|, I and Ic are entirely determined by the first
column of A∗U , which is independent of the other columns of A∗U . Consequently,
the probability law of A′ conditioned on the choice of I equals the probability law
of A′ for a fixed I. Therefore, A′ is distributed as the standard complex Gaussian
ensemble.

Let {νi}n−1
i=1 be the singular values of A′ in the ascending order. For any z ∈ Cn−1

the matrix
B′ := A′ diag(z/|z|)

has the same set of singular values as A′. Again, we adopt the convention that
z(j)/|z(j)| = 1 when z(j) = 0. We have

‖A′z‖ = ‖B′ |z|‖

and hence

‖A′z‖ = (‖<(B′) |z|‖2 + ‖=(B′) |z|‖2)1/2 ≥
√

2 (‖<(B′) |z|‖ ∧ ‖=(B′) |z|‖) .

The following result on order statistics gives the desired upper bound on ‖bI‖.
Proposition 4.3. For any ε > 0, δ > 0, t > 0

‖bI‖2 ≤ |I|
((

2 + t

1− ε

) |I|
N

+ ε

(
−2 ln

(
1− |I|

N

)
+ δ

))
with probability at least

1− 2 exp
(
−Nδ2e−δ|1− σ|2/2

)
− 2 exp

(
−2ε2|1− σ|2σ2N

)
−Q,(34)

where Q has the asymptotic upper bound

2 exp
{
−cmin

[
e2t2

16
|I|2
N

(
lnσ−1)2 , et

4
|I| lnσ−1

]}
, σ :=

|I|
N
� 1.(35)

The proof of Proposition 4.3 is given in section 4.1.D
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The lower bound on ‖A∗Ix⊥‖ is given by the theory of Wishart matrices [10, 11].
The singular values {νRj }n−1

j=1 , {νIj }n−1
j=1 (in the ascending order) of <(B′),=(B′) satisfy

the probability bounds that for every t > 0 and j = 1, . . . , n− 1

P
(√
|I| − (1 + t)

√
n ≤ νRj ≤

√
|I|+ (1 + t)

√
n
)
≥ 1− 2e−nt

2/2,(36)

P
(√
|I| − (1 + t)

√
n ≤ νIj ≤

√
|I|+ (1 + t)

√
n
)
≥ 1− 2e−nt

2/2.(37)

If x⊥ ⊥ x0, then x⊥ = (0, z>)> with z ∈ Cn−1. By Proposition 4.1 and (36)–(37), we
have for some z ∈ Cn−1, ‖z‖ = 1 that

‖x0x
∗
0 − x̂nullx̂

∗
null‖ ≤

‖bI‖
‖<(B′) |z|‖ ∧ ‖=(B′) |z|‖

≤ ‖bI‖(νRn−1 ∧ νIn−1)−1

≤ ‖bI‖(
√
|I| − (1 + t)

√
n)−1.

By Proposition 4.3, we obtain the desired bound (12). The success probability is at
least the expression (34) minus 4e−nt

2/2.

4.1. Proof of Proposition 4.3. By the Gaussian assumption, b(i)2 = |a∗i x0|2
has a chi-squared distribution with the probability density e−z/2/2 on z ∈ [0,∞) and
the cumulative distribution

F (τ) :=
∫ τ

0
2−1 exp(−z/2)dz = 1− exp(−τ/2).

Let

τ∗ = −2 ln(1− |I|/N)(38)

for which F (τ∗) = |I|/N.
Proposition 4.3 calls for study of order statistics for i.i.d. chi-squared random

variables.
Define

Î := {i : b(i)2 ≤ τ∗} = {i : F (b2(i)) ≤ |I|/N}
and

‖b̂‖2 :=
∑
i∈Î

b(i)2.

Next we show that Î is a good approximation of I.

Proposition 4.4. Let τ∗ be given by (38) and {τ1 ≤ τ2 ≤ · · · ≤ τN} the sorted
sequence of {b(1)2, . . . , b(N)2} in magnitude.

(i) For any δ > 0, we have

τ|I| ≤ τ∗ + δ(39)

with probability at least

1− exp
(
−N

2
δ2e−δ|1− |I|/N |2

)
.(40)
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(ii) For each ε > 0, we have

|Î| ≥ |I|(1− ε)(41)

or, equivalently,

τb|I|(1−ε)c ≤ τ∗(42)

with probability at least

1− 2 exp
(
−4ε2|1− |I|/N |2|I|2/N

)
.(43)

Proof. (i) Since F ′(τ) = exp(−τ/2)/2,

|F (τ + ε)− F (τ)| ≥ ε/2 exp(−(τ + ε)/2).(44)

For δ > 0, let
ζ := F (τ∗ + δ)− F (τ∗),

which by (44) satisfies

ζ ≥ δ

2
exp

(
−1

2
(τ∗ + δ)

)
.(45)

Let {wi : i = 1, . . . , N} be the i.i.d. indicator random variables

wi = χ{b(i)2>τ∗+δ}

whose expectation is given by

E[wi] = 1− F (τ∗ + δ).

The Hoeffding inequality yields

P(τ|I| > τ∗ + δ) = P

(
N∑
i=1

wi > N − |I|
)

(46)

= P

(
N−1

N∑
i=1

wi − E[wi] > 1− |I|/N − E[wi]

)

= P

(
N−1

N∑
i=1

wi − E[wi] > ζ

)
≤ exp(−2Nζ2).

Hence, for any fixed δ > 0,

τ|I| ≤τ∗ + δ(47)

holds with probability at least

1− exp(−2Nζ2) ≥ 1− exp
(
−Nδ

2

2
e−τ∗−δ

)
= 1− exp

(
−Nδ

2

2
e−δ |1− |I|/N |2

)
by (45).
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(ii) Consider the following replacements in the preceding argument:

(a) |I| −→ d|I|(1− ε)e.
(b) τ∗ −→ F−1(d|I|(1− ε)e/N).
(c) δ −→ F−1(|I|/N)− F−1(d|I|(1− ε)e/N).
(d) ζ −→ F−1(τ∗ + δ)− F−1(τ∗) = |I|/N − d|I|(1− ε)e/N = b|I|εc

N .

Then (46) becomes

P
(
τd|I|(1−ε)e > F−1(|I|/N)

)
≤ exp(−2Nζ2) = exp

(
−2b|I|εc2/N

)
.

That is,

τd|I|(1−ε)e ≤ τ∗

holds with probability at least

1− exp(−2b|I|εc2/N).

The next proposition says that the two ratios ‖bI‖2/|I| and ‖b̂‖2/|Î| are close to
each other.

Proposition 4.5. For each ε > 0 and δ > 0,

‖bI‖2
|I| ≤

‖b̂‖2
|Î|

+ ε(τ∗ + δ)(48)

with probability at least

1− 2 exp
(
−1

2
δ2e−δ|1− |I|/N |2N

)
− 2 exp

(
−2ε2|1− |I|/N |2|I|2/N

)
.(49)

Proof. Since {τj} is an increasing sequence, the function T (m) = m−1∑m
i=1 τi is

also increasing. Consider the two alternatives, either |I| ≥ |Î| or |Î| ≥ |I|. For the
latter,

‖bI‖2/|I| ≤ ‖b̂‖2/|Î|
due to the monotonicity of T .

For the former case, |I| ≥ |Î|, we have

T (|I|) = |I|−1

 |Î|∑
i=1

τi +
|I|∑

i=|Î|+1

τi


≤ T (|Î|) + |I|−1(|I| − |Î|)τ|I|.

By Proposition 4.4(ii) |Î| ≥ (1− ε)|I|, and hence

T (|I|) ≤ T (|Î|) + |I|−1(|I| − |I|(1− ε))τ|I| = T (|Î|) + ετ|I|

with probability at least given by (43).
By Proposition 4.4(i), τ|I| ≤ τ∗ + δ with probability at least given by (40).
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864 PENGWEN CHEN, ALBERT FANNJIANG, AND GI-REN LIU

Continuing the proof of Proposition 4.3, let us consider the i.i.d. centered, bounded
random variables

Zi :=
N2

|I|2
[
b(i)2χτ∗ − E[b(i)2χτ∗ ]

]
,(50)

where χτ∗ is the characteristic function of the set {b(i)2 ≤ τ∗}. Note that

E(b(j)2χτ∗) =
∫ τ∗

0
2−1z exp(−z/2)dz = 2− (τ∗ + 2) exp(−τ∗/2) ≤ 2|I|2/N2,(51)

and hence

−2 ≤ Zi ≤ sup
{
N2

|I|2 b(i)
2χτ∗

}
=
N2

|I|2 τ∗.(52)

Now recall the Bernstein inequality.

Proposition 4.6 (see [11]). Let Z1, . . . , ZN be i.i.d. centered subexponential ran-
dom variables. Then for every t ≥ 0 we have

P

{
N−1|

N∑
i=1

Zi| ≥ t
}
≤ 2 exp

{
−cmin(Nt2/K2, Nt/K)

}
,(53)

where c is an absolute constant and

K = sup
p≥1

p−1(E|Zj |p)1/p.

Remark 4.1. We have the following explicit estimates for the constant K:

K ≤ 2N2

|I|2 sup
p≥1

p−1(E|b(i)2χτ∗ |p)1/p(54)

≤ 2N2

|I|2 τ∗ sup
p≥1

p−1(Eχτ∗)1/p

≤ 2N2

|I|2 τ∗ sup
p≥1

p−1(1− e−τ∗/2)1/p.

The maximum of the right-hand side of (54) occurs at

p∗ = − ln(1− e−τ∗/2),

and hence

K ≤ 2N2

|I|2
τ∗
p∗

(1− e−τ∗/2)1/p∗ .

We are interested in the regime

τ∗ � 2|I|/N � 1,

which implies

p∗ � − ln
τ∗
2
� ln

N

|I|
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and consequently

K ≤ 4N
e|I|

(
ln
N

|I|

)−1

, σ = |I|/N � 1.(55)

On the other hand, upon substituting the asymptotic bound (55) in the expression

Q = 2 exp
{
−cmin(Nt2/K2, Nt/K)

}
on the right side of the probability bound (53), we have

Q ≤ 2 exp
{
−cmin

[
e2t2

16
(
lnσ−1)2 |I|2/N, et

4
|I| lnσ−1

]}
, σ � 1.(56)

Now we estimate ‖b̂‖2/|Î| (Proposition 4.5) by the Bernstein inequality with (56).
The Bernstein inequality ensures that with high probability∣∣∣∣∣‖b̂‖2N

− E(b2(i)χτ∗)

∣∣∣∣∣ ≤ t |I|2N2 .

By (41) and (51), we also have

‖b̂‖2
|Î|
≤ E(b(i)2χτ∗)

N

|Î|
+ t
|I|2
|Î|N

(57)

≤
(

E(b(i)2χτ∗)
N2

|I|2 + t

) |I|
N

≤ 2 + t

1− ε ·
|I|
N
.

By Proposition 4.5, we now have

‖bI‖2 ≤ |I|
(
‖b̂‖2
|Î|

+ ε (τ∗ + δ)

)
with probability at least given by (34)–(35), which together with (57) and (38) com-
pletes the proof of Proposition 4.3.

5. Numerical experiments. In this section we test numerically the null vector
method and compare the performance with the spectral vector method. Let pk, qk, k =
1, . . . , n, be independent standard normal random variables and define the following
three types of signals x0:

• White noise:

x0(t) =

n
2−1∑
k=−n

2

(pk + iqk)ei2πk(t−1)/n, t = 0, 1, . . . , n− 1.(58)

• Low-pass signal:

x0(t) =

n
8−1∑
k=−n

8

(pk + iqk)ei2πk(t−1)/n, t = 0, 1, . . . , n− 1.(59)

• Randomly phased phantom (RPP): x0 is the vectorized version of the phan-
tom (Figure 2(a)) with phase at each pixel being i.i.d. over [0, 2π).

To make a fair comparison with the spectral vector method, we normalize the null
vector as computed by Algorithm 1 so that ‖xnull‖ = ‖x0‖, as assumed in Algorithm 2.
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(a) White noise (n = 160)
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−0.510 log L + 0.062
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(b) Low-pass signal (n = 160)
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(c) RPP (n = 160)

Fig. 1. Log-log plot of relative error (RE) of the null vector method with α = 1/2 (red), α = 2/3
(green), α = 3/4 (blue), α = 4/5 (purple), the spectral (black), and the truncated spectral method
(yellow) vs. L ≤ 104. (Color available online.)

5.1. Convergence test for the Gaussian measurements. First we test the
scaling behavior (19)–(20) as predicted by Corollary 2.2.

Figure 1 is the log-log plot of the relative error (RE)

RE := ‖x0‖−2‖x0x
∗
0 − x̂x̂∗‖2,(60)

where x̂ = xnull, xspec or xt−spec as L varies. We use the data points for L ≥ 25 to
estimate the slope and the intercept of the linear regression lines (dotted lines). The
estimated slope for the null vector method is slightly more negative than −0.5 (and
that for the spectral methods) for all α and signals tested (see the legend and caption
of Figure 1). We set, according to [1], the thresholding parameter τ = 3 in (24).

5.2. Initialization with randomly coded diffraction patterns. Next we
test the performance of the null vector and the spectral vector methods for randomly
coded diffraction patterns (RCDPs).

Let the mask function {µ(k)} be continuously and independently distributed.
Each RCDP is the squared modulus of the 2-dim discrete-space Fourier transform
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(a) Modulus of RPP (b) RCDP (c) |xspec|; RE= 1.4139

1

Title: Null vector method with new parameter setup |I| =
p

nN.
Conclusion:
(1) By comparing Fig. 1 and Fig. 2 (a-b) with Fig. 3 (a-b) in the paper, we observed
that the new parameter setup |I| =

p
nN slightly reduces the reconstruction errors

of the null vector method with |I| = 0.5N for NSR= 0%, 5%, and 10%.
(2) By comparing Fig. 2 (c-d) with Fig. 3 (c-d) in the paper, there is no remarkable
difference between the parameter setups for NSR= 15% or 20%.

Fig. 1. Noiseless case: The modulus of the reconstructed image by the null vector method with the parameter setup |I|
N

=
p

nN
N

=
0.3536. The reconstruction error (measured in the operator norm) is equal to 0.8714. Here, we used two coded diffraction patterns
to reconstruct 256 ⇥ 256 RPP. The oversampling ratio for each pattern is equal to 4. Totally, the oversampling ratio is equal to 8.

(d) |xnull|; RE= 0.8714

Fig. 2. Noiseless estimation by (d) Algorithm 1 with |I| = d
√
nNe and (c) Algorithm 2 for

(a) 256× 256 RPP. (b) is an example of RCDP, where the color scheme represents the intensity of
diffraction pattern.

indexed by w, ∑
k

x0(k)µ(k)e−i2πk·w, k ∈ [1,
√
n]2 ⊂ Z2,(61)

with the sampling set

w ∈ S =
{

(w1, w2) ∈ [0, 1]2 | wj = 0,
1

2
√
n+ 1

,
2

2
√
n+ 1

, . . . ,
2
√
n

2
√
n+ 1

}
.(62)

As first proved in [5], the phase retrieval solution is unique almost surely, up to a
constant phase factor, with two independently and continuously distributed RCDPs.

In the following simulations, we use two independent masks, {µ1(k)}, {µ2(k)},
each of which is generated by i.i.d. uniform random variables over the unit circle on
the complex plane. Figure 2(b) is an example of such an RCDP with RPP (a) as the
object.

Let Φ denote the 2-dimensional discrete-space Fourier transform and define the
measurement matrix as

A∗ = a

[
Φ diag{µ1}
Φ diag{µ2}

]
.(63)

With a proper normalization constant a, A∗ is isometric. In view of (62) and (63),
|S| = (2

√
n− 1)2, and hence N = 2|S| ≈ 8n (equivalently L ≈ 8) for large n.

Figure 2 shows the noiseless reconstruction by the spectral vector and the null
vector with |I| = d

√
nNe. The spectral vector (Figure 2(c)) does not yield a meaning-

ful estimate, while the null vector has a decent visual quality (Figure 2(d)). We are
unable to improve the result in Figure 2(c) by truncation (24) with any τ ∈ [0.5, 3].

To demonstrate the noise stability of the null vector method, we add i.i.d. complex
Gaussian noise to A∗x0 to obtain the noisy data b. Figure 3 shows the results of
Algorithm 1 with |I| = d

√
nNe for 5 ∼ 20% noise-to-signal ratio (NSR) defined as

NSR =
‖b− |A∗x0|‖
‖A∗x0‖

.

The noise stability of the null vector manifests in the small ratio (less than 1.5) of the
increase in RE to the increase in NSR in Figure 3.

As remarked in section 1, the null vector estimation can be further improved by
incorporating the full data b as in (5). The reduction in RE by step (5) is as follows:
0.8714 → 0.6893 (NSR 0%), 0.8780 → 0.7115 (NSR 5%), 0.9173 → 0.7520 (NSR
10%), 0.9774→ 0.8314 (NSR 15%), and 1.0797→ 0.9726 (NSR 20%).
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2

(a) NSR = 5% (RE= 0.8780) (b) NSR = 10% (RE= 0.9173)

(c) NSR = 10% (RE= 0.9774) (d) NSR = 10% (RE= 1.0797)

Fig. 2. Effects of noises on the performance of the null vector method with the parameter setup |I|
N

=
p

nN
N

= 0.3536. Here, we
used two coded diffraction patterns to reconstruct 256 ⇥ 256 RPP. The oversampling ratio for each pattern is equal to 4. Totally, the
oversampling ratio is equal to 8.

(a)
NSR=5%; RE=0.8780

2

(a) NSR = 5% (RE= 0.8780) (b) NSR = 10% (RE= 0.9173)

(c) NSR = 10% (RE= 0.9774) (d) NSR = 10% (RE= 1.0797)

Fig. 2. Effects of noises on the performance of the null vector method with the parameter setup |I|
N

=
p

nN
N

= 0.3536. Here, we
used two coded diffraction patterns to reconstruct 256 ⇥ 256 RPP. The oversampling ratio for each pattern is equal to 4. Totally, the
oversampling ratio is equal to 8.

(b)
NSR=10%; RE=0.9173

2

(a) NSR = 5% (RE= 0.8780) (b) NSR = 10% (RE= 0.9173)

(c) NSR = 10% (RE= 0.9774) (d) NSR = 10% (RE= 1.0797)

Fig. 2. Effects of noises on the performance of the null vector method with the parameter setup |I|
N

=
p

nN
N

= 0.3536. Here, we
used two coded diffraction patterns to reconstruct 256 ⇥ 256 RPP. The oversampling ratio for each pattern is equal to 4. Totally, the
oversampling ratio is equal to 8.

(c)
NSR=15%; RE=0.9774

2

(a) NSR = 5% (RE= 0.8780) (b) NSR = 10% (RE= 0.9173)

(c) NSR = 10% (RE= 0.9774) (d) NSR = 10% (RE= 1.0797)

Fig. 2. Effects of noises on the performance of the null vector method with the parameter setup |I|
N

=
p

nN
N

= 0.3536. Here, we
used two coded diffraction patterns to reconstruct 256 ⇥ 256 RPP. The oversampling ratio for each pattern is equal to 4. Totally, the
oversampling ratio is equal to 8.

(d)
NSR=20%; RE=1.0797

Fig. 3. Noisy estimation by Algorithm 1 with |I| = d
√
nNe at various NSRs.

6. Conclusion. We have proposed a simple and efficient estimation for phase
retrieval and given a performance guarantee for the case of random Gaussian mea-
surements (Theorem 2.1 and Corollary 2.2).

Our analysis predicts a scaling behavior for the error bound consistent with our
numerical results, which suggest a universal power law in the limit of large oversam-
pling ratios as long as the choice of |I| lies in the admissible range prescribed in (7).

In the realistic case of coded diffraction patterns of small oversampling ratio,
the null vector method continues to perform well and is stable to measurement noise
(Figure 3). The effectiveness of the null vector as initialization for nonconvex iter-
ative algorithms such as Alternating Projections and the Wirtinger flow has been
demonstrated in [4].
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