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Abstract

We formulate a stochastic di4erential equation describing the Lagrangian environment process
of a passive tracer in Ornstein–Uhlenbeck velocity 7elds. We subsequently prove a local existence
and uniqueness result when the velocity 7eld is regular. When the Ornstein–Uhlenbeck velocity
7eld is only spatially H:older continuous we construct and identify the probability law for the
Lagranging process under a condition on the time correlation function and the H:older exponent.
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1. Introduction

A major problem in 'uid turbulence is the transport of a passive tracer whose
displacement x(·) in a d-dimensional 'ow V satis7es the ordinary di4erential
equation

dx(t)=dt=V (t; x(t)); x(0)= 0: (1.1)

When the velocity 7eld V is temporally and spatially continuous, Peano’s theorem
guarantees the existence of solutions of Eq. (1.1) and when V is also spatially Lipschitz,
the solution is unique. If V is not spatially Lipschitz, then the equation typically has
many trajectories for each given initial point x(0).
The inertial-scale (see below) turbulent velocity 'uctuation is usually modelled by

an irregular time–space stationary random 7eld. The correlation functions R= [Rij] of
the stationary process V naturally has the spectral representation

R(t; x) := E[V (t; x)⊗ V (0; 0)]=
∫
Rd

cos(k · x)r(t; k) E(k)
|k|d−1 dk; (1.2)
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where r is the time correlation function, E the matrix-valued spectral (shell) density
and E denotes the average w.r.t. the ensemble of the velocity 7eld. According to
Kolmogorov’s similarity hypothesis, an incompressible turbulent velocity in dimension
d=3 has the following power-law spectral density:

E(k)= c0|k|−5=3(I − k ⊗ k=|k|2); ‘−1
0 ¡|k|¡‘−1

K (1.3)

in the so-called inertial range of scales (‘K ; ‘0). Here ‘0 is commonly called the in-
tegral scale, ‘K the Kolmogorov dissipation scale and c0 the Kolmogorov constant.
Eq. (1.3) is called Kolmogorov’s 5=3-law. In the large Reynolds number limit Re�1,
the dissipation length ‘K � ‘0 Re−3=4 tends to zero while the integral length ‘0 stays
7xed. It is often assumed (see e.g. Carmona, 1996) that, in the 7rst approximation,
V is Gaussian. Then, in the large Reynolds number limit, the 7eld with the spec-
trum described by Eq. (1.3) has a H:older continuous modi7cation with exponent less
than 1=3.
The question is how to make sense of the trajectories of the passive scalar in turbulent

velocities. Our approach is based on the notion of the Lagrangian environment process,
which roughly speaking describes the medium from the point of view of the moving
particle and is de7ned formally as

�(t; ·) :=V (t; x(t) + ·); t¿ 0:

The particle trajectory is then recovered as an additive functional of �:

x(t)=
∫ t

0
�(s; 0) ds; t¿ 0: (1.4)

The representation of the trajectory in the form given by (1.4) is quite useful in the
study of long time behavior of the particle displacement (see Kozlov, 1985; Papanico-
laou and Varadhan, 1982) and was found particularly suitable for the case of transport
in incompressible Markovian 'ows, see Fannjiang and Komorowski (1999). We will
not, however, be restricted to divergence-free velocity 7elds, so in the present article
the spectral density E is a general positive de7nite symmetric real d×d matrix sat-
isfying E(−k)=E(k). As we will see in Section 2.2, the Eulerian velocity process
V can be thought of as a stationary in7nite dimensional Ornstein–Uhlenbeck process
in an appropriate Hilbert space and described by the stationary solution of an in7nite
dimensional linear stochastic di4erential equation (SDE)

dV (t)=− AV (t) dt + B dW (t); (1.5)

where A; B are linear operators related to the spectral density E and the time correlation
function r;W is a cylindrical Wiener process (see Section 2.2) and the law of V (0)
is a stationary measure for (1.5). We show that for regular velocity V , see (2.2), the
Lagrangian process � satis7es a nonlinear SDE

d�(t)= (−A�(t) + �(t; 0) · ∇x�(t)) dt + B dW̃ (t) (1.6)

for a suitable initial condition and the cylindrical Wiener process W̃ obtained from W
by an appropriate spatial translation (see Theorem 1 for a precise statement).
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One may therefore ask 7rst whether the equation

d�f(t)= (−A�f(t) + �f(t; 0) · ∇x�f(t)) dt + B dW (t); �f(0)=f (1.7)

with a given cylindrical Wiener process W and an initial condition f possesses a
solution. For regular f and the velocity 7eld the answer to this question is aNrmative.
We prove the local existence and uniqueness of strong solutions in an appropriate
Hilbert space in Theorems 2 and 3. We also show that for almost sure initial condition
in the support of the stationary measure for (1.5) the existence of solution can, in fact,
be guaranteed globally (see Corollary 1).
In Section 6 we turn to irregular 7elds with the power-law type spectral density

|E(k)| ∼ |k|1−2�; 1¡�¡2; for |k|�1

and the power-law correlation time

r(t; k)= c1 exp{−c1|k|2�t}; �¿0: (1.8)

Without loss of generality we set c1 = 1 in the analysis. These Ornstein–Uhlenbeck
7elds are spatially H:older continuous with exponent H¡�− 1. The Kolmogorov spec-
trum (1.3) corresponds to �=4=3. Instead of the sample-wise construction we obtain
the probability law of the Lagrangian process � by studying Eq. (1.7) via a limiting
procedure: consider a sequence of velocity 7elds VK , K¿ 1 obtained by truncation of
the spectrum of V for large wave numbers i.e.

RK (t; x) := E[VK (t; x)⊗ VK (0; 0)]=
∫
Rd

cos(k · x)e−|k|2�t 1[0;K](|k|)E(k)
|k|d−1 dk:

(1.9)

This truncation corresponds to replacing in (1.5) the di4usion operator B and the initial
invariant measure � by some other operator BK and measure �K , respectively. Such
7elds VK are smooth, in fact analytic, therefore we can de7ne their corresponding
Lagrangian processes �K , K¿ 1 satisfying (1.6). The key observation is that the law
of �K on C([0;+∞);C(Rd;Rd)) coincides with that of the solution O�K of the modi7ed
equation (1.7) with BK in place of B. With the Wiener process W 7xed it is possible to
prove almost sure convergence of O�K , as K ↑ ∞ when �+�¿2 and �+3�¿3. Thus, we
can conclude that the laws of �K , K¿ 1 on C([0;+∞);C(Rd;Rd)) converge weakly
to a certain law, which then is naturally called the probability law of the Lagrangian
environment process for the irregular velocity 7eld V , see Theorem 4 of Section 6 for
more details.
In the case of temporally white-noise, spatially H:olderian velocity 7elds the La-

grangian semigroup has been constructed in Le Jan and Raimond (1999) in the pres-
ence of molecular di4usion (see also E and Vanden Eijnden, 2000 and Gawedzki and
Vergassola, 2000). Roughly speaking, white-noise-in-time corresponds to �=0 and
c1 → ∞ in (1.8).
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2. Preliminaries

2.1. Functional spaces and operators

For brevity we set Sd :=S(Rd;Rd). Given �¿0 and a positive integer m, we de7ne
#�(x)= (1 + |x|2)−�, x∈Rd, and Wp;m

� as the completion of Sd with respect to the
norm

‖ ‖pWp;m
�

:=
∫
Rd
(| (x)|p + |∇x (x)|p + · · ·+ |∇m

x  (x)|p)#�(x) dx:

For p=2, we write Hm
� :=W2;m

� , or L2� depending on whether m �=0 or m=0. We shall
omit writing the subscript � in case when �=0. Using Sobolev embedding, see e.g.
(Gilbarg and Trudinger, 1983, Theorem 7:10, p. 154), it can easily be observed that for
m¿d=2 there exists a constant C¿0 such that | (0)|6C‖ ‖Hm

�
,  ∈Hm

� . Notice also
that J�;p :Wp;m

� → Wp;m given by J�;p (x) :=  (x)#�=p(x) is a linear isomorphism
satisfying J�;p(Sd)=Sd, and that in the special case m=0, p=2 J�;2 :L2� → L2 is
unitary. In the sequel we shall consider spaces C([0; T ];Hm

� ), T¿0 consisting of contin-
uous functions f : [0; T ] → Hm

� equipped with the norm ‖f‖Hm
� ;T := sup06t6T ‖f(t)‖Hm

�
.

The following proposition is an immediate consequence of the Rellich–Kondrashov
compact embedding theorem (cf. e.g. Theorem 7:22, p. 163 of Gilbarg and Trudinger,
1983).

Proposition 1. For any m′¿m and �′¡� the embedding Hm′
�′ ⊆ Hm

� is compact.

Let

H� :=
⋂
m¿1

Hm
� ; C� :=

⋂
p;m¿1

Wp;m
� :

Obviously H� and C� are dense in any Hm
� .

Let S(d) denotes the space of all real, symmetric, positive de7nite d×d matrices.
Given �¿ 0 and E :Rd → S(d) we set

B̂� (k)=
√

2|k|2� OE(k) ̂ (k) and [S�(t) (k)= e−|k|2�t  ̂ (k);  ∈Sd;

(2.1)

with OE(k) :=E(k)|k|1−d. Throughout Sections 2 and 5 we assume that∫
Rd
(1 + |k|2)m Tr OE(k) dk¡∞ for any m∈N: (2.2)

In what follows ‖ · ‖L(HS)(L2 ;Hm
� ) denotes the respective Hilbert–Schmidt operator norm,

see Da Prato and Zabczyk (1992). Let %(�)= � if � �∈ Z and +∞ otherwise. Both
here and throughout the remainder of the paper we assume that �∈ (d=2; d=2 + %(�)).

Proposition 2.
(i) B� extends to a Hilbert–Schmidt operator B� :L2 → Hm

� .
(ii) For any t¿ 0 S�(t) extends to a bounded linear operator S�(t) :Wp;m

� →Wp;m
� .

In addition; S�(·) form a C0-semigroup on Wp;m
� for any p¿ 1; m¿ 0. In what
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follows we denote by −A� :D(A�) → Hm
� the generator of the semigroup S�(·)

on Hm
� .

(iii) C�; H� and Sd are cores of any A�; �¿ 0. Moreover; Â� (k)= |k|2� ̂ (k) when
 ∈Sd; and Hm+[2�]+1

� ⊆ D(A�); ∀m¿ 0.
(iv) Suppose that �; �′¿ 0; t¿0 and �∈ (d=2; d=2 + %(�) ∧ %(�′)). Then for any

f∈Hm
� we have S�(t)f∈D(A�′). Moreover; there exists C possibly depending

on �; �′; d but independent of t such that

‖A�′S�(t)B�‖L(HS)(L2 ;Hm
� )6C (2.3)

and

‖A�′S�(t)f‖Hm
�
6Ct−�′=�‖f‖Hm

�
: (2.4)

Due to rather technical nature of the proposition we postpone its proof till Appendix
A. In what follows we shall suppress the index � of the operators when there is no
danger of confusion.
Let v∈Rd. We de7ne

Rv(t)f(x) :=f(x + tv); t ∈R; f∈Hm
� ; x∈Rd:

Then Rv forms a C0-group of operators on Hm
� .

Proposition 3. ‖Rv(t)f‖Hm
�
6 (1 + |vt|)�‖f‖Hm

�
for all f∈Hm

� ; t ∈R; v∈Rd.

Proof. The conclusion of the proposition can be reached by a direct calculation with
the help of change of variables and an elementary inequality

1
1 + |x− vt|2 6

(1 + |vt|)2
1 + |x|2 for all t ∈R; x; v∈Rd:

Let

Cv(t) :=Rv(t)S(t); t¿ 0: (2.5)

The following result holds.

Proposition 4.
(i) [S(t); Rv(s)] := S(t)Rv(s)− Rv(s)S(t)= 0 for all t; s¿ 0.
(ii) Cv(·) is a C0-semigroup of operators on Hm

� for any v∈Rd.
(iii) sup06t6T ‖Cv(t)B‖L(HS)(L2 ;Hm

� )¡∞ for all T¿0; v∈Rd.

Proof. Notice that [Rv(s) (k)= esik·v ̂ (k) for any  ∈Sd, hence (i) holds trivially in
light of Proposition 2. Part (ii) is a consequence of (i). Part (iii) follows from the
following computation:

sup
06t6T

‖Cv(t)B‖L(HS)(L2 ;Hm
� )

6 sup
06t6T

‖Rv(t)‖L(Hm
� ) sup

06t6T
‖S(t)B‖L(HS)(L2 ;Hm

� )¡∞:
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Denote by Dv the generator of Cv(·). A direct computation shows that

Dvf=− Af + v · ∇f; f∈C�: (2.6)

Additionally, C� is a core of Dv. This follows from the fact that C� is invariant both
under Rv(·) and S(·), thus it is also invariant under Cv(·).

2.2. The Ornstein–Uhlenbeck process

Let (';V;P) be a probability space. By W (t)= {Wj(t); j=1; : : : ; d}, t¿ 0 we de-
note a cylindrical Wiener process on L2 over the given probability space, that is an
S′

d :=S′(Rd;Rd)-valued Gaussian process satisfying
(A.1) for every  ∈Sd, {〈W (t);  〉}t∈[0;∞) is a one dimensional Wiener process. Here

〈· ; ·〉 denotes the pairing between S′
d and Sd spaces.

(A.2) for all  ; ’∈Sd and t; s∈ [0;∞) one has

E[〈W (t);  〉〈W (s); ’〉] = t ∧ s
d∑

l=1

∫
Rd

 l(x) · ’l(x) dx:

We shall denote by (Wt)t¿0 the natural 7ltration corresponding to W (·). By virtue
of Proposition 2(iv) and the argument used in the proof of Proposition 4:15, p. 104 of
Da Prato and Zabczyk (1992) we conclude that for any f∈Hm

� there exists a unique
Hm

� -valued strong solution V of (1.5) satisfying V (0)=f, that is V (t)∈D(A) for t¿0
and

V (t)=f −
∫ t

0
AV (s) ds+ BW (t); t¿ 0:

We denote this solution by Vf. From Theorem 5:4 of Da Prato and Zabczyk (1992)
we have Vf(t)= S(t)f +WA(t), t¿ 0, with

WA(t) :=
∫ t

0
S(t − s)B dW (s):

When m¿d=2 we can de7ne a Gaussian random 7eld WA(t; x) :=WA(t)(x), (t; x)∈
[0;+∞)×Rd over (';V;P) whose co-variance matrix is given by

R(s; t; x− y) := E[WA(t; x)⊗WA(s; y)]

=
∫
Rd

cos(k · (x− y))e−|k|2�|t−s|[1− e−2|k|2�(s∧t)] OE(k) dk

for any (t; x); (s; y)∈ [0;+∞)×Rd. Standard regularity results for Gaussian processes
(see corollary to Theorem 3:4:1 of Adler, 1981) allow us to conclude that there exists
a modi7cation of WA(t; x), (t; x)∈ [0;+∞)×Rd that is jointly continuous and, thanks
to (2.2), C∞ in x for a 7xed t.
Let T; *¿0 be arbitrary. De7ne the random 7eld

Y (t; x) :=WA(t; x)(1 + |x|)−*; (t; x)∈RT ; (2.7)

where RT := [0; T ]×Rd.



A. Fannjiang et al. / Stochastic Processes and their Applications 97 (2002) 171–198 177

By a d-ball we mean a ball in RT in the pseudo-metric

d(t; x; s; y) := [E|Y (t; x)− Y (s; y)|2]1=2; (t; x); (s; y)∈RT :

The entropy number N (-), -¿0 of RT with respect to the 7eld Y (· ; ·) is the smallest
number d-balls of radius at most -¿0 needed to cover RT .

It can be seen that N (-)6K-−k for some constants K; k¿0 independent of -¿0.
Indeed, suppose that -¿0 is chosen arbitrarily and set BR := [x∈Rd: |x|6R]. Note
that, since *¿0, one can choose a suNciently large R¿0 to cover the outside of
[0; T ]×BR with a single d-ball of radius -¿0. Since the co-variance matrix of the 7eld
Y (· ; ·) is H:older regular the same is true about the function D :RT×RT � (t; x; s; y) �→
d(t; x; s; y)∈ [0;∞). Therefore, in order to cover the remaining set [0; T ]×BR one needs
to use at most [-−k ] d-balls, for some k¿0 adjusted accordingly to the H:older exponent
of the function D.
Thus, by virtue of Theorem 6:9:2, p. 161 of Adler (1990) there exist constants

c1; c2¿0 such that

P
(

sup
(t;x)∈RT

|Y (t; x)|¿u

)
6 c1 exp{−c2u2=(202)} for all u¿0;

where

02 := sup
(t;x)∈RT

E|Y (t; x)|2:

Therefore, for any T¿0 there exists a random constant CT such that P-a.s. 0¡CT¡∞
and

sup
06t6T

|WA(t; x)|6CT (1 + |x|)*; ∀ x∈Rd:

2.3. Invariant measure

From (2.2), cf. the proof of Proposition 2, we conclude that∫ ∞

0
‖S(t)B‖2L(HS)(L2 ;Hm

� )
dt6C

∫
Rd
(1 + |k′|2)m Tr OE(k′) dk′¡∞:

Let � be a Gaussian measure on Hm
� that is of zero mean and with the covariance

given by QQ∗, where

Q :=
∫ ∞

0
S(t)B dt ∈L(HS)(L2; Hm

� ):

By Theorem 11:7, p. 308 of Da Prato and Zabczyk (1992) the measure is stationary
for Eq. (1.5).

G(x;f) :=f(x), f∈Hm
� , x∈Rd is a Gaussian, homogeneous random 7eld over the

probability space (�;Hm
� ;B(Hm

� )) with the co-variance matrix

RG(x) :=
∫

f(x)⊗ f(0)�(df)=
∫
Rd

cos(x · k) OE(k) dk:

Proposition 5. �(C�)= 1.
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Proof. With no loss of generality we can assume that m¿d=2. Since RG is C∞,
by virtue of (2.2), the realizations of the 7eld are C∞ �-a.s. The conclusion of the
proposition follows from Theorem 3:1, p. 168 of Qualls and Watanabe (1973) that
implies

|f(x)|+ · · ·+ |∇m
xf(x)|6C(1 + | log x|)1=2

and, in consequence, ‖f‖Wp;m
�

¡∞, ∀m; p¿ 1 for �-a.s. f. Recall that �∈ (d=2; d=2+
%(�)).

Note that V (t) :=Vf(t), t¿ 0 and f∈Hm
� is a stationary solution of (1.5) over the

probability space ('×Hm
� ;V ⊗ B(Hm

� );P ⊗ �), that is adapted with respect to the
7ltration Vt :=Wt ⊗ B(Hm

� ), t¿ 0. For m¿d=2 we can de7ne a stationary random
7eld V (t; x) :=V (t)(x) with the co-variance matrix R given by (1.2).

3. S.D.E. for the Lagrangian process

Suppose that m¿d=2+ 1 so that Hm
� ⊆ C1(Rd;Rd). We can de7ne a d-dimensional

random 7eld Vf(t; x) :=Vf(t)(x), (t; x)∈R×Rd. Its mean and co-variance matrix equal
correspondingly F(t; x) := S(t)f(x) and

Rf(t; s; x− y)=
∫
Rd

cos[(x− y) · k] e−|k|2�|t−s|[1− e−|k|2�(t∧s)] OE(k) dk:

Let f∈C�. Then f∈Wp;m
� for arbitrary p¿ 1, m¿d=2 + 1. In particular, when

p¿2�¿d one can 7nd Cf¿0 such that |f(x)|6Cf(1+ |x|2)�=p and in consequence
the ordinary di4erential equation (1.1) with Vf standing in place of V on its right-hand
side has a unique global solution xf(·). Let us set �f(t; ·) :=Vf(t; xf(t) + ·), t¿ 0.

Theorem 1. Let f∈C�. Then there exists an (Wt)-adapted cylindrical Wiener process
Wf on L2; de8ned on (';V;P) such that �f is a strong solution (in the sense of Da
Prato and Zabczyk (1992, p. 118)) of{

d�f(t)= (−A�f(t) + �f(t; 0) · ∇x�f(t)) dt + B dWf(t); t¿ 0

�f(0)=f:

Proof. Let  ∈Sd. Since Vf is a strong solution to (1.5), using Itô’s formula we obtain

〈�f(t);  〉=
∫
Rd

Vf(t; x) ·  (x− xf(t)) dx=
∫
Rd

Vf(0; x) ·  (x) dx

+
∫
Rd

∫ t

0

[
−AVf(s)(x) ·  (x− xf(s))

+Vf(s; x) · d
ds

 (x− xf(s))
]
ds dx

+
∫ t

0
〈B dW (s);  (· − xf(s))〉: (3.1)
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The 7rst two terms on the utmost right-hand side of (3.1) can be rewritten as

〈�f(0);  〉+
∫ t

0
[〈−A�f(s);  〉 − 〈�f(s); �f(s; 0) · ∇ 〉] ds

= 〈�f(0);  〉+
∫ t

0
〈−A�f(s) + �f(t; 0) · ∇�f(s);  〉 ds:

The proof will be complete as soon as we show that

〈Wf(t);  〉 :=
∫ t

0
〈dW (s);  (· − xf(s))〉; t¿ 0;  ∈Sd;

de7nes a (Wt)-adapted cylindrical Wiener process Wf on L2. This follows from the
fact that for any  , 〈Wf(t);  〉, t¿ 0 is an (Wt)-adapted square integrable martingale
and for all  ; ’, the quadratic variation 〈〈Wf(·);  〉〈Wf(·); ’〉〉t ; t¿ 0 of 〈Wf(t);  〉,
〈Wf(t); ’〉; t¿ 0 is equal to∫ t

0

∫
Rd

 (x− xf(s)) · ’(x− xf(s)) dxds=
∫ t

0

∫
Rd

 (x) · ’(x) dxds= t〈 ; ’〉:

4. Existence of strong solutions

The main result of the present section is the following theorem on the existence of
a solution to Eq. (1.7).

Theorem 2. Suppose that m¿d=2. Let W be a cylindrical Wiener process on L2; and
f∈Hm+[2�]+2

� . Then; there exist a stopping time 4f¿0 w.r.t. the standard 8ltration
corresponding to the Wiener process; �f(t); 06 t6 4f a non-anticipative process
such that �f(t)∈D(A) ∩ D(∇); 06 t¡4f and

�f(t)=f +
∫ t

0
(−A�f(s) + �f(s; 0) · ∇�f(s)) ds+ BW (t); 06 t¡4f: (4.1)

Additionally; one can take 4f =+∞; P-a.s. for any f∈C�.

Take f∈Hm
� . For a given positive integer n¿ 1 we take a partition of [0;+∞)

given by points k=n. We construct an approximating sequence of solutions �(n)f in the
following way. First, we solve the linear equation obtained from (1.7) by putting the
coeNcient by the gradient term equal to f(0) and thus obtain

�(n)f (t) :=Cf(0)(t)f +
∫ t

0
Cf(0)(t − s)B dW (s) for 06 t6 1=n:

Here Cv is given by (2.5). We can continue the construction of the approximate solution
on a given partition interval feeding in for the coeNcient by the gradient term the 7nal
value of the solution (taken at x= 0) at the preceding partition interval and solving
obtained that way linear equation with the initial condition given by the 7nal value of
the approximate solution in the previous interval. More precisely, the process �(n)f (t) is
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de7ned for t ∈ [k=n; (k + 1)=n] by

�(n)f (t)=Cv(n)k

(
t − k

n

)[
�(n)f

(
k
n

)]
+
∫ t

k=n
Cv(n)k

(t − s)B dW (s);

v(n)k := �(n)f (k=n; 0). We show in Lemmas 2 and 3 that if f∈Hm+[2�]+2
� , then there exists

a stopping time 4f¿0 such that the sequence �(n)f converges P-a.s., as n ↑ ∞, in the
space C([0; 4f];Hm

� ).
First, note that as BW (t)∈H�; t¿ 0 we have

�(n)f (t) =Cv(n)k

(
t − k

n

)[
�(n)f

(
k
n

)]
+ B

[
W (t)−W

(
k
n

)]

+
∫ t

k=n
Cv(n)k

(t − s)(−A+ v(n)k · ∇)B
[
W (s)−W

(
k
n

)]
ds;

t ∈ [k=n; (k + 1)=n]. We can write therefore that

F (n)
k+1 =Cv(n)k

(
1
n

)
F (n)
k + R(n)

k ; (4.2)

where F (n)
k := �(n)f (k=n)−W (n)

k ; W (n)
k :=BW (k=n) and

R(n)
k := Cv(n)k

(
1
n

)
W (n)

k −W (n)
k

+
∫ (k+1)=n

k=n
Cv(n)k

(
k + 1
n

− s
)

Dv(n)k
B
[
W (s)−W

(
k
n

)]
ds; (4.3)

with Dv given by (2.6). Iterating (4.2) we get

F (n)
k+1 =Cs(n)k; 0

(
1
n

)
f +

k+1∑
p=1

S
(
k + 1− p

n

)
Rs(n)k; p

(
1
n

)
R(n)
p−1; (4.4)

with

s(n)k;p :=

{
v(n)k + · · ·+ v(n)p ; p6 k

0; p¿k:

Write f(n)
k := ‖F (n)

k ‖Hm
�
; r(n)k := ‖R(n)

k ‖Hm
�
. We shall need the following fact.

Lemma 1. Let T¿0; and let 4 be any stopping time satisfying 4∈ (0; T ]; P-a.s. De-
8ne a := sup06t64 [‖ABW (t)‖Hm

�
+ ‖∇BW (t)‖Hm

�
] and M := sup06t64 ‖BW (t)‖Hm

�
+ 1.

Then; there exists a deterministic constant c¿0 independent of n such that

r(n)k 6
ca
n
(1 + f(n)

k +M)

(
1 +

f(n)
k +M

n

)�

for k =0; : : : ; [n4]− 1; P-a:s:

(4.5)
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Proof. We have∥∥∥∥Cv(n)k

(
1
n

)
W (n)

k −W (n)
k

∥∥∥∥
Hm

�

6
∥∥∥∥Rv(n)k

(
1
n

)
S
(
1
n

)
W (n)

k − S
(
1
n

)
W (n)

k

∥∥∥∥
Hm

�

+
∥∥∥∥S (1

n

)
W (n)

k −W (n)
k

∥∥∥∥
Hm

�

6

∥∥∥∥∥
∫ 1=n

0
S
(
1
n

)
Rv(n)k

(s)(v(n)k · ∇W (n)
k ) ds

∥∥∥∥∥
Hm

�

+

∥∥∥∥∥
∫ 1=n

0
S(s)AW (n)

k ds

∥∥∥∥∥
Hm

�

:

(4.6)

The Sobolev inequality stating that |F (n)
k (0)|6 c1f

(n)
k yields

|v(n)k |= |F (n)
k (0) +W (n)

k (0)|6 c2(f
(n)
k +M): (4.7)

Thus, from Proposition 3 we conclude that the utmost left-hand side of (4.6) is less
than or equal to

c3a
n

(1 + f(n)
k +M)

(
1 +

f(n)
k +M

n

)�

: (4.8)

An analogous estimate can be carried out for the norm of the second term on the
right-hand side of (4.3), which yields that it is less than or equal to

c4a
n

(
1 + f(n)

k +M
)(

1 +
f(n)

k +M
n

)�

: (4.9)

Combining both (4.8) and (4.9) we conclude (4.5).

Lemma 2. There exists a stopping time 4f¿0 such that supn¿1‖�(n)f ‖Hm
� ;4f¡∞; P-a.s.

Proof. Given M0; a0¿0 write 4M0 :=min{t¿ 0: ‖BW (t)‖Hm
�
¿M0 − 1} ∧ 1; 0a0 :=

min{t¿ 0 : ‖ABW (t)‖Hm
�
+ ‖∇BW (t)‖Hm

�
¿ a0} ∧ 1. From identity (4.4) we obtain

f(n)
k+16

∥∥∥∥Cs(n)k; 0

(
1
n

)
f
∥∥∥∥
Hm

�

+
k+1∑
p=1

∥∥∥∥S (k + 1− p
n

)
Rs(n)k; p

(
1
n

)
R(n)
p−1

∥∥∥∥
Hm

�

: (4.10)

Denoting C1 := sup06t61‖S(t)‖ and subsequently applying Proposition 3 we conclude
that the left-hand side of (4.10) is less than or equal to

C1

(1 + 1
n
|s(n)k;0|

)�

‖f‖Hm
�
+

k+1∑
p=1

(
1 +

1
n
|s(n)k;p|

)�

r(n)p−1

 :

Obviously, one has(
1 +

1
n

k∑
p=q

(f(n)
p +M0)

)�

6
k∏

p=q

(
1 +

f(n)
p +M0

n

)�

; ∀q=0; : : : ; k:
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Hence, by Lemma 1 and identity (4.7), there is a constant C such that for all k and
n satisfying k=n6 4M0 ∧ 0a0 one has P-a.s.,

f(n)
k+16C‖f‖Hm

�

k∏
p=0

(
1 +

f(n)
p +M0

n

)�

+
Ca0
n

k∑
p=0

(1 + f(n)
p +M0)

k∏
q=p

(
1 +

f(n)
q +M0

n

)�

and consequently

f(n)
k+16C

‖f‖Hm
�
(1 + a0) +

a0(k + 1)(1 +M0)
n

+
a0
n

k∑
p=1

f(n)
p


×

k∏
p=0

(
1 +

f(n)
p +M0

n

)�

:

Let us 7rst choose K such that

K¿(C + 1)(1 + ‖f‖Hm
�
+M0)[1 + ‖f‖Hm

�
(1 + a0) + a0(M0 + 1)]

and then S¿0 suNciently small so that

K ¿C(1 + ‖f‖Hm
�
+M0)e�(K+M0)S [‖f‖Hm

�
(1 + a0) + a0(M0 + 1)

+a0(1 +M0 + K)S]:

Then f(n)
k 6K for all k-s satisfying k=n6 4f := 4M0 ∧ 0a0 ∧ S.

Lemma 3. Suppose f∈Hm′
�′ where m′¿m + [2�] + 2; d=2¡�′¡�. Then there is a

stopping time 4f¿0; P-a.s.; such that the sequence (�(n)f )n¿1 converges; as n ↑ ∞ in
C([0; 4f];Hm

� ); P-a.s.

Proof. Let 4(1)f and 4(2)f be the stopping times constructed in Lemma 2 for f and the

pairs (m; �) and (m′; �′). Thus taking 4f := 4(1)f ∧ 4(2)f , we obtain

R := sup
16n

k6[n4f]−1

(f(n)
k + ‖F (n)

k ‖Hm′
�′
)¡∞: (4.11)

We will show that 4f has the desired properties. Clearly P(4f¿0)=1. To see the
convergence of (�(n)f ) on [0; 4f] note that from (4.2), see also the proof of (4.4),

‖F (n)
k+1 − F (n)

k ‖Hm
�
6
∥∥∥∥Cv(n)k

(
1
n

)
F (n)
k − F (n)

k

∥∥∥∥
Hm

�

+ r(n)k
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6

∥∥∥∥∥
∫ 1=n

0
S
(
1
n

)
Rv(n)k

(s)(v(n)k · ∇F (n)
k ) ds

∥∥∥∥∥
Hm

�

+

∥∥∥∥∥
∫ 1=n

0
S(s)AF (n)

k ds

∥∥∥∥∥
Hm

�

+ r(n)k :

Thus, using arguments from the proof of Lemma 1, one can easily obtain

‖F (n)
k+1 − F (n)

k ‖Hm
�
6

Ca0
n

(1 + f(n)
k +M0)

(
1 +

f(n)
k +M0

n

)�

×(‖F (n)
k ‖Hm′

�′
+ 1); P-a:s:

for k =0; : : : ; [n4f]− 1. Thus, by (4.11), �(n)f (·)− BW (·); n¿ 1 are uniformly contin-

uous in C([0; 4f];Hm
� ), and by Lemma 2 it is also bounded in C([0; 4f];Hm′

�′ ). From

Proposition 1, the ball B(R) := [ ∈Hm′
�′ : ‖ ‖Hm′

�′
6R] is pre-compact in Hm

� . By virtue

of the in7nite dimensional version of Arzela–Ascoli lemma, see e.g. DieudonnUe (1969,
Section 7:5), (�(n)f (·))n¿1 is pre-compact in C([0; 4f];Hm

� ); P-a.s.
We show that the set of limiting points of (�(n)f (·))n¿1 is a singleton P-a.s. Suppose

that �(·) and O�(·)= v(·)+�(·) are two limiting points of (�(n)f (·))n¿1. They both satisfy
(4.1), therefore

dv(t)
dt

=− Av(t) + g(t) · ∇xv(t) + h(t) · ∇x�(t);

v(0)= 0;

(4.12)

where g(s) := �(s; 0) + v(s; 0); h(s)= v(s; 0) are continuous Rd-valued functions.

Claim. Any solution v(·) of (4:12) satis8es

v(t; x)=
∫ t

0
v(s; 0) · <

(
t; s; x +

∫ t

s
�(4; 0) d4+

∫ t

s
v(4; 0) d4

)
ds; (4.13)

for all (t; x)∈ [0;+∞)×Rd. Here <(t; s; x) := [∇xS(t− s)�](s; x); t¿ s¿ 0; x∈Rd is
a continuous function of all its arguments.

Accepting this claim for a moment we show that v(t) ≡ 0. Indeed, thanks to the fact
that �(·)∈C([0; 4f];Hm

� ) and v(· ; 0); �(· ; 0)∈C([0; 4f];Rd) we conclude from (4.13)
that there exists a constant C¿0 such that

|v(t; 0)|6C
∫ t

0
|v(s; 0)| ds; ∀t ∈ [0; 4f]

and v(· ; 0) ≡ 0 by the classical Gronwall inequality. This, in turn, implies via (4.13)
that v(·) ≡ 0.
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Proof of (4.13). Denoting the right-hand side of (4.13) by Ov(·) we obtain, after a direct
computation, that

d Ov(t)
dt

=− A Ov(t) + g(t) · ∇x Ov(t) + h(t) · ∇x�(t);

Ov(0)= 0;

(4.14)

with g(·); h(·) as in (4.12). Denoting by w(·) := Ov(·)− v(·) we conclude that
dw(t)
dt

=− Aw(t) + g(t) · ∇xw(t);

w(0)= 0:

(4.15)

In consequence

w(t)=
∫ t

0
g(s) · ∇x[S(t − s)w(s)] ds: (4.16)

We show that w(·) ≡ 0. Let  be such that  ̂ ∈C∞
0 (Rd \ {0};Rd). From (4.16) we

know that the Fourier transform ŵ(t) of w(t; ·) is a distribution satisfying

ŵ(t)( ̂ )=
∫ t

0
ŵ(s)(g(s; ·)) ds; (4.17)

where g(s; k) := ie−|k|2�(t−s)(g(s) ·k) ̂ (k). Iterating we obtain that the left-hand side of
(4.17) equals

∫ t
0 ŵ(s)(gN (s; ·)) ds, with

gN (s; k) := iN+1
∫

· · ·
∫
t¿s1¿···¿sN¿s

e−|k|2�(t−s)(g(s) · k)(g(s1) · k) · · · (g(sN ) · k)

× ̂ (k) ds1 · · · dsN
for an arbitrary integer N¿ 1. A direct calculation shows that

sup
06s6t; k∈Rd

|∇m
k gN (s; k)|6 CN

N !

with the constant C independent of N . Hence gN (s; ·) tends to 0 in the space D(Rd;Rd),
as N ↑ ∞, and therefore ŵ(t)( ̂ )= 0 for all  ̂ ∈C∞

0 (Rd\{0};Rd). When � is an integer
(4.17) extends by the foregoing argument to any  such that  ̂ ∈C∞

0 (Rd;Rd). That
implies w(t; ·) ≡ 0.

Suppose that � is a non-integer. The above argument shows supp ŵ(t; ·)= {0} and in
consequence, see e.g. H:ormander (1983, Theorem 2:3:4, pp. 46–47), we have w(t; x)=∑

p cp(t)xp, where the summation extends over a certain 7nite set of multi-
indices p=(p1; : : : ; pd)∈Zd. Suppose now that p∗ =(p∗1; : : : ; p∗d) is the multi-index
with the largest norm |p∗| :=

∑
p∗i. We apply @p∗1

x1 · · · @p∗d
xd to both sides of (4.14)

and obtain that

p∗!cp∗(t)=
∫ t

0
g(s) · S(t − s)[∇x@p∗1

x1 · · · @p∗d
xd w(s)]= 0;

so that cp(t) ≡ 0 for all p and t¿ 0.
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Proof of Theorem 2. Let �f(t); 06 t6 4f be the limit of the sequence (�(n)f ). It is a
non-anticipative stochastic process with respect to the natural 7ltration corresponding
to the Wiener process W (·). In view of Proposition 2(iii) we have �f(t)∈D(A) ∩
D(∇); 06 t6 4f. The fact that �f(t); 06 t6 4f satis7es (4.1) is obvious.
We prove now the global existence for any f∈C�. Let 4∞ be a possible blow-up

time of a solution. It is obviously a stopping time. Let us set

xf(t) :=
∫ t

0
�f(s; 0) ds and Vf(t; x) := �f(t; x− xf(t)); 06 t¡4∞:

xf(t); 06 t¡4∞ solves the initial value problem

dxf(t)=dt=Vf(t; xf(t)) and xf(0)= 0:

Using the Itô formula, exactly in the same fashion as we did to derive (1.6), we check
that

Vf(t)=f −
∫ t

0
AVf(s) ds+ BW̃f(t); 06 t¡4∞

with W̃f(t); t¿ 0 some cylindrical Brownian motion on L2. Notice also that by virtue
of Proposition 2(iii) and the arguments made at the end of Section 2.2,
sup06t6T |Vf(t; x)| has sub-linear growth in x; P-a.s. for any T¿0. In consequence

C(!) := sup
06t¡4∞

|xf(t)|¡∞:

Thus, by Proposition 3,

sup
06t¡4∞

‖�f(t)‖Hm
�
= sup

06t¡4∞
‖Vf(t; xf(t) + ·)‖Hm

�

6 (1 + C(!))� sup
06t¡4∞

‖Vf(t)‖Hm
�
¡∞;

which contradicts the fact that 4∞ is the blow-up time.

5. Uniqueness

In this section we prove the following.

Theorem 3. Suppose that m¿d=2. Then; for any f∈Hm
� , Eq. (1:7) possesses at most

one (maximal in time) strong solution.

In the 7rst step of the proof we will show that any solution of (1.7) satis7es a
certain integral equation that we call its mild formulation. This is the content of the
following.

Lemma 4. Suppose that 4¿0 is a stopping time; �(t)∈Hm
� ; t ∈ [0; 4) is a local so-

lution of (1:7) with the given cylindrical Brownian motion W on L2 and m is as
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in Theorem 3. Then;

�(t; x)= S(t)f
(
x +

∫ t

0
�(s; 0) ds

)
+ OWA

(
t; x +

∫ t

0
�(s; 0) ds

)
; t¿ 0; (5.1)

where OWA(t; x); (t; x)∈ [0;+∞)×Rd is a Gaussian 8eld given by

OWA(t) :=
∫ t

0
S(t − s)B d OW (s)

and OW (t); t¿ 0 is a cylindrical Wiener process on L2 given by

〈 OW (t);  〉=
∫ t

0

〈
dW (s);  

(
·+
∫ s

0
�(u; 0) du

)〉
; t¿ 0;  ∈Sd:

Proof. Note that for any predictable Itô’s integrable process A one has∫ t

0

〈
d OW (s); A(s)

〉
=
∫ t

0

〈
dW (s); A

(
s; ·+

∫ s

0
�(u; 0) du

)〉
; t¿ 0:

Thus, using the arguments from the proof of Theorem 1, one can show that the
right-hand side O� of (5.1) satis7es

d O�(t)= (−A O�(t) + �(t; 0) · ∇x O�(t)) dt + B dW (t):

Hence w(t) := O�(t)−�(t) satis7es (4.15), with g(t) := �(t; 0). We can use the argument
presented there to demonstrate that w(·) ≡ 0.

Proof of Theorem 3. Taking x=0 in (5.1) we obtain

�(t; 0)=F
(
t;
∫ t

0
�(s; 0) ds

)
+ B OW (t; 0) +

∫ t

0
G
(
t; s;
∫ t

s
�(u; 0) du

)
ds; (5.2)

with F(t; x) := S(t)f(x) a certain Lipschitz function in x variable and G(t; s; x) :=
AS(t − s)B OW (s; x)—a Gaussian random 7eld with continuous realizations that are C∞

smooth in x, P-a.s. (thanks to (2.2)). Eq. (5.2) and thus also (5.1) admits a unique
local solution. Hence, the desired conclusion follows from Lemma 4.

Directly from the above result and the global existence part of Theorem 2 we
conclude the following.

Corollary 1. Suppose that m is as in the statement of Theorem 3. Then; for any
f∈C� there exists a unique strong global solution �f of (1:7) satisfying �f(0)=f.

6. Lagrangian process for irregular ,elds

In this section we suppose that a Gaussian random 7eld V (t; x); (t; x)∈R×Rd whose
co-variance matrix is given by (1.2) satis7es
(C) k0 := dist(0; suppE)¿0 and there exists C¿0 such that TrE(k)6C|k|1−2� for

all |k|¿ k0 and �∈ (1; 2).
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The class of 7elds satisfying (C) includes 7elds which are H:older but not necessarily
Lipschitz in the spatial variable. As we have pointed out in the introduction it may
be impossible therefore to solve uniquely the equation (1.1). This diNculty prevents
us from de7ning the Lagrangian dynamics directly as it was done in Komorowski
(2000). Below we construct such a dynamics as the limit of Lagrangian processes
�K (t) :=VK (t; xK (t) + ·); t¿ 0, as K ↑ ∞. Each �K corresponds to VK whose spec-
trum is given by (1.9). Smoothness of VK guarantees the existence and uniqueness of
solutions of

dxK (t)=dt=VK (t; xK (t)); xK (0)= 0: (6.1)

By �K (t) :=VK (t; xK (t) + ·); t¿ 0 we denote the corresponding Lagrangian processes
and by QK their respective laws on M :=C([0;+∞);X). Throughout this section we
shall denote X :=C(Rd;Rd). Suppose now that VK (·) is the stationary solution of the
Ornstein–Uhlenbeck equation (1.5) with A de7ned by (2.1). BK is also de7ned with
the help of (2.1) but with EK (k) := 1[0;K](|k|)E(k); k∈Rd used in place of E(·). Let
�K be the law of VK (0) on X. It is Gaussian with the co-variance matrix∫

f(x)⊗ f(y)�K (df)=BK (x− y);

where

BK (x) :=
∫
Rd

cos(x · k)EK (k)
|k|d−1 dk:

As we already know QK is identical with the law on M of the solution O�K (·) of
Eq. (4.1) with operators A; BK described above. According to Lemma 4, O�K satis7es

O�K (t; x)= S(t)f
(
x +

∫ t

0
O�K (s; 0) ds

)
+ OWA;K

(
t; x +

∫ t

0
O�K (s; 0) ds

)
; (6.2)

where

OWA;K (t)=
∫ t

0
S(t − s)BK d OW (s)

and

〈 OW (t);  〉=
∫ t

0

〈
dW (s);  

(
·+
∫ s

0
O�K (u; 0) du

)〉
; t¿ 0;  ∈Sd:

De7ne U (t; x) :=W (t; x−∫ t
0 O�K (u; 0) du). Then, the integration by parts formula yields∫ t

0
〈dU (s);  〉

=
∫ t

0

〈
dW (s);  

(
·+
∫ s

0
O�K (u; 0) du

)〉

+
∫ t

0

〈
W (s); O�K (s; 0) · ∇x 

(
·+
∫ s

0
O�K (u; 0) du

)〉
ds; t¿ 0;  ∈Sd:

(6.3)



188 A. Fannjiang et al. / Stochastic Processes and their Applications 97 (2002) 171–198

Using (6.3) we can rewrite (6.2) in the form

O�K (t; x) = S(t)f
(
x +

∫ t

0
O�K (u; 0) du

)
+ UA;K

(
t; x +

∫ t

0
O�K (u; 0) du

)

+
∫ t

0
O�(s; 0) · ∇xS(t − s)BKW

(
s; x +

∫ t

s
O�K (u; 0) du

)
ds; (6.4)

where

UA;K (t) =
∫ t

0
S(t − s)BK dU (s)

= S(t)BKU (t) +
∫ t

0
AS(t − s)[BKU (t)− BKU (s)] ds:

Denoting

F(t; x) := S(t)f(x) (6.5)

a Gaussian random 7eld over (X;B(X); �K); GK (t; x) := S(t)BKW (t; x) and
HK (t; s; x) :=AS(t−s)BKW (t; x); IK (t; s; x) :=AS(t−s)BKW (s; x); JK (t; s; x) :=∇xS(t−
s)BKW (s; x)—Gaussian 7elds over (';V;P) we can rewrite (6.4) in the form

O�K (t; x) = F
(
t; x +

∫ t

0
O�K (s; 0) ds

)
+ GK (t; x)

+
∫ t

0

[
HK (t; s; x)− IK

(
t; s; x +

∫ t

s
O�K (u; 0) du

)]
ds

+
∫ t

0
O�K (s; 0) · JK

(
t; s; x +

∫ t

s
O�K (u; 0) du

)
ds: (6.6)

A direct calculation shows that∫
|F(t; x)|2 d�K + E |GK (t; x)|2

=
∫
Rd

e−2|k|2�t(1 + |k|2�t)TrEK (k)
|k|d−1 dk6C; ∀K¿ 1

and

E[|HK (t; s; x)|2 + |IK (t; s; x + (t − s)y)|2 + |JK (t; s; x + (t − s)y)|2]6C(t − s)−r

for some r¿0 and all x; y∈Rd. Skorohod’s embedding theorem (see e.g. Theorem
2:4, p. 33 of Da Prato and Zabczyk (1992)) implies that there exist random 7elds

ZK (t; s; x; y) := (F̂K (t; x); ĜK (t; x); Ĥ K (t; s; x); Î K (t; s; x + (t − s)y);

JK (t; s; x + (t − s)y));

(t; s; x; y)∈D := [(t; s; x; y) : t¿s¿ 0; x; y∈Rd]

de7ned over certain probability space, that with no loss of generality will be assumed to
coincide with (';V;P), whose laws coincide with those of respective (F;GK ; HK ; IK ; JK)
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over (X×';B(X)⊗V; �K ⊗P). These 7elds converge uniformly on compact subsets
of D, as K ↑ ∞, to a certain Gaussian 7eld on D,

Z(t; s; x; y)

:= (F̂(t; x); Ĝ(t; x); Ĥ (t; s; x); Î(t; s; x + (t − s)y); Ĵ (t; s; x + (t − s)y));

whose law coincides with that of

(F(t; x); G(t; x); H (t; s; x); I(t; s; x + (t − s)y); J (t; s; x + (t − s)y));

F being given by (6.5), a Gaussian random 7eld over (X;B(X); �); G(t; x) :=
S(t)BW (t; x),

H (t; s; x) :=AS(t − s)BW (t; x); I(t; s; x)=AS(t − s)BW (s; x)

and

J (t; s; x) :=∇xS(t − s)BKW (s; x):

In what follows we suppress writing the hat sign over the relevant random 7elds.
We consider the equation

O�(t; x) = F
(
t; x +

∫ t

0
O�(s; 0) ds

)
+ G(t; x)

+
∫ t

0

[
H (t; s; x)− I

(
t; s; x +

∫ t

s
O�(u; 0) du

)]
ds

+
∫ t

0
O�(s; 0) · J

(
t; s; x +

∫ t

s
O�(u; 0) du

)
ds: (6.7)

We say that O�(· ; ·) is a solution of the equation if O�(· ; · ;!)∈M; P-a.s. and (6.7)
holds for all x∈Rd.

Theorem 4. Suppose �∈ (1; 2); �¿ 0 are such that �+�¿2; �+3�¿3. In addition;
assume that condition (C) holds. Then (6:7) has a unique global solution O�. Moreover;
if ( O�K) are the solutions of (6:6) corresponding to the approximating 8elds constructed
via the Skorohod embedding theorem; then for all T; R¿0;

lim
K↑∞

sup
06t6T;|x|6R

| O�K (t; x)− O�(t; x)|=0; P-a:s: (6.8)

From the above theorem we conclude immediately the following.

Corollary 2. The measures QK weakly converge over (M;B(M)); as K ↑ ∞.

The proof of Theorem 4. We start with the following lemma.

Lemma 5. Under the assumptions of Theorem 4 the integro-di<erential equation

x′(t) = F(t; x(t)) + G(t; 0) +
∫ t

0
[H (t; s; 0)− I(t; s; x(t)− x(s))

+x′(s) · J (t; s; x(t)− x(s))] ds; t¿0; x(0)= 0 (6.9)

has a unique global solution P-a.s.
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Proof. Uniqueness. Suppose that x and Ox are two solution of (6.9) and T¿0 is such
that sup06t6T [|x(t)|+ | Ox(t)|] =R¡∞. Hence,

x′(t)− Ox′(t) = F(t; x(t))− F(t; Ox(t))

+
∫ t

0
[I(t; s; Ox(t)− Ox(s))− I(t; s; x(t)− x(s))] ds

+
∫ t

0
[x′(s) · J (t; s; x(t)− x(s))− Ox′(s) · J (t; s; Ox(t)− Ox(s))] ds:

(6.10)

Notice that

E |∇xF(t; x)|26C
∫ +∞

k0
e−2k2�tk3−2� dk (6.11)

for some generic constant independent of t. Substituting A := k t1=(2�) we obtain that
the right-hand side of (6.11) equals

C t(�−2)=�
∫ +∞

k0t1=(2�)
e−2A2�A3−2� dA6C t(�−2)=�:

We have also

E|∇xI(t; s; x)|26C
∫ +∞

k0
e−2k2�(t−s)k3+6�−2� dk (6.12)

and, after a substitution

A := k(t − s)1=(2�) (6.13)

we obtain that the right-hand side of (6.12) is less than or equal to C(t− s)(�−3�−2)=�.
Finally, we get

E|J (t; s; x)|26C
∫ +∞

k0
e−2k2�(t−s)k3+2�−2� dk (6.14)

and

E|∇xJ (t; s; x)|26C
∫ +∞

k0
e−2k2�(t−s)k5+2�−2� dk; (6.15)

which, after substitution (6.13), yield that the right-hand sides of (6.14) and (6.15) are
less than or equal to C(t− s)(�−�−2)=� and C(t− s)(�−�−3)=� correspondingly. Hence by
virtue of Theorem 6:9:2, p. 161 of Adler (1990), for any %¿1 one can 7nd a random
variable CR;% such that

sup
|x|6R

|∇xF(t; x)|6CR;% t%(�−2)=(2�);

sup
|x|6R

|∇xI(t; s; x)|6CR;% (t − s)%(�−3�−2)=(2�);

sup
|x|6R

|J (t; s; x)|6CR;% (t − s)%(�−�−2)=(2�);

sup
|x|6R

|∇xJ (t; s; x)|6CR;% (t − s)%(�−�−3)=(2�): (6.16)
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Note that since �¡2 all the right-hand sides of (6.16) become unbounded when
t → s+.
Denoting v(t) := |x′(t)− Ox′(t)| we obtain from (6.10) and (6.16),

v(t)6CR;%

{∫ t

0
s%(�−2)=(2�)v(s) ds+

∫ t

0
(t − s)%(�−3�−2)=(2�) ds

∫ t

s
v(u) du

+
∫ t

0
(t − s)%(�−�−2)=(2�)v(s) ds+

∫ t

0
(t − s)%(�−�−3)=(2�) ds

∫ t

s
v(u) du

}
:

(6.17)

Suppose that %¿1 is suNciently small so that %(�− 3�− 2)+ 2�¡0. Interchanging
the order of integration in the second and fourth terms on the right-hand side of (6.17)
we obtain that

v(t)6CR;%

{∫ t

0
s%(�−2)=(2�)v(s) ds+

∫ t

0
(t − s)[%(�−3�−2)+2�]=(2�)v(s) ds

+
∫ t

0
(t − s)%(�−�−2)=(2�)v(s) ds+

∫ t

0
K(t; s)v(s) ds:

}
:

Here

K(t; s) :=

{
(t − s)[%(�−�−3)+2�]=(2�); if %(�− � − 3) + 2�¡0

t[%(�−�−3)+2�]=(2�); if otherwise:

We can apply Gronwall’s inequality, provided the kernels in the above integrals are
integrable. This happens when %¿1 is suNciently small and �+�¿2; �+3�¿3. We
obtain therefore v(·) ≡ 0.

Global existence. Denote xK (t;!) :=
∫ t
0 O�K (s; 0;!) ds.

Lemma 6. Under the assumptions of Theorem 4; xK is the solution of (6:1) and
satis8es the equation

x′K (t)=
∫ t

0
<K (t; s; xK (t); xK (t)− xK (s); x′K (s)) ds; xK (0)= 0;

<K (t; s; x; y; z) :=
1
t
[FK (t; x) + GK (t; 0)] + [HK (t; s; 0)

− IK (t; s; y) + z · JK (t; s; y)] ds: (6.18)

Moreover; for any T¿0 there exist constants C1; C2¿0; possibly depending on T but
not on K; such that

P
(

sup
06t6T

[|xK (t)|+ |x′K (t)|]¿M
)
6C1e−C2M 2

; ∀K;M¿0: (6.19)

Proof. Only (6.19) requires a proof. Let

An;K (E) :=

[
sup

(t;x)∈RT

|VK (t; x)|
|x|+ n

6 E

]
; n¿ 1; E¿0:
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By virtue of Theorem 6:9:2, p. 161 of Adler (1990) there exist constants c1; c2; E0¿0,
cf. the argument following (2.7), independent of n; K and such that

P(Ac
n;K (E0))6 c1e−c2n2 ; ∀n¿ 1:

For !∈An;K we obtain

|x′K (t)|6 E0(|xK (t)|+ n); t ∈ [0; T ]:

Hence, there exists a deterministic constant c3¿0 such that for

sup
06t6T

|xK (t)|6 c3n; for !∈An;K (E0):

From the de7nition of the event An;K (E0) we conclude also that

sup
06t6T

|VK (t; xK (t))|6 E0

(
sup

06t6T
|xK (t)|+ n

)
6 E0(c3 + 1)n for !∈An;K (E0)

and (6.19) follows from (6.1).

Let us 7x T¿0 and let  M :R → [0; 1] be a C∞ smooth function satisfying
 M (r)= 1, if r6M and  M (r)= 0, if r¿M + 1. We de7ne

dx(M)
K (t)
dt

=  M

(
|x(M)

K (t)|+
∣∣∣∣∣dx(M)

K (t)
dt

∣∣∣∣∣
)

∫ t

0
<K

(
t; s; x(M)

K (t); x(M)
K (t)− x(M)

K (s);
dx(M)

K (s)
ds

)
ds; x(M)

K (0)= 0: (6.20)

The existence of a solution x(M)
K (·)∈C1([0; T ];Rd) of (6.20) follows from a standard

application of Schauder’s Fixed Point Theorem. Let

4K;M :=min

[
t : |x(M)

K (t)|+
∣∣∣∣∣dx(M)

K (t)
dt

∣∣∣∣∣¿M

]
∧ T:

Obviously, x(M)
K (t)= xK (t); t ∈ [0; 4K;M ]; ∀K;M¿ 1, therefore, according to Lemma 6

there exist constants c1; c2¿0 independent of K¿ 1; h∈ (0; T=2) such that

P(4K;M 6T − h)6 c1e−c2M 2
; M¿ 1: (6.21)

Let K ↑ ∞, we have then x(M)
K (·) is uniformly convergent to the unique solution

x(M)(·) of

dx(M)(t)
dt

=  M

(
|x(M)(t)|+

∣∣∣∣dx(M)(t)
dt

∣∣∣∣)∫ t

0
<
(
t; s; x(M)(t); x(M)(t)− x(M)(s);

dx(M)(s)
ds

)
ds; x(M)(0)= 0: (6.22)
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Here < is de7ned by formula (6.18) with the replacement of FK ; GK ; HK ; IK ; JK ap-
pearing there by corresponding 7elds F;G;H; I; J . The proof of uniqueness of solutions
of Eq. (6.22) can be carried out via an argument identical with the one used in the
uniqueness part of the proof of the lemma. Moreover 4K;M → 4M , as K ↑ ∞;P-a.s.,
where

4M :=min
[
t : |x(M)(t)|+

∣∣∣∣dx(M)(t)
dt

∣∣∣∣¿M
]
∧ T:

Note also that, thanks to (6.21), we have P(4M¿0)=1 and x(M)(·) is uniformly
convergent, as M ↑ +∞; P-a.s. on any compact sub-interval of [0; 4M ) to the unique
solution x(·) of (6.9).
We prove that 4M → T , as M ↑ ∞. This result establishes the global existence of

the solutions of (6.9). First note that thanks to (6.21) we have

P(4M 6T − h)6 c1e−c2M 2
; M¿ 1; h∈ (0; T=2): (6.23)

The already proven uniqueness part implies 4M+1¿ 4M , so T∗ := limM↑∞4M satis7es

P(T∗6T − h)= 0; ∀h∈ (0; T=2);

which shows that T∗ =T; P-a.s.
Returning to the proof of the theorem we notice that having x as in Lemma 5 we

can de7ne

O�(t; x) :=F(t; x + x(t)) + G(t; x) +
∫ t

0
[H (t; s; x)− I(t; s; x + x(t)− x(s))] ds:

It can be easily veri7ed that O�∈M; P-a.s., and that (6.8) is a conclusion from Lemma 6.
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Appendix A. Proof of Proposition 2

Recall our standing assumption that �∈ (d=2; d=2 + %(�)).

Proof of (i). We denote by Ff or f̂ the Fourier transform of a given function f. Let
{ek}k∈N be an orthonormal basis of L2. Recall, see Section 2, that J�;2 (x)= (x)#�=2(x)
is an isomorphism between Hm

� and Hm. Hence, there is a constant c1
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such that

‖S�(t)B�‖2L(HS)(L2 ;Hm
� )

=
∑
k

‖S�(t)B�ek‖2Hm
�
6 c1

∑
k

‖J�;2S�(t)B�ek‖2Hm

6 c1
∑
k

∫
Rd
(1 + |k|2)m|F(#1=2

� S�(t)B�ek)(k)|2Rd dk:

Note that

F(S�(t)B�ek)(k)= e−|k|2�t
√
2|k|2� OE(k)ê k(k):

Thus, ∑
k

|F(#1=2
� S�(t)B�ek)(k)|2Rd

=
∑
k

∣∣∣∣∫
Rd

#̂1=2
� (k − k′)e−|k′|2�t

√
2|k′|2� OE(k′)ê k(k′) dk′

∣∣∣∣2
Rd

6 2
∫
Rd

|#̂1=2
� (k − k′)|2e−2|k′|2�t |k′|2� Tr OE(k′) dk′:

Hence

‖S�(t)B�‖2L(HS)(L2 ;Hm
� )

6 2c1

∫
Rd

∫
Rd
(1 + |k|2)m|#̂1=2

� (k − k′)|2e−2|k′|2�t |k′|2� Tr OE(k′) dk′ dk

=2c1

∫
Rd

∫
Rd
(1 + |k + k′|2)m|#̂1=2

� (k)|2e−2|k′|2�t |k′|2� Tr OE(k′) dk′ dk: (A.1)

Since 1 + |k + k′|26 (1 + |k|2)(1 + |k′|2) we conclude that the utmost left-hand side
of (A.1) is less than or equal to

c2

∫
Rd
(1 + |k|2)m|#̂1=2

� (k)|2 dk
∫
Rd
(1 + |k′|2)me−2|k′|2�t |k′|2� Tr OE(k′) dk′

and, because∫
Rd
(1 + |k|2)m|#̂1=2

� (k)|2 dk¡∞;

we have

‖S�(t)B�‖2L(HS)(L2 ;Hm
� )
6 c

∫
Rd
(1 + |k′|2)me−2|k′|2�t |k′|2� Tr OE(k′) dk′: (A.2)

In particular, taking t=0 we obtain the desired conclusion from condition (2.2).

Proof of (ii). We will treat the case of a non-integer �. The case of integer � has been
considered in Peszat and Zabczyk (1997). Let

p�(x) :=
∫
Rd

e−|k|2�ei k·x dk:
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Then, see e.g. Blumenthal and Getoor (1960, Theorem 2:1, p. 263), there exists a
constant C¿0 such that

|p�(x)|6 C
(1 + |x|2)d=2+� :

We show boundedness of

S�(t)f(x)=
1

td=(2�)

∫
Rd

p�

( |x− y|
t1=(2�)

)
f(y) dy

in Lp� using an interpolation argument. First consider the operator on L∞. Then

‖S�(t)f‖L∞ 6 sup
x∈Rd

[
1

td=(2�)

∫
Rd

∣∣∣∣p�

( |x− y|
t1=(2�)

)∣∣∣∣ dy] ‖f‖L∞ = ‖p�‖L1‖f‖L∞ ;

and the boundedness follows from p� ∈L1. Next, consider the operator on L1�. The
boundedness of S�(t) on this space is equivalent with the same property of

T�;�(t)f(x) :=
1

td=(2�)

∫
Rd

(
1 + |y|2
1 + |x|2

)�

p�

( |x− y|
t1=(2�)

)
f(y) dy

on L1. Using an elementary inequality (1 + |y|2)�6C[(1 + |x|2)� + |x − y|2�] we
conclude that

‖T�;�(t)f‖L1 6 I1(f) + I2(f);

where

I1(f)=
C

td=(2�)

∫
Rd

dx
∫
Rd

∣∣∣∣p( |x− y|
t1=(2�)

)
f(y)

∣∣∣∣ dy;
I2(f)=

C
td=(2�)

∫
Rd

dx
(1 + |x|2)�

∫
Rd

|x− y|2�
∣∣∣∣p(x− yt1=(2�)

)
f(y)

∣∣∣∣ dy:
Then I1(f)=C ‖p�‖L1‖f‖L1 while

I2(f)6Ct(2�−d)=(2�) sup
u¿0

(u2�|p�(u)|)
∫
Rd

dx
(1 + |x|2)� ‖f‖L1 ; (A.3)

where the supremum appearing in (A.3) remains 7nite as long as 2�6d + 2�. In
conclusion we obtain that S�(t) :Lp� → Lp� is a bounded operator when 16p6∞. This
together with the continuity of the semigroup on Sd proves that S� is a C0-semigroup
on any Lp� . In fact since S�(t) commutes with ∇x we have proved C0-continuity of
the semigroup on any Wp;m

� .

In the proof of the third part of the proposition we need two lemmas. Write

[K�;E (k) := |k|2�(|k|2 + E)−� ̂ (k) for any E¿0;  ∈Sd:

Lemma 7. K�;E extends to a bounded operator K�;E :Hm
� → Hm

� for all E¿0; m¿ 0.

Proof. By Stein (1970, Lemma 3:2:2, p.133) the Fourier transform �2� :=F(|k|2�(|k|2+
E)−�) is a signed measure with a 7nite total variation ‖�2�‖TV . Hence the operator
K�;E :L∞ → L∞ is bounded and

|K�;Ef(x)|6
∫
Rd

|f(x− y)| |�2�|(dy)6 ‖f‖L∞‖�2�‖TV ; x∈Rd:
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Using a general interpolation argument, as in the proof of (ii), we note that in order
to 7nish the proof of the lemma we only need to show that K�;E is bounded on L1�.
This is equivalent with proving that

R�;Ef(x) :=
∫
Rd

(
1 + |x− y|2
1 + |x|2

)�

f(x− y)�2�(dy)

extends to a bounded operator in L1. It is known, see Blumenthal and Getoor (1960,
p. 134), that( |k|2

|k|2 + E

)�

=1 +
[d=2]∑
m=1

cm(E+ |k|2)−m + r̂(k);

where r̂(·)∈L1(Rd)∩C∞(Rd) so its inverse Fourier transform r satis7es r(x)�|x|−n,
|x|�1 for an arbitrary n¿ 1. Hence

�2�(dx)= F0(dx) + G(x) dx + r(x) dx;

with

G(x) :=
[d=2]∑
m=1

cmG2m(x)

and

G2m(x)= 2d−2�(
√
EG)d−� 1

B(�)

∫ +∞

0
e−G|x|2=Fe−F=(4G)F(−d+2�)=2 dF

F
:

Therefore∫
Rd

|R�;Ef(x)| dx6
∫
Rd

|f(x)| dx +
∫
Rd

∫
Rd

(
1 + |y|2
1 + |x|2

)�

×[|G(x− y) + r(x− y)|]|f(y)| dx dy:
The second term on the right-hand side is less than or equal to

‖G + r‖L1‖f‖L1 +
∫
Rd

∫
Rd

( |x− y|2
1 + |x|2

)�

[|G(x− y)|+ |r(x− y)|]|f(y)| dx dy:
(A.4)

(29) and (30) from p. 132 of Blumenthal and Getoor (1960) imply that G2m(x)|x|2�6
C, x∈Rd for some constant C¿0, provided �¿d=2. Repeating estimates performed
in the proof of (ii) we bound the second term of (A.4) by

C sup
x∈Rd

|x|2�(|G(x)|+ |r(x)|)
∫
Rd

dx
(1 + |x|2)� ‖f‖L1 6C‖f‖L1 ;

which proves that R�;E is a bounded operator on L1.

Lemma 8. Suppose that �; m are as in Lemma 7. Then there exists C¿0 such that
‖A�f‖Hm

�
6C‖f‖Hm+[2�]+1

�
for any f∈Sd.

Proof. Let us de7ne

L�;Ef := J�;2GE;1J−�;2f; with [GE;�f(k) := (|k|2 + E)�f̂(k); f∈Sd; �; E¿ 0:
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For a suNciently large E¿0 L�;E is a positive de7nite elliptic operator with −Xx—
the principal part and bounded C∞-smooth coeNcients. By a classical theory it extends
uniquely to a generator (i.e. Sd is a respective core) −L�;E :D(L�;E) → L2 of an analytic
semigroup U (·) : L2 → L2 such that

U (t)f=e−EtJ�;2S1(t)J−�;2f; ∀f∈Sd; t¿ 0:

Using formulas (6.14), (6.9) of Pazy (1983) we obtain

f := J�;2GE;�J−�;2f; ∀f∈Sd:

It is known, see Theorem 6:10, p. 73 of Pazy (1983) that ‖L�
�;Ef‖Hm 6C‖f‖Hm+[2�]+1 .

Hence, by Lemma 7,

‖A�f‖Hm
�
= ‖K�;EGE;�f‖Hm

�
6C‖GE;�f‖Hm

�
6C‖L�

�;EJ�;2f‖Hm

6C‖J�;2f‖Hm+[2�]+1 6C‖f‖Hm+[2�]+1
�

for all f∈ Sd and the conclusion of the lemma follows.

Proof of (iii). From (ii) we conclude that S�(t)(C�) ⊆ C� and S�(t)(H�) ⊆ H� for
all t¿ 0. Hence, in a consequence of Proposition 3:3 of Ethier and Kurtz (1986), C�

and H� are cores of A�. We prove now that Sd is also a core of A�. Let us consider
7rst the case when � is a positive integer. Then, obviously S�(t)(Sd) ⊆ Sd, t¿ 0
and our claim follows from Proposition 3:3 of Ethier and Kurtz (1986). Suppose that
� �∈ Z. Since Sd is dense in Hm+[2�]+1 there exists a sequence fn ∈Sd, n¿ 1 such
that fn → f in Hm+[2�]+1. From Lemma 8 we conclude that A�fn, n¿ 1 is convergent
in Hm

� . Hence from closedness of A� we conclude that A�fn → A�f, as n ↑ ∞, in
Hm

� . Our claim holds thanks to the fact that H� is a core of A�.

We prove now that Hm+[2�]+1
� ⊆ D(A�). Let f∈Hm+[2�]+1

� . We can approximate f
by elements fn ∈Sd, n¿ 1 in that space. Thanks to Lemma 8, (A�fn) converges in
Hm

� . Then f∈D(A�) and A�fn → A�f in Hm
� as a consequence of closedness of the

graph of A�.

Proof of (iv). We only consider the case of non-integer �, �′. Let

q�;�′(|x|; t) :=
∫
Rd

|k|2�′
e−|k|2�tei k·x dk:

Then

A�′S�(t) (x)=
∫

q�;�′(|x− y|; t) (y) dy

for any  ∈Sd. For any integer M¿ 1 one can choose N suNciently large and
cm;n ∈R, m; n=0; : : : ; N such that c0;0 = 0 and

H (k) := (|k|2�′
+ 1)e−|k|2� −

N∑
m;n=0

cm;ne−(m|k|2�′+n|k|2�)

is M -times di4erentiable and |H (k)|6Ce−(1=2)|k|2% , where %= � ∧ �′. Hence

q�;�′(|x|; 1)6 C
(1 + |x|2)d=2+% :
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Repeating now the argument leading to estimate of the Hm
� -norm of S�(t)f, f∈Hm

� , see
the calculations made in the proof of (ii), we obtain the estimate (2.4). The inequality
(2.3) follows from calculations identical with those made in the proof of (i).
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