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Abstract

We consider several types of scaling limits for the Wigner-Moyal equation
of the parabolic waves in random media, the limiting cases of which include the
standard radiative transfer limit, the geometrical-optics limit and the white-noise
limit. We show under fairly general assumptions on the random refractive index
field that sufficient amount of medium diversity (thus excluding the white-noise
limit) leads to statistical stability or self-averaging in the sense that the limiting law
is deterministic and is governed by one of the 6 different types of transport (Boltz-
mann or Fokker-Planck) equations depending on the specific scaling involved. We
discuss the connection to the statistical stability of time-reversal procedure and the
decoherence effect in quantum mechanics.

1. Introduction

The celebrated Schrödinger equation

i�
∂�

∂t
+ �

2

2m
�� + σV (t, x)� = 0, �(0, x) = �0(x)

describes the evolution of the wave function � of a quantum spinless particle in a
potential −σV where σ is the typical size of the variation.

A similar equation called the parabolic wave equation is also widely used to
describe the propagation of the modulation of a low-intensity wave beam in tur-
bulent or turbid media in the forward scattering approximation of the full wave
equation [20]. In this connection the refractive index fluctuation plays the role of
the potential in the equation. Nondimensionalized with respect to the propagation
distances in the longitudinal and transverse directions, Lz and Lx respectively, the
parabolic wave equation for the modulation function � reads
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ik−1L−1
z

∂�

∂z
+2−1k−2L−2

x �� + σV (zLz, xLx)� = 0, �(0, x) = �0(x),

(1)

where k is the carrier wavenumber, � the amplitude modulation and � the Lapla-
cian operator in the transverse coordinates x. Here we have assumed the random
media has a constant background. In what follows we will adopt the notation in (1).

In this paper we study the scaling regimes where the wave beam experiences
both longitudinal and transverse diversity of the random medium, represented by
V , whose fluctuation is assumed to be weak. This gives rise to a random spread of
wave energy in the transverse directions.

Atmospheric turbulence is an example at hand. A widely used model is a Gauss-
ian refractive index field V with the modified von Kármán spectral density [20]

�(ξ,k) ∼
(
L−2

0 + |k| + ξ2
)−H−3/2

exp [−�2
0(|k|2 + ξ2)], (2)

(ξ,k) ∈ R
3, H = 1/3

with a slowly varying background mainly depending on the altitude. Here the
positive constantsL0 and �0 are the outer and inner scales, respectively. Our method
and results can easily be adapted to the case of slowing varying background. For the
simplicity of presentation, however, we will focus on the case with constant back-
ground. Self-averaging of the wave beam is expected when Lx,Lz are both much
larger than L0, which is roughly the correlation length. We will see that as far as
the self-averaging effect is concerned, the rapid decay in (2) at high wavenumbers
|ξ |2 + |k|2 � �−2

0 can be significantly relaxed, cf. (10) below.
To fix the idea, let us choose the units of the longitudinal and transverse coor-

dinates such that the correlation length of V equals L0 = O(1) in both directions
and that

Lz ∼ Lx � L0. (3)

There is no loss of generality in assuming the isotropy in the numerical values of
the correlation lengths since their units may be different; analogously there is no
loss of generality in the choice of the hyperbolic scaling (3), cf. Remark 2 below.

In addition to (3) we adjust the intensity σ of the medium fluctuations, depend-
ing on the actual length scales and anisotropy of the medium, in order to obtain
a nontrivial limit. Below we digress to discuss the quadratic transformation of the
wave field, called the Wigner distribution, and its connection to time-reversal oper-
ation and quantum mechanics. The Wigner distribution will play an essential role
in our analysis of the scaling limits.

2. Wigner distribution and time reversal

There has been a surge of interest in the radiative transfer limit in terms of
the Wigner distribution (see below) because of its application to the spectacular
phenomena related to time-reversal (or phase-conjugate) mirrors [4, 3, 8, 9, 17].
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The Wigner transform or distribution of the wave function � is defined as

W(z, x,p) = 1

(2π)d

∫
e−ip·y�

(
z, x + y

2

)
�∗ (z, x − y

2

)
dy

= 1

(2π)d

∫ ∫
e−ip·(y1−y2)δ

(
x − y1 + y2

2

)
ρ(y1, y2)dy1dy2,

where ρ(y1, y2) = �(y1)�
∗(y2) is called the two-point function or the density

matrix. As is apparent from the definition, the Wigner function contains all the
information about ρ. The Wigner distribution has the simple properties

∫
W(z, x,p)dxdp = ‖�‖2

2, ‖W‖2 = (2π)−d/2‖�‖2
2.

This is the case of pure-state Wigner distribution. What is the more pertinent for us
is the so called mixed-state Wigner distribution.

Let us briefly review how a mixed-state Wigner distribution arises in the time-
reversal operation. LetGH(0, x, z, y) be the Green function, with the point source
located at (z, y), for the reduced wave (Helmholtz) equation for which the Schröding-
er equation is an approximation. By the self-adjointness of the Helmholtz equation,
GH satisfies the symmetry property

GH(0, x, z, y) = GH(z, y, 0, x).

The wave field �m received at the mirror is given by

�m(z, xm) = χA(xm)
∫
GH(0, xm, z, xs)�0(xs)dxs

= χA(xm)
∫
GH(z, xs , 0, xm)�0(xs)dxs ,

where χA is the aperture function of the phase-conjugating mirror A.
After phase conjugation and back-propagation we have at the source plane the

wave field

�B(z, x; k) =
∫
GH(z, x, 0, xm)GH (z, xs , 0, xm)χA(xm)�0(xs)dxmdxs .

In the parabolic approximations the Green functionGH(z, x, 0, y) is approximated
by eikzGS(z, x, y)whereGS(z, x, y) is the propagator of the Schrödinger equation.
Making the approximation in the above expression for the back-propagated field,
we obtain

�B(z, x; k) =
∫
GS(z, x, xm)GS(z, xs , xm)�0 (xs)χA(xm)dxmdxs

=
∫
eip·(x−xs )W

(
z,

x + xs
2

,p
)
�0 (xs)dpdxs , (4)

where the Wigner distribution W is given by

W(z, x,p)

= 1

(2π)d

∫
e−ip·yGS(z, x+y/2, xm)GS(z, x − y/2, xm)χA(xm)dydxm. (5)
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This is a mixed-state Wigner distribution. In general, the integral in (4) should be
interpreted in the distributional sense.

The Wigner distribution in (5) has the initial condition

W(0, x,p) = χA(x)
(2π)d

(6)

and can be treated as a generalized function on R
2d . Indeed, for any� ∈ C∞

c (R
d)

we have
〈
�B,�

〉
=
∫ ∫

W(z, r,p)�(r,p)drdp, (7)

where the function � is defined as

θ(r,p) = 2d
∫
�(y)ei2p·(y−r)/γ �0(2r − y)dy.

If for instance�0 ∈ C∞
c (R

d), then it is easy to see�(y,p) is compactly supported
in y ∈ R

d and decays rapidly (faster than any power) in p ∈ R
d . As a result we can

always approximate to arbitrary accuracy the distributional initial data such as (6)
by square-integrable initial data.

The fluctuations of the back-propagated wave field is thus determined by the
fluctuations of the Wigner distribution. The statistical stability or self-averaging of
the Wigner distribution in turn explains, modulo the scaling limit, the persistence
and stability of the super-focusing of the time-reversed, back-propagated wave field
observed experimentally and numerically.

Our main results show that under various scaling limits, sufficient amount of
spatial-transverse diversity experienced by the propagating wave pulse results in
self-averaging and deterministic limiting laws.

From the perspective of the quantum stochastic dynamics in a random environ-
ment, our results say that, due to the spatio-temporal diversity experienced by the
wave function of the quantum particle, the quantum dynamics has in the scaling
limit a classical probabilistic description which is independent of the particular real-
ization of the environment. The transition from a unitary evolution to an irreversible
process is, of course, the outcome of the phase-space coarse-graining by the test
functions. The results presented below are a rigorous demonstration of decoher-
ence, a mechanism believed to be responsible for the emergence of the classical
world from the quantum one [13, 21].

3. Assumptions

Let Vz(x) = V (z, x) be a z-stationary, x-homogeneous square-integrable pro-
cess with the (partial) spectral measure V̂ (z, dq) which is an orthogonal random
measure

E[V̂ (z, dp)V̂ (z, dq)] = δ(p + q)�0(p) dp dq
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and gives rise to the (partial) spectral representation of the refractive index field

Vz(x) ≡ V (z, x) =
∫

exp (ip · x)V̂ (z, dp).

In case where V (x), x ∈ R
d+1, is, an x-homogeneous square-integrable random

field with the full spectral density given by�(ξ,k)we have the following relation:

�0(p) =
∫
�(w,p) dw.

We also have the following relation between the partial and full spectral measures:

V̂z(dp) =
∫
eizwV̂ (dw, dp)

such that

E[V̂z(dp)V̂s(dq)] =
∫
ei(s−z)w�(w,p) dw δ(p + q) dp dq

= �̌(s − z,p)δ(p + q) dp dq,

where

�̌(s,p) =
∫
eisw�(w,p) dw.

Since �(k) = �(−k),∀k ∈ R
d+1, we know in this case that

�(w,q) = �(−w,p) = �(w,−p) = �(−w,−p) ∀w ∈ R, p ∈ R
d , (8)

so that �̌(s,p) is real-valued and �̌(s,p) = �̌(−s,p). The property (8) is related
to the detailed balance of the limiting scattering kernels.

First we assume

Assumption 1. The spectral density is such that

�(ξ,k) ∈ C∞(Rd+1), (9)

and

�(ξ,k) � K
(

1 + �2
x |k|2 + �2

zξ
2
)−ζ/2

(10)

for some positive constants K, �x, �z and sufficiently large exponent ζ depending
on the dimension d.

The actual exponent ζ is not high for, e.g., d = 2, but we will leave the interested
reader to keep track of the best exponent allowed by our analysis.

We can interpret �z and �x as the ultraviolet cutoff scales for the longitudinal and
transverse coordinates, respectively. This is a slower decay at high wavenumbers
�2
zξ

2 + �2
x |k|2 � 1 than stipulated in (2).
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Let Fz and F+
z be the sigma algebras generated by {Vs : ∀s � z} and {Vs :

∀s � z}, respectively. Define the correlation coefficient

ρ(t) = sup
h∈Fz

E[h]=0,E[h2]=1

sup
g∈F+

z+t
E[g]=0,E[g2]=1

E [hg] . (11)

Assumption 2. The correlation coefficient ρ(t) is integrable.

WhenVz is a Gaussian process, the correlation coefficient ρ(t) equals the linear
correlation coefficient r(t) which has the following useful expression:

r(t) = sup
g1,g2

∫
�̌(t − τ1 − τ2,k)g1(τ1,k)g2(τ2,k)dkdτ1dτ2, (12)

where the supremum is taken over all g1, g2 ∈ L2(Rd+1) which are supported on
(−∞, 0] × R

d and satisfy the constraint
∫
�̌(t − t ′,k)g1(t,k)ḡ1(t

′,k)dtdt ′dk = 1, (13)
∫
�̌(t − t ′,k)g2(t,k)ḡ2(t

′,k)dtdt ′dk = 1. (14)

There are various criteria for the decay rate of the linear correlation coefficients
in the literature. For example, according to [12, Chapter VI, Theorem 6], a special
class of spectral-density functions give rise to exponentially decaying correlation
coefficients.

Secondly, we assume a 6th order sub-Gaussian property: Let

U1
s (x) = Vs(x), U2

s (x) = Ez[Vs](x), s � z.

Assumption 3. For any choices of σj ∈ {1, 2}, j = 1, 2, ..., N and a set of linear
operators {Tj }, there exists a finite constant C such that

E




N∏
j=1

TjU
σj
sj (xj )]


 = 0, N = 3, 5

∣∣∣∣∣∣
E




N∏
j=1

TjU
σj
sj (xj )]



∣∣∣∣∣∣
� C

∑∣∣∣∣∣
∏
m̂n

E
[
TmU

σm
sm
(xm)TnUσnsn (xn)

]
∣∣∣∣∣ , N = 4, 6

where the summation is over all possible pairings {m̂n} among {1, 2, ..., N}.
Finally we assume

Assumption 4. There exists a constant C such that, for Theorem 1, 2, 3 (i), (iii)
and 4 (i), (iii),

lim
ε→0

E[ sup
z<z0

‖L̃εzθ‖2
2] � C

ε
E‖L̃εzθ‖2

2, ∀θ ∈ C∞
c (R

2d), ∀z0 < ∞;
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and for Theorem 3 (ii) and 4 (ii),

lim
ε→0

E[ sup
z<z0

‖L̃εzθ‖2
2] � C

εα
E‖L̃εzθ‖2

2, ∀θ ∈ C∞
c (R

2d), ∀z0 < ∞;

lim
ε→0

E[ sup
z<z0

‖L̃εzL̃εzθ‖2
2] � C

ε2α E‖L̃εzL̃εzθ‖2
2, ∀θ ∈ C∞

c (R
2d), ∀z0 < ∞;

where L̃εz is defined, respectively, by (70), (94), (100) and (119) and α ∈ (0, 1) as
specified in the statements of the theorems.

Assumption 4 is readily satisfied for Gaussian random fields. This can be seen
by first observing that L̃εzθ is a Gaussian process and L̃εzL̃εzθ is a χ2-process and,
secondly, by an application of Borell’s inequality [1] which says that the supremum
over z < z0 inside the expectation can be over-estimated by a log (1/ε) factor for
excursion on the scale of any power of 1/ε:

E[ sup
z<z0

‖L̃εzθ‖2
2] � C log

(
1

ε

)
E‖L̃εzθ‖2

2; (15)

E[ sup
z<z0

‖L̃εzL̃εzθ‖2
2] � C log2

(
1

ε

)
E‖L̃εzL̃εzθ‖2

2. (16)

4. Main results

In the standard scaling, we set

Lz = Lx = 1

ε2 � 1, σ = ε. (17)

To describe the small-scale wave energy we consider the scaled version of the
Wigner distribution,

Wε(z, x,p) = 1

(2π)d

∫
e−ip·y�

(
z, x + ε2y

2

)
�∗

(
z, x − ε2y

2

)
dy

= 1

(2π)d

∫ ∫
e−ip·(y1−y2)/ε

2
δ

(
x − y1 + y2

2

)

×ρ(y1, y2)dy1dy2. (18)

The Wigner distribution Wε has a limit as certain measure, the Wigner measure,
introduced in [16] (see also [11]). But as remarked in the introduction, we always
consider a uniformly L2 initial condition induced by a mixed-state density matrix
ρ.

The Wigner distribution satisfies the Wigner-Moyal equation

∂Wε
z

∂z
+ p
k

· ∇Wε
z + k

ε
LεzWε

z = 0 (19)
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with Wε
z (x,p) = Wε(z, x,p). Here the integral operator Lεz is given by

LεzWε
z (x, x̃,p)

= i

∫
eiq·x̃ [Wε

z (x,p + q/2)−Wε
z (x,p − q/2)

]
V̂
( z
ε2 , dq

)
, (20)

with x̃ = xε−2α, α = 1.
The more general case with α ∈ (0, 1) can be derived from a somewhat differ-

ent scaling (cf. the scaling leading to Theorem 2): We probe a highly anisotropic
medium V (z, ε2−2αx) with the strength

σ = ε2α−1

with a wave beam composed of waves of lengths comparable to that of the medium,
so we replace k by kε2−2α:

k −→ kε2−2α (21)

in the parabolic wave equation. We then use the following definition of the Wigner
distribution to resolve the wave energy:

Wε(z, x,p) = 1

(2π)d

∫
e−ip·y�

(
z, x + ε2αy

2

)
�∗

(
z, x − ε2αy

2

)
dy. (22)

The difference in scaling between (22) and (21) is, of course, due to the rescaling
of coordinates (17).

Since the proof of convergence is the same for α ∈ (0, 1] they are treated
together. Equation (23) and its variants studied below are understood in the weak
sense and we consider their weak solutions with the test function space C∞

c (R
2d):

We find Wε
z ∈ L2([0,∞);L2(R2d)) such that ‖Wε

z ‖2 � ‖W0‖2,∀z > 0, and

〈
Wε
z , θ

〉− 〈W0, θ〉 = k−1
∫ z

0

〈
Wε
s ,p · ∇xθ

〉
ds + k

ε

∫ z

0

〈
Wε
s ,Lεs θ

〉
ds. (23)

We shall use the notation

V̂ εz (dq) = V̂
( z
ε2 , dq

)
, V εz (x) = V

( z
ε2 , x

)
.

Taking the partial inverse Fourier transform

F−1
2 θ(x, y) ≡

∫
eip·yθ(x,p) dp

we see that F−1
2 Lεzθ(x, y) acts in the following completely local manner:

F−1
2 Lεzθ(x, x̃, y) = −iδεV εz (x̃, y)F−1

2 θ(x, y), (24)

where

δεV
ε
z (x̃, y) ≡ V εz (x̃ + y/2)− V εz (x̃ − y/2) (25)

with x̃ = xε−2α . The operator Lεz is skew-symmetric and real (i.e., mapping real-
valued functions to real-valued functions).

Since our results do not depend on the transverse dimension d we hereafter take
it to be any positive integer.
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Remark 1. Since (23) is linear, the existence of weak solutions can be established
straightforwardly by the weak-� compactness argument. Let us briefly comment on
this. First, we introduce truncation N < ∞;

VN(z, x) = V (z, x), |V (z, x)| < N

and zero otherwise. Clearly, for such bounded VN the corresponding operator Lεz
is a bounded self-adjoint operator on L2(R2d). Hence the corresponding Wigner-
Moyal equation preserves the L2 norm of the initial data and produces a sequence
of L2-bounded weak solutions. Passing to the limit N → ∞ we obtain a L2-weak
solution for the original Wigner-Moyal equation if V is locally square-integrable as
is assumed here. However, due to the weak limiting procedure, there is no guarantee
that the L2 norm of the initial data is preserved in the limit.

We will not address the uniqueness of solution for the Wigner-Moyal equa-
tion (23) but we will show that as ε → 0 any sequence of weak solutions to (23)
converges in a suitable sense to the unique solution of a deterministic transport
equation.

We state our first result in the following theorem.

Theorem 1. Let Assumptions 1, 2, 3 and 4 be satisfied. Then the weak solutionWε
z of

the Wigner-Moyal equation (23), and (20), with the initial conditionW0 ∈ L2(R2d)

converges in probability as the distribution-valued process to the deterministic limit
given by the weak solution Wz of the radiative transfer equation

∂Wz(x,p)
∂z

+ p
k

· ∇Wz(x,p) = k2LWz(x,p)

with the initial condition W0 and one of the following scattering operators L:

Case (i): 0 < α < 1,

LWz(x,p) = 2π
∫

�(0,q − p)[Wz(x,q)−Wz(x,p)]dq; (26)

Case (ii): α = 1,

LWz(x,p)

= 2π
∫

�(
|q|2 − |p|2

2k
,q − p)[Wz(x,q)−Wz(x,p)]dq; (27)

Case (iii): α > 1,

LWz = 0. (28)

The case of α = 0 corresponds to the so-called white-noise scaling whose limit is
a Markovian process [6].

Equation (27) has recently been obtained in [3] for strongly mixing z-Markovian
refractive index fields with a bounded generator.

In order to obtain a nontrivial scattering kernel for α > 1 we need to boost up
the intensity of V (cf. Theorem 3).
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Next we consider a second type of scaling limits which starts with the highly
anisotropic medium V (z, ε2−2αx). We then set

Lx = Lz = ε−2, σ = ε2α−1, 0 < α < 1 (29)

under which the parabolic wave equation becomes

ik−1 ∂�
ε

∂z
+ 2−1k−2ε2��ε + ε2α−3V (zε−2, xε−2α)�ε = 0,

�ε(0, x) = �0(x). (30)

The radiative transfer scaling (17) is the limiting case α = 1. The time-evolution
of the Wigner function (18) is governed by the Wigner-Moyal equation (23) with
the following operator Lεz:

LεzWε
z (x, x̃,p)

= i

∫
eiq·x̃ε2α−2

[
Wε
z (x,p + ε2−2αq/2)−Wε

z (x,p − ε2−2αq/2)
]

×V̂ εz (dq), (31)

with x̃ = xε−2α . The partial Fourier transform of Lεzθ is now given by (24) with
the following δεVz:

δεV
ε
z (x̃, y) = ε2α−2

[
V εz (x̃ + yε2−2α/2)− V εz (x̃ − yε2−2α/2)

]
. (32)

We now state the result for the scaling limit (29), (30).

Theorem 2. Let 0 < α < 1. Let Assumptions 1, 2, 3 and 4 be satisfied. Then
the weak solution Wε

z of the Wigner-Moyal equation (23), and (31), with the ini-
tial condition W0 ∈ L2(R2d), converges in probability as the distribution-valued
process to the deterministic limit given by the weak solution Wz of the following
Fokker-Planck equations with the initial condition W0:

∂Wz

∂z
+ p
k

· ∇Wz = k2∇p · D∇pWz, (33)

with one of the following diffusion tensors D:

– α ∈ (0, 1):

D = π

∫
�(0,q)q ⊗ qdq; (34)

– α > 1:

D = 0.



Self-Averaging Scaling Limits for Random Parabolic Waves 353

For α = 1 the limit is the same as that in Theorem 1 Case (ii); α = 0 gives rise to
the white-noise limit for the Liouville equation. The Fokker-Planck equation (33)
can be obtained from (26) under the geometrical optics limit of the latter.

Let us consider yet another type of scaling limit parametrized by β. We first
assume a highly anisotropic medium V (ε2−2βz, x) and set

Lx = Lz = ε−2, σ = ε, (35)

i.e., the standard radiative transfer scaling. The Schrödinger equation then becomes

ik−1 ∂�
ε

∂z
+ 2−1k−2ε2��ε + ε−1V (zε−2β, xε−2)�ε = 0,

�ε(0, x) = �0(x), (36)

and the corresponding Wigner-Moyal equation is

∂Wε
z

∂z
+ p
k

· ∇Wε
z + k

εβ
LεzWε

z = 0 (37)

with

LεzWε
z (x, x̃,p)

= iεβ−1
∫
eiq·x̃ [Wε

z (x,p + q/2)−Wε
z (x,p − q/2)

]
V̂
( z

ε2β , dq
)
, (38)

with x̃ = xε−2.
Equation (38) is a borderline case of the following family of scaling limits. Let

us consider probing an anisotropic medium

V (ε2−2βz, ε2−2αx), α, β > 0,

with a wave beam composed of waves of lengths comparable to that of the medium,
so we switch to (21) and (22) for the formulation of scaling limits.

Three situations arise: Case (i) α < β, Case (ii) α > β and Case (iii) α = β.
In the first case α < β we set the strength of the medium fluctuation to be

σ = ε2α−β.

The resulting equation is (37) with

LεzWε
z (x, x̃,p)

= i

∫
eiq·x̃ [Wε

z (x,p + q/2)−Wε
z (x,p − q/2)

]
V̂
( z

ε2β , dq
)
, (39)

with x̃ = xε−2α . In the second case α > β we set the strength of the medium
fluctuation to be

σ = εα.
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The resulting equation is (37) with

LεzWε
z (x, x̃,p)

= iεβ−α
∫
eiq·x̃ [Wε

z (x,p + q/2)−Wε
z (x,p − q/2)

]
V̂
( z

ε2β , dq
)
, (40)

with x̃ = xε−2α .
In the third case α = β the strength of the medium fluctuation is

σ = εα.

The resulting equation is (37) with Lεz given by either (39) or (40).
We have the following theorem.

Theorem 3. Let α, β > 0. Let Assumptions 1, 2, 3 and 4 be satisfied. Then the weak
solution Wε

z of the Wigner-Moyal equation (37), with (39) for α � β or with (40)
for α > β, and the initial conditionW0 ∈ L2(R2d) converges in probability as the
distribution-valued process to the deterministic limit given by the weak solutionWz

of the transport equation with the initial condition W0:

∂Wz

∂z
+ p
k

· ∇Wz = k2LWz, (41)

with one of the following the scattering operators L.

Case (i): α < β,

LWz(x,p) = 2π
∫
�(0,q − p)

[
Wz(x,q)−Wz(x,p)

]
dq. (42)

Case (ii): 1 < α/β < 4/3, d � 3,

LWz(x,p) = 2π
∫
δ(

|q|2 − |p|2
2k

)

[∫
�(w,q − p)dw

]

× [
Wz(x,q)−Wz(x,p)

]
dq. (43)

Case (iii): α = β,

LWz(x,p) = 2π
∫
�(

|q|2 − |p|2
2k

,q − p)
[
Wz(x,q)−Wz(x,p)

]
dq. (44)

Theorem 3 (i) probably holds for d = 2 and α/β > 4/3 but we do not pursue it
here in order to keep the argument as simple as possible.

Earlier [19], [5] have established the convergence of the mean field EWε
z for

z-independent Gaussian media and d � 3. Their transport equation can be viewed
as a limiting case of (41) in which �(ξ,k) is a δ-function concentrated at ξ = 0.
See also [18] for mean-field results for z-finitely dependent potentials.
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Unlike the transport equations (27), (26), the scattering kernel (43) is elastic
in the sense that it preserves the kinetic energy of the scattered particle so that the
incoming and outgoing momenta q,p have the same magnitude.

Finally let us consider two other types of scaling limit starting with the slowly
varying, anisotropic refractive index field V (ε2−2βz, ε2−2αx), α, β ∈ (0, 1). In the
first case

β > α, 0 < α < 1, (45)

we set

Lx = Lz = ε−2, σ = ε2α−β, (46)

under which we have the parabolic wave equation

ik−1 ∂�
ε

∂z
+ 2−1k−2ε2��ε + ε2α−β−2V (zε−2β, xε−2α)�ε = 0,

�ε(0, x) = �0(x), (47)

and the corresponding Wigner-Moyal equation (37) with

LεzWε
z (x, x̃,p) = i

∫
eiq·x̃ε2α−2

[
Wε
z (x,p + ε2−2αq/2)

−Wε
z (x,p − ε2−2αq/2)

]
V̂
( z

ε2β , dq
)
, (48)

with x̃ = xε−2α .
In the second case

α > β, 0 < α < 1, (49)

we set

Lx = Lz = ε−2, σ = εα. (50)

After rescaling, the parabolic wave equation reads as follows,

ik−1 ∂�
ε

∂z
+ 2−1k−2ε2��ε + εα−2V (zε−2β, xε−2α)�ε = 0,

�ε(0, x) = �0(x), (51)

and the corresponding Wigner-Moyal equation takes the form of (37) with

LεzWε
z (x, x̃,p) = iεβ−α

∫
V̂ (

z

ε2β , dq)eiq·x̃ε2α−2

×
[
Wε
z (x,p + ε2−2αq/2)−Wε

z (x,p − ε2−2αq/2)
]

(52)

with x̃ = xε−2α .
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In the third case,

α = β, α ∈ (0, 1), (53)

we set

σ = εα.

The resulting equation is (37) with either (48) or (52).

Theorem 4. Let α, β ∈ (0, 1). Let Assumptions 1, 2, 3 and 4 be satisfied. Then the
weak solution Wε

z of the Wigner-Moyal equation (37), with (48) for α � β or with
(52) otherwise, and the initial conditionW0 ∈ L2(R2d) converges in probability as
the distribution-valued process to the deterministic limit given by the weak solution
Wz of the Fokker-Planck equation (33) with the following diffusion tensors:

Case (i) – (45), (46):

D = π

∫
�(0,q)q ⊗ qdq. (54)

Case (ii) – (49), (50): d � 3, 1 < α/β < 4/3,

D(p) = πk|p|−1
∫ [∫

�(w,p⊥)dw
]

p⊥ ⊗ p⊥dp⊥ (55)

where p⊥ ∈ R
d−1,p⊥ · p = 0.

Case (iii): α = β,

D(p) = π

∫
�(k−1p · q,q)q ⊗ q dq (56)

The Fokker-Planck equation with (54), (55) and (56) are the geometrical optics
limit of the transport equations (43) and (27), respectively. The limiting case of
α = 0 gives rise to the white-noise model of the Liouville equation [6]. We believe
that the result for Case (ii) can be extended to d = 2 and β/α ∈ (0, 1).

Remark 2. Taken together, our results have roughly covered all the super-parabolic
scaling

Lx � √
Lz.

To see this, let us set

Lz ∼ L
γ
x = ε−2γ , 0 < γ < 2

and define the Wigner transform as

Wε(z, x,p) = 1

(2π)d

∫
e−ip·y�(z, x + ε̃2y

2
)�∗(z, x − ε̃2y

2
)dy

= 1

(2π)d

∫ ∫
e−ip·(y1−y2)/ε̃

2
δ(x − y1 + y2

2
)ρ(y1, y2)dy1dy2
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with the new parameter

ε̃ = ε2−γ

and analyze analogously the preceding scaling limits as parametrized by ε̃. For an
alternative treatment of scaling limits resulting in a transport equation, see [7].

Our approach is to use the conditional shift [14] to formulate the correspond-
ing martingale problem parametrized by ε and adapt the perturbed test function
technique to the probabilistic setting to establish the convergence of the martin-
gales. It then turns out that after subtracting the drift and the Stratonovich correction
term the limiting martingale has null quadratic variation (see Proposition 6) imply-
ing that the limit is deterministic. The perturbed test functions constructed here (see
e.g., (73), (83) and (84)) are related to those in [2], [3] but our analysis is carried out
in a more general framework as formulated in [6] and provides a unified treatment
of a range of scaling limits from the radiative transfer to the geometrical optics
limit and the white-noise limit.

5. Proof of Theorem 1

5.1. Martingale formulation

We consider the weak formulation of the Wigner-Moyal equation:

[〈
Wε
z , θ

〉− 〈W0, θ〉
] = k−1

∫ z

0

〈
Wε
s ,p · ∇θ 〉 ds + k

ε

∫ z

0

〈
Wε
s ,Lεzθ

〉
ds (57)

for any test function θ ∈ C∞
c (R

2d). which is a dense subspace in L2(R2d). The
tightness result (see below) implies that for L2 initial data the limiting measure P

is supported in L2([0, z0];L2(R2d)).
For tightness as well as identification of the limit, the following infinitesimal

operator Aε will play an important role. Let V εz ≡ V (z/ε2, ·). Let Fε
z be the

σ -algebras generated by {V εs , s � z} and E
ε
z the corresponding conditional expec-

tation with respect to Fε
z . Let Mε be the space of measurable function adapted to

{Fε
z ,∀t} such that supz<z0

E|f (z)| < ∞. We say f (·) ∈ D(Aε), the domain of
Aε, and Aεf = g if f, g ∈ Mε and for f δ(z) ≡ δ−1[Eεzf (z+ δ)−f (z)] we have

sup
z,δ

E|f δ(z)| < ∞,

lim
δ→0

E|f δ(z)− g(z)| = 0 ∀z.

Consider a special class of admissible functions f (z) = φ(
〈
Wε
z , θ

〉
), f ′(z) =

φ′(
〈
Wε
z , θ

〉
),∀φ ∈ C∞(R). We have the following expression from (57) and the

chain rule:

Aεf (z) = f ′(z)
[

1

k

〈
Wε
z ,p · ∇θ 〉+ k

ε

〈
Wε
z ,Lεzθ

〉]
. (58)
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In the case of the test function θ , which is also a functional of the media, we have

Aεf (z) = f ′(z)
[

1

k

〈
Wε
z ,p · ∇θ 〉+ k

ε

〈
Wε
z ,Lεzθ

〉+ 〈
Wε
z ,Aεθ

〉]
, (59)

and when θ depends explicitly on the fast spatial vasriable

x̃ = x/ε2α

the gradient ∇ is conveniently decomposed into the gradient with respect to the
slow variable ∇x and that with respect to the fast variable ∇x̃:

∇ = ∇x + ε−2α∇x̃.

A main property of Aε is that

f (z)−
∫ z

0
Aεf (s)ds is a Fε

z -martingale ∀f ∈ D(Aε). (60)

Also,

E
ε
sf (z)− f (s) =

∫ z

s

E
ε
sAεf (τ )dτ ∀s < z a.e. (61)

(see [14]). We denote by A the infinitesimal operator corresponding to the unscaled
process Vz(·) = V (z, ·).

5.2. Tightness

In what follows we will adopt the notation

f (z) ≡ φ(
〈
Wε
z , θ

〉
), f ′(z) ≡ φ′(

〈
Wε
z , θ

〉
), f ′′(z) ≡ φ′′(

〈
Wε
z , θ

〉
),∀φ ∈ C∞(R).

Namely, the prime stands for the differentiation with respect to the original argu-
ment (not t) of f, f ′ etc.

Let D([0,∞);L2
w(R

2d)) be the L2-valued right continuous processes with
left limits endowed with the Skorohod topology. A family of processes {Wε, 0 <
ε < 1} ⊂ D([0,∞);L2

w(R
2d)) is tight if and only if the family of processes

{〈Wε, θ〉 , 0 < ε < 1} ⊂ D([0,∞);L2
w(R

2d)) is tight for all θ ∈ C∞
c [10]. We

use the tightness criterion of [15, Chapter 3,Theorem 4] namely, we will prove:
Firstly,

lim
N→∞ lim sup

ε→0
P{ sup
z<z0

| 〈Wε
z , θ

〉 | � N} = 0 ∀z0 < ∞. (62)

Secondly, for each φ ∈ C∞(R) there is a sequence f ε(z) ∈ D(Aε) such that
for each z0 < ∞{Aεf ε(z), 0 < ε < 1, 0 < z < z0} is uniformly integrable
and

lim
ε→0

P{ sup
z<z0

|f ε(z)− φ(
〈
Wε
z , θ

〉
)| � δ} = 0 ∀δ > 0. (63)
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Then it follows that the laws of {〈Wε, θ〉 , 0 < ε < 1} are tight in the space of
D([0,∞); R).

First, condition (62) is satisfied because the L2 norm is uniformly bounded.
Let

L̃εzθ(x, x̃,p) ≡ iε−2
∫ ∞

z

∫
eiq·x̃[θ(x,p + q/2)− θ(x,p − q/2)]

×eik−1(s−z)p·q/ε2α
E
ε
zV̂

ε
s (dq)ds. (64)

Note that the operator L̃εz maps a real-valued function θ to a real-valued z-stationary
random function L̃εzθ .

We have the following estimate.

Lemma 1. The following inequality holds:

E

[
L̃εzθ

]2
(x,p)

�
[∫ ∞

0
ρ(s)ds

]2 ∫ [
θ(x,p + q/2)− θ(x,p − q/2)

]2
�(ξ,q)dξdq. (65)

Proof. Consider the following trial functions in the definition of the maximal cor-
relation coefficient

h = hs(x,p)

= i

∫
eiq·xε−2α [θ(x,p + q/2)− θ(x,p − q/2)]eik−1(s−z)p·q/ε2α

E
ε
zV̂

ε
s (dq),

g = gt (x,p)

= i

∫
eiq·xε−2α [θ(x,p + q/2)− θ(x,p − q/2)]eik−1(t−z)p·q/ε2α

V̂ εt (dq).

It is easy to see that

hs ∈ L2(P,�,Fε−2z),

gt ∈ ∈ L2(P,�,F+
ε−2t

)

and their second moments are uniformly bounded in x,p, ε since

E[h2
s ](x,p) � E[g2

s ](x,p), (66)

E[g2
s ](x,p) =

∫
[θ(x,p + q/2)− θ(x,p − q/2)]2�(ξ,q)dξdq, (67)

which is uniformly bounded for any integrable spectral density �.
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From the definition (11) we have

|E[hs(x,p)ht (y,q)]|
� ρ(ε−2(t − z))E1/2

[
h2
s (x,p)

]
E

1/2
[
g2
t (y,q)

]
.

Hence by setting s = t, x = y,p = q first and the Cauchy-Schwarz inequality we
have

E

[
h2
s

(
x,p)] � ρ2(ε−2(s − z))E[g2

t (x,p)]
and

∣∣E [hs(x,p)ht (y,q)
]∣∣

� ρ(ε−2(t − z))ρ(ε−2(s − z))E1/2[g2
t (x,p)]E1/2[g2

t (y,q)]
∀s, t � z,∀x, y. Hence

ε−4
∫ ∞

z

∫ ∞

z

E[hs(x,p)gt (x,p)]dsdt � E[g2
t ](x,p)

[∫ ∞

0
ρ(s)ds

]2

which together with (67) yields (65). ��
Corollary 1. The following inequality holds:

E

[
p · ∇xL̃εzθ

]2
(x,p)

�
[∫ ∞

0
ρ(s)ds

]2 ∫ [
p · ∇xθ(x,p + q/2)− p · ∇xθ(x,p − q/2)

]2

×�(ξ,q)dξdq. (68)

Inequality (68) can be obtained from the expression

p · ∇xL̃εzθ(x, x̃,p)

≡ iε−2
∫ ∞

z

∫
eiq·x̃p · ∇x[θ(x,p + q/2)− θ(x,p − q/2)]

×eik−1(s−z)p·q/ε2α
E
ε
zV̂

ε
s (dq)ds

as in Lemma 1.
The main property of L̃εzθ is that it solves the corrector equation

[
ε−2α p

k
· ∇x̃ + Aε

]
L̃εzθ = ε−2Lεzθ. (69)

Equation (69) can also be solved by using (24), yielding the solution

F−1
2 L̃εzθ(x, x̃, y)

= ε−2
∫ ∞

z

e−iε−2αk−1(s−z)∇y·∇x̃
[
E
ε
z

[
δεV

ε
s

]F−1
2 θ

]
(x, x̃, y)ds, (70)
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where

δεV
ε
z (x̃, y) = V εz (x̃ + y/2)− V εz (x̃ − y/2).

Recall that ∇x̃ and ∇x are the gradients with respect to the fast variable x̃ and the
slow variable x, respectively.

We will need to estimate the iteration of Lεz and L̃εz:

LεzL̃εzθ(x, x̃,p)

= −ε−2
∫ ∞

z

∫
V̂ εz (dq)Eεz[V̂ εs (dq′)]eiq·x̃eiq′·x̃eik−1(s−z)p·q/ε2α

×
{
[θ(x,p + q′/2 + q/2)− θ(x,p + q′/2 − q/2)]eik−1(s−z)q′·q/(2ε2α)

−[θ(x,p − q′/2 + q/2)− θ(x,p − q′/2 − q/2)]e−ik−1(s−z)q′·q/(2ε2α)
}
ds,

L̃εzL̃εzθ(x, x̃,p)

= −ε−4
∫ ∞

z

∫ ∞

z

∫
E
ε
z[V̂ εs (dq)]Eεz[V̂ εt (dq′)]

×eiq·x̃eiq′·x̃eik−1(s−z)p·q/ε2α
eik

−1(t−z)p·q′/ε2α

×
{
[θ(x,p + q′/2 + q/2)− θ(x,p + q′/2 − q/2)]eik−1(s−z)q′·q/(2ε2α)

−[θ(x,p−q′/2 + q/2)−θ(x,p−q′/2 − q/2)]e−ik−1(s−z)q′·q/(2ε2α)
}
dsdt.

Their second moments can be estimated as in Lemma 1 by using the 6th order
sub-Gaussian property (Assumption 3). In order to carry out the same argument,
we need to approximate the terms of non-product form such as θ(x,p + q′/2 +
q/2)eik

−1(s−z)q′·q/(2ε2α) by the sum of the terms which are a product of functions
of variables that are statistically coupled in the pairing.

Since we do not need the pointwise estimate such as stated in Lemma 1 we
shall demonstrate a simpler approach based on the inverse Fourier transform:

F−1
2

{
LεzL̃εzθ

}
(x, x̃, y)

= ε−2
∫ ∞

z

δεV
ε
z e

−iε−2αk−1(s−z)∇y·∇x̃
[
Ez[δεV εs ]F−1

2 θ
]
(x, x̃, y)ds, (71)

F−1
2

{
L̃εzL̃εzθ

}
(x, x̃, y)

= −ε−4
∫ ∞

z

e−iε−2αk−1(t−z)∇y·∇x̃

×
{
Ez[δεV εt ]e−iε−2αk−1(s−z)∇y·∇x̃

[
Ez[δεV εs ]F−1

2 θ
]}
(x, x̃, y)dsdt. (72)
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Lemma 2. For some constant C independent of ε,

E‖LεzL̃εzθ‖2
2 � 8C

(∫ ∞

0
ρ(s)ds

)2

E[Vz]2

×
∫

[θ(x,p + q/2)− θ(x,p − q/2)]2�(ξ,q)dξdxdqdp,

E‖L̃εzL̃εzθ‖2
2 � 8C

(∫ ∞

0
ρ(s)ds

)4

E[Vz]2

×
∫

[θ(x,p + q/2)− θ(x,p − q/2)]2�(ξ,q)dξdxdqdp.

Proof. Let us consider L̃εzL̃εzθ . The calculation for LεzL̃εzθ is analogous and
simpler.

By the Parseval theorem and the unitarity of exp (iτ∇y · ∇x̃), τ ∈ R,

E‖L̃εzL̃εzθ‖2
2

= ε−8
∫

E

{∫ ∞
z

e−iε−2αk−1(t−z)∇y·∇x̃

×
{
Ez[δεV εt ]e−iε−2αk−1(s−z)∇y·∇x̃

[
Ez[δεV εs ]F−1

2 θ
]}
(x, x̃, y)dsdt

×
∫ ∞
z

eiε
−2αk−1(t ′−z)∇y·∇x̃

×
{
Ez[δεV εt ′ ]eiε

−2αk−1(s′−z)∇y·∇x̃
[
Ez[δεV εs′ ]F−1

2 θ
]}
(x, x̃, y)ds′dt ′

}
dxdy

= ε−8
∫

E

{∫ ∞
z

e−iε−2αk−1(t−t ′)/2∇y·∇x̃

×
{
Ez[δεV εt ]e−iε−2αk−1(s−z)∇y·∇x̃

[
Ez[δεV εs ]F−1

2 θ
]}
(x, x̃, y)dsdt

×
∫ ∞
z

eiε
−2αk−1(t−t ′)/2∇y·∇x̃

×
{
Ez[δεV εt ′ ]eiε

−2αk−1(s′−z)∇y·∇x̃
[
Ez[δεV εs′ ]F−1

2 θ
]}
(x, x̃, y)ds′dt ′

}
dxdy

=ε−8
∫

E

{∫ ∞
z

{
Ez[δεV εt ]e−iε−2αk−1(s−z)∇y·∇x̃

[
Ez[δεV εs ]F−1

2 θ
]}
(x, x̃, y)dsdt

×
∫ ∞
z

{
Ez[δεV εt ′ ]eiε

−2αk−1(s′−z)∇y·∇x̃
[
Ez[δεV εs′ ]F−1

2 θ
]}
(x, x̃, y)ds′dt ′

}
dxdy

�Cε−8
∫ ∫ ∞

z

∣∣∣E
{
Ez[δεV εt ]e−iε−2αk−1(s−z)∇y·∇x̃

[
Ez[δεV εs ]F−1

2 θ
]}
(x, x̃, y)

∣∣∣ dsdt

×
∫ ∞
z

∣∣∣E
{
Ez[δεV εt ′ ]eiε

−2αk−1(s′−z)∇y·∇x̃
[
Ez[δεV εs′ ]F−1

2 θ
]}
(x, x̃, y)

∣∣∣ ds′dt ′dxdy

+Cε−8
∫ ∫ ∞

z

∣∣E [Ez[δεV εt ]Ez[δεV εt ′ ]
]∣∣

×
∣∣∣E
{
e−iε−2αk−1(s−z)∇y·∇x̃

[
Ez[δεV εs ]F−1

2 θ
]
(x, x̃, y)

×eiε−2αk−1(s′−z)∇y·∇x̃
[
Ez[δεV εs′ ]F−1

2 θ
]
(x, x̃, y)

}∣∣∣ dsdtds′dt ′dxdy.
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The last inequality follows from the sub-Gaussian assumption. Note that in the x
integrals above the fast variable x̃ is integrated and is not treated as independent of
x.

Let

g(t) = δεV
ε
t

and

h(s) = e−iε−2αk−1(s−z)∇y·∇x̃
[
δεV

ε
s F−1

2 θ
]
.

The same argument as that for Lemma 1 shows that for t, t ′, s, s′ � z,

|E[Ez[g(t)]Ez[h(s)]]| � E
1/2[Ez[g(t)]2]E1/2[Ez[h(s)]2]

� ρ(ε−2(t − z))ρ(ε−2(s − z))E1/2[g2(t)]E1/2[h2(s)];∣∣E[Ez[g(t)]Ez[g(t ′)]]
∣∣ � E

1/2[Ez[g(t)]2]E1/2[Ez[g(t ′)]2]
� ρ(ε−2(t − z))ρ(ε−2(t ′ − z))E1/2[g2(t)]E1/2[g2(t ′)];∣∣E[Ez[h(s)]Ez[h(s′)]]
∣∣ � E

1/2[Ez[h(s)]2]E1/2[Ez[h(s′)]2]
� ρ(ε−2(s − z))ρ(ε−2(s′ − z))E1/2[h2(s)]E1/2[h2(s′)].

Combining the above estimates we get

E‖L̃εzL̃εzθ‖2
2

� 2C

(∫ ∞
0

ρ(s)ds

)4 ∫
E[g(z)]2E[h(z)]2dxdy

� 2C

(∫ ∞
0

ρ(s)ds

)4 ∫
E[δεV εz ]2E

[
e−iε−2αk−1(s−z)∇y·∇x̃

[
δεV

ε
s F−1

2 θ
]]2

dxdy

� 8C

(∫ ∞
0

ρ(s)ds

)4
E[V εz ]2

∫
E

[
e−iε−2αk−1(s−z)∇y·∇x̃

[
δεV

ε
s F−1

2 θ
]]2

dxdy

� 8C

(∫ ∞
0

ρ(s)ds

)4
E[V εz ]2

∫
E

{
eiq·x̃[θ(x,p + q/2)− θ(x,p − q/2)]

×eik−1(s−z)p·q/ε2α
V̂ εs (dq)

}2
dxdp

� 8C

(∫ ∞
0

ρ(s)ds

)4
E[V εz ]2

×
∫

[θ(x,p + q/2)− θ(x,p − q/2)]2�(ξ,q)dξdxdqdp ��
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Equation (72) is convenient for estimating the second moment of p · ∇xL̃εzL̃εzθ
and LεzL̃εzL̃εzθ which by (72) and (24) have the following expressions:

F−1
2

{
p · ∇xL̃εzL̃εzθ

}
(x, x̃, y)

= iε−2∇y · ∇x

∫ ∞

z

e−iε−2αk−1(t−z)∇y·∇x̃

×
{
Ez[δεV εt ]e−iε−2αk−1(s−z)∇y·∇x̃

[
Ez[δεV εs ]F−1

2 θ
]}
(x, y)dsdt

= iε−2
∫ ∞

z

e−iε−2αk−1(t−z)∇y·∇x̃

×
{
Ez[δεV εt ]e−iε−2αk−1(s−z)∇y·∇x̃

[
Ez[∇yδεV

ε
s ] · F−1

2 ∇xθ
]}
(x, y)dsdt

+iε−2
∫ ∞

z

e−iε−2αk−1(t−z)∇y·∇x̃

×
{
Ez[∇yδεV

ε
t ] · e−iε−2αk−1(s−z)∇y·∇x̃

[
Ez[δεV εs ]F−1

2 ∇xθ
]}
(x, y)dsdt

F−1
2

{
LεzL̃εzL̃εzθ

}
(x, x̃, y)

= iε−4δεV
ε
z (x̃, y)

∫ ∞

z

e−iε−2αk−1(t−z)∇y·∇x̃

×
{
Ez[δεV εt ]e−iε−2αk−1(s−z)∇y·∇x̃

[
Ez[δεV εs ]F−1

2 θ
]}
(x, y)dsdt.

The same calculation as in Lemma 2 yields the following estimates:

Corollary 2. For some constant C independent of ε,

E‖p · ∇xL̃εzL̃εzθ‖2
2

� 32C

(∫ ∞

0
ρ(s)ds

)4

×
{

E[∇yV
ε
z ]2

∫
[∇xθ(x,p + q/2)− ∇xθ(x,p − q/2)]2�(ξ,q)dξdxdqdp

+ E[V εz ]2
∫

[∇xθ(x,p + q/2)−∇xθ(x,p−q/2)]2|p|2�(ξ,q)dξdxdqdp
}

;

E‖LεzL̃εzL̃εzθ‖2
2 � 32C

(∫ ∞

0
ρ(s)ds

)4

E[V εz ]4

×
∫

[θ(x,p + q/2)− θ(x,p − q/2)]2�(ξ,q)dξdxdqdp.

Let

f ε1 (z) = kεf ′(z)
〈
Wε
z , L̃εzθ

〉
(73)

be the 1st perturbation of f (z).
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Proposition 1. The following results hold:

lim
ε→0

sup
z<z0

E|f ε1 (z)| = 0, lim
ε→0

sup
z<z0

|f ε1 (z)| = 0 in probability.

Proof. We have

E[|f ε1 (z)|] � ε‖f ′‖∞‖W0‖2E‖L̃εzθ‖2 (74)

and

sup
z<z0

|f ε1 (z)| � ε‖f ′‖∞‖W0‖2 sup
z<z0

‖L̃εzθ‖2. (75)

The right-hand side of (74) is O(ε) while the right-hand side of (75) is o(1) in
probability by Chebyshev’s inequality and Assumption 4.

Proposition 1 now follows from (74) and (75). ��
Set f ε(z) = f (z)+ f ε1 (z). A straightforward calculation yields

Aεf ε1 = εf ′(z)
〈
Wε
z ,p · ∇xL̃εzθ

〉
+ εf ′′(z)

〈
Wε
z ,p · ∇xθ

〉 〈
Wε
z , L̃εθ

〉

+k2f ′(z)
〈
Wε
z ,LεzL̃εzθ

〉
+ k2f ′′(z)

〈
Wε
z ,Lεzθ

〉 〈
Wε
z , L̃εzθ

〉

−k
ε
f ′(z)

〈
Wε
z ,Lεzθ

〉

and hence,

Aεf ε(z) = 1

k
f ′(z)

〈
Wε
z ,p · ∇xθ

〉

+k2f ′(z)
〈
Wε
z ,LεzL̃εzθ

〉
+ k2f ′′(z)

〈
Wε
z ,Lεzθ

〉 〈
Wε
z , L̃εzθ

〉

+ε
[
f ′(z)

〈
Wε
z ,p · ∇xL̃εzθ

〉
+ f ′′(z)

〈
Wε
z ,p · ∇xθ

〉 〈
Wε
z , L̃εzθ

〉]

= Aε0(z)+ Aε1(z)+ Aε2(z)+ Rε1(z) (76)

where Aε1(z) and Aε2(z) are the O(1) statistical coupling terms.

Proposition 2. The following result holds:

lim
ε→0

sup
z<z0

E|Rε1(z)|2 = 0.

Proof. We have

|Rε1| � ε
[
‖f ′′‖∞‖W0‖2

2‖p · ∇xθ‖2‖L̃εzθ‖2 + ‖f ′‖∞‖Wε
z ‖2‖p · ∇x(L̃εzθ)‖2

]
.

Clearly
lim
ε→0

sup
z<z0

E|Rε1(z)|2 = 0

by Lemma 1 and Corollary 1. ��
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For the tightness criterion stated in the beginnings of the section, it remains to
show

Proposition 3. The sets {Aεf ε, 0 < ε � 1} are uniformly integrable.

Proof. We show that {Aεi }, i = 0, 1, 2, 3 are uniformly integrable.
For this we have the following estimates:

|Aε0(z)| � 1

k
‖f ′‖∞‖W0‖2‖p · ∇xθ‖2,

|Aε1(z)| � k2‖f ′‖∞‖W0‖2‖LεzL̃εzθ‖2,

|Aε2(z)| � k2‖f ′′‖∞‖W0‖2
2‖Lεzθ‖2‖L̃εzθ‖2.

The second moments of the right-hand side of the above expressions are uniformly
bounded as ε → 0 by Lemmas 1 and 2 and henceAε0(z), A

ε
1(z), A

ε
2(z) are uniformly

integrable. By Proposition 2, Rε1 is uniformly integrable. ��

5.3. Identification of the limit

Our strategy is to show directly that, in passing to the weak limit, the limiting
process solves the martingale problem with zero quadratic variation. The unique-
ness of the limiting deterministic problem then identifies the limit.

For this purpose, we introduce the next perturbations f ε2 , f
ε
3 . Let

A
(1)
2 (ψ) ≡

∫
ψ(x,p)Q1(θ ⊗ θ)(x,p, y,q)ψ(y,q) dxdp dydq, (77)

A
(1)
1 (ψ) ≡

∫
Q′

1θ(x,p)ψ(x,p) dxdp ∀ψ ∈ L2(R2d), (78)

where

Q1(θ ⊗ θ)(x,p, y,q) = E

[
Lεzθ(x,p)L̃εzθ(y,q)

]
(79)

and

Q′
1θ(x,p) = E

[
LεzL̃εzθ(x,p)

]
.

Clearly,

A
(1)
2 (ψ) = E

[〈
ψ,Lεzθ

〉 〈
ψ, L̃εzθ

〉]
. (80)

Let

Q2(θ ⊗ θ)(x,p, y,q) ≡ E

[
L̃εzθ(x,p)L̃εzθ(y,q)

]

and

Q′
2θ(x,p) = E

[
L̃εzL̃εzθ(x,p)

]
.
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Let

A
(2)
2 (ψ) ≡

∫
ψ(x,p)Q2(θ ⊗ θ)(x,p, y,q)ψ(y,q) dxdp dydq, (81)

A
(2)
1 (ψ) ≡

∫
Q′

2θ(x,p)ψ(x,p) dx dp. (82)

Define

f ε2 (z) = ε2k2

2
f ′′(z)

[〈
Wε
z , L̃εzθ

〉2 − A
(2)
2 (Wε

z )

]
(83)

f ε3 (z) = ε2k2

2
f ′(z)

[〈
Wε
z , L̃εzL̃εzθ

〉
− A

(2)
1 (Wε

z )
]
. (84)

Proposition 4. The following equalities hold:

lim
ε→0

sup
z<z0

E|f ε2 (z)| = 0, lim
ε→0

sup
z<z0

E|f ε3 (z)| = 0.

Proof. We have the bounds

sup
z<z0

E|f ε2 (z)| � sup
z<z0

ε2k2‖f ′′‖∞
[
‖W0‖2

2E‖L̃εzθ‖2
2 + E[A(2)2 (Wε

z )]
]
,

sup
z<z0

E|f ε3 (z)| � sup
z<z0

ε2k2‖f ′‖∞
[
‖W0‖2E‖L̃εzL̃εzθ‖2 + E[A(2)1 (Wε

z )]
]
.

The right-hand sides of both tend to zero as ε → 0 by Lemma 1 and 2. ��
We have

Aεf ε2 (z) = k2f ′′(z)
[
− 〈Wε

z ,Lεzθ
〉 〈
Wε
z , L̃εzθ

〉
+ A

(1)
2 (Wε

z )
]

+ Rε2(z),

Aεf ε3 (z) = k2f ′(z)
[
−
〈
Wε
z ,Lεz(L̃εzθ)

〉
+ A

(1)
1 (Wε

z )
]

+ Rε3(z)

with

Rε2(z)=ε2k2 f
′′′(z)
2

[
1

k

〈
Wε
z ,p · ∇xθ

〉+ k
ε

〈
Wε
z ,Lεzθ

〉] [〈
Wε
z , L̃εzθ

〉2 − A
(2)
2 (Wε

z )

]

+ε2k2f ′′(z)
〈
Wε
z , L̃εzθ

〉 [1

k

〈
Wε
z ,p · ∇x(L̃εzθ)

〉
+ k

ε

〈
Wε
z ,LεzL̃εzθ

〉]

−ε2k2f ′′(z)
[

1

k

〈
Wε
z ,p · ∇x(G

(2)
θ W

ε
z )
〉
+ k

ε

〈
Wε
z ,LεzG(2)θ Wε

z

〉]
, (85)

where G(2)θ denotes the operator

G
(2)
θ ψ ≡

∫
Q2(θ ⊗ θ)(x,p, y,q)ψ(y,q) dydq.
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Similarly

Rε3(z)

= ε2k2f ′(z)
[

1

k

〈
Wε
z ,p · ∇x(L̃εzL̃εzθ)

〉
+ k

ε

〈
Wε
z ,LεzL̃εzL̃εzθ

〉]

+ε2 k
2

2
f ′′(z)

[
1

k

〈
Wε
z ,p · ∇xθ

〉+ k

ε

〈
Wε
z ,Lεzθ

〉] [〈
Wε
z , L̃εzL̃εzθ

〉
− A

(2)
1 (Wε

z )
]

−ε2k2f ′(z)
[

1

k

〈
Wε
z ,p · ∇x(Q′

2θ)
〉+ k

ε

〈
Wε
z ,LεzQ′

2θ
〉]
. (86)

Proposition 5. The following equalities hold:

lim
ε→0

sup
z<z0

E|Rε2(z)| = 0, lim
ε→0

sup
z<z0

E|Rε3(z)| = 0.

Proof. Part of the argument is analogous to that given for Proposition 4. The addi-
tional estimates that we need to consider are the following.

In Rε2: First

sup
z<z0

ε2
E

∣∣∣
〈
Wε
z ,p · ∇x(G

(2)
θ W

ε
z )
〉∣∣∣

= ε2
∫

E
[
Wε
z (x,p)Wε

z (y,q)
]
E

[
p · ∇xL̃εzθ(x,p)L̃εzθ(y,q)

]
dxdydpdq

� ε2
∫

E
[
Wε
z (x,p)Wε

z (y,q)
]
E

1/2[p · ∇xL̃εzθ ]2(x,p)

×E
1/2[L̃εzθ ]2(y,q)dxdydpdq,

which isO(ε2)by using Lemma 1, Corollary 1 and the fact E
[
Wε
z (x,p)Wε

z (y,q)
] ∈

L2(R4d) in conjunction with the same argument as in proof of Lemma 1; Secondly,

sup
z<z0

εE

∣∣∣
〈
Wε
z ,LεzG(2)θ Wε

z

〉∣∣∣

= sup
z<z0

ε‖W0‖2E‖LεzG(2)θ Wε
z ‖2

= sup
z<z0

ε‖W0‖2E‖LεzE
[
L̃εzθ ⊗ L̃εzθ

]
Wε
z ‖2

= sup
z<z0

ε‖W0‖2E‖F−1
2 LεzE

[
F−1

2 L̃εzθ ⊗ F−1
2 L̃εzθ

]
F−1

2 Wε
z ‖2.

Let

hs = e−ik−1ε−2α(s−z)∇y·∇x̃ [δεV εs F−1
2 θ ].
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We then have

E‖F−1
2 LεzE

[
F−1

2 L̃εzθ ⊗ F−1
2 L̃εzθ

]
F−1

2 Wε
z ‖2

= E

{∫ ∣∣∣∣ε−4
∫ ∫ ∞

z

δεV
ε
z (x, y)E

[
Ez[hs(x, y)]Ez[ht (dx′, dy′)]]

×F−1
2 Wε

z (x
′, y′)dx′dy′dsdt

∣∣∣
2
dxdy

}1/2

� E
1/2
{∫ ∣∣∣∣ε−4

∫ ∞

z

|δεV εz (x, y)|ρ(ε−2(s − z))ρ(ε−2(t − z))E1/2[hs(x, y)]2

×
∫

E
1/2[ht (dx′, dy′)]2|F−1

2 Wε
z (x

′, y′)|dx′dy′dsdt
∣∣∣∣
2

dxdy

}2

� E
1/2
{∫ ∣∣∣∣ε−4

∫ ∞

z

|δεV εz (x, y)|ρ(ε−2(s − z))ρ(ε−2(t − z))E1/2[hs(x, y)]2

×
(∫

E[ht (dx′, dy′)]2dx′dy′
)(∫

|Wε
z (x

′,p′)|2dx′dp′
)
dsdt

∣∣∣∣
2

dxdy

}
.

Recall that ‖Wε
z ‖2 � ‖W0‖2 and

∫
E[ht (dx′, dy′)]2dx′dy′

=
∫

[θ(x,p + q/2)− θ(x,p − q/2)]2�(ξ,q)dξdqdxdp < ∞
so that

E‖F−1
2 LεzE

[
F−1

2 L̃εzθ ⊗ F−1
2 L̃εzθ

]
F−1

2 Wε
z ‖2

� ‖W0‖2E
1/2‖hs‖2

2E
1/2
{∫ ∣∣∣∣ε−4

∫ ∞

z

× |δεV εz (x, y)|ρ(ε−2(s − z))ρ(ε−2(t − z))E1/2[hs(x, y)]2dsdt

∣∣∣
2
dxdy

}

� ‖W0‖2E
1/2‖hs‖2

2

(
sup
x,y

E[δεV εz ]2

)
ε−8

∫ ∞

z

ρ(ε−2(s − z))ρ(ε−2(t − z))

×ρ(ε−2(s′ − z))ρ(ε−2(t ′ − z))E1/2‖hs‖2
2E

1/2‖hs′ ‖2
2dsdtds

′dt ′

� ‖W0‖2E
3/2‖hs‖2

2

(
sup
x,y

E[δεV εz ]2

) ∣∣∣∣
∫ ∞

0
ρ(s)ds

∣∣∣∣
2

< ∞.

Recall from (67) that

E‖hs‖2
2 =

∫
[θ(x,p + q/2)− θ(x,p − q/2)]2�(ξ,q)dξdqdxdp < ∞.

Hence

sup
z<z0

εE

∣∣∣
〈
Wε
z ,LεzG(2)θ Wε

z

〉∣∣∣ = O(ε).
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In Rε3:

sup
z<z0

εE

∣∣∣
〈
Wε
z ,LεzL̃εzL̃εzθ

〉∣∣∣ � ε‖W0‖2 sup
z<z0

E‖LεzL̃εzL̃εzθ‖2

which is O(ε) by Corollary 2.
The two other terms in Rε3 are

ε2
E
∣∣〈Wε

z ,p · ∇x(Q′
2θ)
〉∣∣ � ε2‖W0‖2‖p · ∇xE[L̃εzL̃εzθ ]‖2

which is O(ε2) by Corollary 2, and

εE
∣∣〈Wε

z ,LεzQ′
2θ
〉∣∣ � ε‖W0‖2E‖LεzE[L̃εzL̃εzθ ]‖2

� ε‖W0‖2E‖F−1
2 [Lεz]E[F−1

2 L̃εzL̃εzθ ]‖2

� ε‖W0‖2

(
sup
x,y

E
1/2
∣∣δεV εz

∣∣2
)

E
1/2‖L̃εzL̃εzθ‖2

2

which is O(ε) by Lemma 2. ��
Consider the test function f ε(z) = f (z)+ f ε1 (z)+ f ε2 (z)+ f ε3 (z). We have

Aεf ε(z) = 1

k
f ′(z)

〈
Wε
z ,p · ∇xθ

〉+ k2f ′′(z)A(1)2 (Wε
z )+ k2f ′A(1)1 (Wε

z )

+Rε1(z)+ Rε2(z)+ Rε3(z). (87)

Set

Rε(z) = Rε1(z)+ Rε2(z)+ Rε3(z). (88)

It follows from Propositions 3 and 5 that

lim
ε→0

sup
z<z0

E|Rε(z)| = 0.

Proposition 6. The following equality holds:

lim
ε→0

sup
z<z0

sup
‖ψ‖2=1

A
(1)
2 (ψ) = 0.

Proof. We have

A
(1)
2 (ψ) = 1

2

∫
ψ(x,p)Qs

1(θ ⊗ θ)(x,p, y,q)ψ(y,q) dxdp dydq

with the symmetrized kernel

Qs
1(x,p, y,q)

= Q1(θ ⊗ θ)(y,q, x,p)+ Q1(θ ⊗ θ)(x,p, y,q)

=
∫ ∞

−∞
ds

∫
dp′�̌(s,p′)eip′·(x−y)/ε2α

e−ik−1sp·p′ε2−2α

× [
θ(x,p + p′/2)− θ(x,p − p′/2)

] [
θ(y,q + p′/2)− θ(y,q − p′/2)

]

= 2π
∫
eip

′·(x−y)/ε2α [
θ(x,p + p′/2)− θ(x,p − p′/2)

]

× [
θ(y,q + p′/2)− θ(y,q − p′/2)

]
�(k−1p · p′ε2−2α,p′)dp′,
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which, because of Assumption 1, tends to zero outside any neighborhood of x = y
while staying uniformly bounded by the functions of the kind f (x,p, y,q) =
c
∫ ∣∣θ(x,p ± p′/2)θ(x,q ± p′/2)

∣∣�(0,p′)dp′ for some constant c. We know
that f (x,p, y,q) has a compact support in x, y while decaying like
(|p| + |q|)d−ζ , |p|, |q| � 1 and hence is square integrable.

Therefore the L2 norm of Qs
1 tends to zero by the application of the dominated

convergence theorem and the proposition follows. ��
Similar calculation leads to the following expression: For any real-valued, L2-

weakly convergent sequence ψε → ψ , we have

lim
ε→0

A
(1)
1 (ψ)

= lim
ε→0

∫ ∞

0
ds

∫
dqdxdp ψε(x,p)�̌(s,q)e−ik−1sp·qε2−2α

×
[
e−ik−1s|q|2ε2−2α/2 [θ(x,p + q)− θ(x,p)

]

−eik−1s|q|2ε2−2α/2 [θ(x,p)− θ(x,p − q)
]]
.

Note that the integrand is invariant under the change of variables:

s → −s, q → −q.

Thus we can write

lim
ε→0

A
(1)
1 (ψ)

= lim
ε→0

1

2

∫ ∞

−∞
ds

∫
dqdxdp ψε(x,p)�̌(s,q)e−ik−1sp·qε2−2α

×
[
e−ik−1s|q|2ε2−2α/2 [θ(x,p + q)− θ(x,p)

]

−eik−1s|q|2ε2−2α/2 [θ(x,p)− θ(x,p − q)
]]

= lim
ε→0

π

∫
dqdxdp ψε(x,p)

×
{
�(ε2−2αk−1(p + q/2) · q,q)

[
θ(x,p + q)− θ(x,p)

]

−�(ε2−2αk−1(p − q/2) · q,q)
[
θ(x,p)− θ(x,p − q)

]}

= lim
ε→0

π

∫
dqdxdp ψε(x,p)

×
{
�

(
ε2−2α |q|2 − |p|2

2k
,q − p

) [
θ(x,q)− θ(x,p)

]

−�
(
ε2−2α |p|2 − |q|2

2k
,p − q

) [
θ(x,p)− θ(x,q)

]}

= lim
ε→0

2π
∫
dqdxdp ψε(x,p)

×�
(
ε2−2α |p|2 − |q|2

2k
,p − q

) [
θ(x,q)− θ(x,p)

]
.
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Clearly, we have

lim
ε→0

∫
dq[θ(x,q)− θ(x,p)]�(ε2−2α |q|2 − |p|2

2k
,q − p)

=
∫
dq[θ(x,q)− θ(x,p)] ×





�(
|q|2−|p|2

2k ,q − p), α = 1

�(0,q − p), 0 < α < 1

0, α > 1

in L2(E2d). Therefore,

lim
ε→0

A
(1)
1 (ψε)

=
∫
dqdxdpψ(x,p)[θ(x,q)− θ(x,p)]

×




�(
|q|2−|p|2

2k ,q − p), α = 1

�(0,q − p), 0 < α < 1

0, α > 1

≡ Ā1(ψ).

Recall that

Mε
z (θ) = f ε(z)−

∫ z

0
Aεf ε(s) ds

= f (z)+ f ε1 (z)+ f ε2 (z)+ f ε3 (z)−
∫ z

0

1

k
f ′(z)

〈
Wε
z ,p · ∇xθ

〉
ds

−
∫ z

0
k2
[
f ′′(s)A(1)2 (Wε

s )+f ′(s)A(1)1 (Wε
s )
]
ds −

∫ z

0
Rε(s) ds (89)

is a martingale. The martingale property implies that for any finite sequence 0 <
z1 < z2 < z3 < · · · < zn � z, C2-function f and bounded continuous function h
with compact support, we have

E
{
h
(〈
Wε
z1
, θ
〉
,
〈
Wε
z2
, θ
〉
, · · · , 〈Wε

zn
, θ
〉)

× [
Mε
z+s(θ)−Mε

z (θ)
]} = 0 ∀s > 0, z1 � z2 � · · · � zn � z. (90)

Let

Āf (z) ≡ f ′(s)
[

1

k
〈Wz,p · ∇xθ〉 + k2Ā1(Wz)

]
.

In view of the results of Propositions 1–5 we see that f ε(z) and Aεf ε(z) in (89)
can be replaced by f (z) and Āf (z), respectively, apart from an error that vanishes
as ε → 0. With this and the tightness of {Wε

z } we can pass to the limit ε → 0 in
(90). We see that the limiting process satisfies the martingale property that

E
{
h
(〈
Wz1 , θ

〉
,
〈
Wz2 , θ

〉
, · · · , 〈Wzn, θ

〉) [
Mz+s(θ)−Mz(θ)

]} = 0 ∀s > 0,
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where

Mz(θ) = f (z)−
∫ z

0
Āf (s) ds. (91)

Then it follows that

E
[
Mz+s(θ)−Mz(θ)|Wu, u � z

] = 0 ∀z, s > 0

which proves that Mz(θ) is a martingale given by

Mz(θ) = f (z)−
∫ z

0

{
f ′(s)

[
1

k
〈Ws,p · ∇xθ〉 + k2Ā1(Ws)

]}
ds. (92)

Choosing f (r) = r and r2 in (92), we see that

M(1)
z (θ) = 〈Wz, θ〉 −

∫ z

0

[
1

k
〈Ws,p · ∇xθ〉 + k2Ā1(Ws)

]
ds

is a martingale with the null quadratic variation
[
M(1)(θ),M(1)(θ)

]
z

= 0.

Thus

f (z)−
∫ z

0

{
f ′(s)

[
1

k
〈Ws,p · ∇xθ〉 + k2Ā1(Ws)

]}
ds = f (0) ∀z > 0.

Since
〈
Wε
z , θ

〉
is uniformly bounded,

∣∣〈Wε
z , θ

〉∣∣ � ‖W0‖2‖θ‖2,

we have the convergence of the second moment

lim
ε→0

E

{〈
Wε
z , θ

〉2} = 〈Wz, θ〉2

and hence the convergence in probability.

6. Proof of Theorem 2

6.1. Tightness

Instead of (64) we use the corrector

L̃εzθ(x, x̃,p) = i

ε2

∫ ∞

z

∫
eiq·x̃eik−1(s−z)p·q/ε2α

×ε2α−2
[
θ(x,p + ε2−2αq/2)− θ(x,p − ε2−2αq/2)

]

×E
ε
zV̂

ε
s (dq) (93)
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which satisfies the corrector equation (69). Its inverse Fourier transform is given
by

F−1
2 L̃εzθ(x, x̃, y)

= ε−2
∫ ∞

z

e−iε−2αk−1(s−z)∇y·∇x̃
[
Ez

[
δεV

ε
s

]F−1
2 θ

]
(x, y)ds. (94)

Instead of Lemma 1, Corollary 1, Lemma 2 and Corollary 2 we have

Lemma 3. The following inequality holds:

lim sup
ε→0

E

[
L̃εzθ

]2
(x,p) �

[∫ ∞

0
ρ(s)ds

]2 ∫ [
q · ∇pθ(x,p)

]2
�(ξ,q)dξdq.

Corollary 3. The following inequality holds:

lim sup
ε→0

E

[
p · ∇xL̃εzθ

]2
(x,p)

�
[∫ ∞

0
ρ(s)ds

]2 ∫ [
p · ∇x[q · ∇pθ(x,p)]]2�(ξ,q)dξdq.

Lemma 4. For some constant C,

lim sup
ε→0

E‖LεzL̃εzθ‖2
2

� 8C

(∫ ∞

0
ρ(s)ds

)2

E[Vz]2
∫

[q · ∇pθ(x,p)]2�(ξ,q)dξdxdqdp

lim sup
ε→0

E‖L̃εL̃εθ‖2
2

� 8C

(∫ ∞

0
ρ(s)ds

)4

E[Vz]2
∫

[q · ∇pθ(x,p)]2�(ξ,q)dξdxdqdp.

Corollary 4. For some contant C,

lim sup
ε→0

E‖LεzL̃εzL̃εzθ‖2
2

� 32C

(∫ ∞

0
ρ(s)ds

)4

E[Vz]4
∫

[q · ∇pθ(x,p)]2�(ξ,q)dξdxdqdp;

lim sup
ε→0

E‖p · ∇xL̃εzL̃εzθ‖2
2

� 32C

(∫ ∞

0
ρ(s)ds

)4 {
E[∇yVz]2

∫
[q · ∇p∇xθ(x,p)]2�(ξ,q)dξdxdqdp

+ E[Vz]2
∫

[∇xq · ∇pθ(x,p)]2|p|2�(ξ,q)dξdxdqdp
}
.

The rest of the argument for tightness proceeds without changes.
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6.2. Identification of the limit

With straightforward modification on the estimates of the remainder terms Rε2
and Rε3, the same argument for passing to the limit ε → 0 as before applies here.

In particular, Proposition 6 can be proved as follows.

Proposition 7. The following equality holds:

lim
ε→0

sup
‖ψ‖2=1

A
(1)
2 (ψ) = 0.

Proof. As in (89) we have

A
(1)
2 (ψ) = 1

2

∫
ψ(x,p)Qs

1(x,p, y,q)ψ(y,q) dxdp dydq

with the symmetrized kernel

Qs
1(x,p, y,q)

= Q1(θ ⊗ θ)(y,q, x,p)+ Q1(θ ⊗ θ)(x,p, y,q)

=
∫ ∞

0

∫
�̌(s,p′)eip′·(x−y)/ε2α

e−ik−1sp·p′ε2−2α

×ε2α−2
[
θ(x,p + ε2−2αp′/2)− θ(x,p − ε2−2αp′/2)

]

×ε2α−2
[
θ(y,q + ε2−2αp′/2)− θ(y,q − ε2−2αp′/2)

]
dp′ ds

= lim
ε→0

π

∫
�(k−1p · p′ε2−2α,p′)eip′·(x−y)/ε2α

×ε2α−2
[
θ(x,p + ε2−2αp′/2)− θ(x,p − ε2−2αp′/2)

]

×ε2α−2
[
θ(y,q + ε2−2αp′/2)− θ(y,q − ε2−2αp′/2)

]
dp′.

Note that

ε2α−2
[
θ(x,p + ε2−2αp′/2)− θ(x,p − ε2−2αp′/2)

]

converges to p′ · ∇pθ(x,p) in C∞
c (R

2d). Thus the L2 norm of Qs
1 tends to zero

for the same reason as given in the proof of Proposition 6. ��



376 Albert C. Fannjiang

To identify the limit we have the following straightforward calculation: For any
real-valued, L2-weakly convergent sequence ψε → ψ ,

lim
ε→0

A
(1)
1 (ψε)

= lim
ε→0

∫ ∞

0
ds

∫
dwdqdxdp ψε(x,p)�(w,q)eiswe−ik−1sp·qε2−2α

ε4α−4

×
[
e−ik−1s|q|2ε4−4α/2

[
θ(x,p + ε2−2αq)− θ(x,p)

]

−eik−1s|q|2ε4−4α/2
[
θ(x,p)− θ(x,p − ε2−2αq)

]]

= lim
ε→0

∫ ∞

0
ds

∫
dqdxdp ψε(x,p)�̌(s,q)e−ik−1sp·qε2−2α

ε4α−4

×
[
e−ik−1s|q|2ε4−4α/2

[
θ(x,p + ε2−2αq)− θ(x,p)

]

−eik−1s|q|2ε4−4α/2
[
θ(x,p)− θ(x,p − ε2−2αq)

]]

= π

∫
dqdxdp ψ(x,p)�(0,q)(q · ∇p)

2θ(x,p)

= Ā1(ψ)

for α ∈ (0, 1). For α = 1 we have the same result as in Theorem 1 Case (ii); for
α > 1, the limit is identically zero.

7. Proof of Theorem 3

The proof of the result for Case (i) and (iii) is identical to that for Theorem 1,
Case (i) and (iii), respectively. So in what follows we focus on the second case
α > β.

Introducing a new parameter

ε̃ = εβ,

we can rewrite the equation as

∂Wε
z

∂z
+ p
k

· ∇Wε
z + k

ε̃
LεzWε

z = 0 (95)

with

LεzWε
z (x, x̃,p)

= iε̃1−α/β
∫
eiq·x̃ [Wε

z (x,p + q/2)−Wε
z (x,p − q/2)

]
V̂ εz (dq), β < 1 (96)

with x̃ = xε̃−2α/β and

V̂ εz (dq) = V̂
( z
ε̃2 , dq

)
, V εz (x) = V

( z
ε̃2 , x

)
. (97)
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Note again that

F−1
2 Lεzθ = −iε̃1−α/βδεV εz (x̃, y)F−1

2 θ (98)

with

δεV
ε
z (x̃, y) = V εz (x̃ + y/2)− V εz (x̃ − y/2). (99)

We will work with (96) and (97) and construct the perturbed test function in the
power of ε̃.

First we note that

E
[Lεzθ

]2
(x,p)

= ε̃2−2α/β
∫

[θ(x,p + q/2)− θ(x,p − q/2)]2�(ξ,q)dξdq.

Instead of (64) we define

L̃εzθ(x, x̃,p) = i

ε̃1+α/β

∫ ∞

z

∫
eiq·x̃eik−1(s−z)p·q/ε̃2α/β

×[θ(x,p + q/2)− θ(x,p − q/2)]EεzV̂ εs (dq)

with x̃ = xε̃−2α/β , which becomes, after the partial inverse Fourier transform,

F−1
2 L̃εzθ(x, x̃, y)

= i

ε̃1+α/β

∫ ∞

z

eik
−1(s−z)∇y·∇x̃ ε̃

−2α/β
[
E
ε
z[δεV εs ]F−1

2 θ
]
(x, x̃, y)ds. (100)

The corrector equation holds again:
[
ε̃−2α/β p

k
· ∇x̃ + Aε

]
L̃εzθ = ε̃−2Lεzθ. (101)

Following the same argument as in the proof of Theorem 1 we have the follow-
ing estimates:

Lemma 5. The following estimate holds:

E

[
L̃εzθ

]2
(x,p)

� ε̃2−2α/β
[∫ ∞

0
ρ(s)ds

]2 ∫ [
θ(x,p + q/2)− θ(x,p − q/2)

]2
�(ξ,q)dξdq.

Corollary 5. The following estimate holds:

E

[
p · ∇xL̃εzθ

]2
(x,p)

� ε̃2−2α/β
[∫ ∞

0
ρ(s)ds

]2

×
∫ [

p · ∇xθ(x,p + q/2)− p · ∇xθ(x,p − q/2)
]2
�(ξ,q)dξdq.
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Lemma 6. For some constant C independent of ε,

E‖LεzL̃εzθ‖2
2 � ε̃4−4α/β8C

(∫ ∞

0
ρ(s)ds

)2

E[Vz]2

×
∫

[θ(x,p + q/2)− θ(x,p − q/2)]2�(ξ,q)dξdxdqdp,

E‖L̃εzL̃εzθ‖2
2 � ε̃4−4α/β8C

(∫ ∞

0
ρ(s)ds

)4

E[Vz]2

×
∫

[θ(x,p + q/2)− θ(x,p − q/2)]2�(ξ,q)dξdxdqdp.

Corollary 6. For some constant C independent of ε,

E‖p · ∇xL̃εzL̃εzθ‖2
2

� ε̃4−4α/β32C

(∫ ∞

0
ρ(s)ds

)4

×
{

E[∇yVz]2
∫

[∇xθ(x,p + q/2)− ∇xθ(x,p − q/2)]2�(ξ,q)dξdxdqdp

+ E[Vz]2
∫

[∇xθ(x,p+q/2)−∇xθ(x,p−q/2)]2|p|2�(ξ,q)dξdxdqdp
}
,

E‖LεzL̃εzL̃εzθ‖2
2 � ε̃6−6α/β32C

(∫ ∞

0
ρ(s)ds

)4

E[Vz]4

×
∫

[θ(x,p + q/2)− θ(x,p − q/2)]2�(ξ,q)dξdxdqdp.

As a consequence of the divergent factor ε̃1−1/β in the above estimates the pre-
vious proof of uniform integrability of Aε[f (z)+ ε̃f ε1 ] (e.g., Proposition 3) breaks
down. For both the tightness and the identification we shall use the test function

f ε(z) = f (z)+ f ε1 (z)+ f ε2 (z)+ f ε3 (z),

where

f ε1 (z) = kε̃f ′(z)
〈
Wε
z , L̃εzθ

〉
, (102)

f ε2 (z) = ε̃2k2

2
f ′′(z)

[〈
Wε
z , L̃εzθ

〉2 − A
(2)
2 (Wε

z )

]
, (103)

f ε3 (z) = ε̃2k2

2
f ′(z)

[〈
Wε
z , L̃εzL̃εzθ

〉
− A

(2)
1 (Wε

z )
]
, (104)

with A(2)1 , A
(2)
2 given as before.
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Following the same procedure as in the proof of Theorem 1 we obtain

Aεf ε(z) = 1

k
f ′(z)

〈
Wε
z ,p · ∇xθ

〉+ k2f ′′(z)A(1)2 (Wε
z )+ k2f ′A(1)1 (Wε

z )

+Rε2(z)+ Rε3(z)+ Aε3(z), (105)

where

Rε2(z) = ε̃2k2 f
′′′(z)
2

[
1

k

〈
Wε
z ,p · ∇xθ

〉+ k

ε̃

〈
Wε
z ,Lεzθ

〉]

×
[〈
Wε
z , L̃εzθ

〉2 − A
(2)
2 (Wε

z )

]

+ε̃2k2f ′′(z)
〈
Wε
z , L̃εzθ

〉 [1

k

〈
Wε
z ,p · ∇x(L̃εzθ)

〉
+ k

ε̃

〈
Wε
z ,LεzL̃εzθ

〉]

−ε̃2k2f ′′(z)
[

1

k

〈
Wε
z ,p · ∇x(G

(2)
θ W

ε
z )
〉
+ k
ε̃

〈
Wε
z ,LεzG(2)θ Wε

z

〉]
,

(106)

Rε3(z) = ε̃2k2f ′(z)
[

1

k

〈
Wε
z ,p · ∇x(L̃εzL̃εzθ)

〉
+ k

ε̃

〈
Wε
z ,LεzL̃εzL̃εzθ

〉]

+ε̃2 k
2

2
f ′′(z)

[
1

k

〈
Wε
z ,p · ∇xθ

〉+ k

ε̃

〈
Wε
z ,Lεzθ

〉]

×
[〈
Wε
z , L̃εzL̃εzθ

〉
− A

(2)
1 (Wε

z )
]

−ε̃2k2f ′(z)
[

1

k

〈
Wε
z ,p · ∇x(Q′

2θ)
〉+ k

ε̃

〈
Wε
z ,LεzQ′

2θ
〉]

(107)

and Aε3, A
(1)
2 , A

(1)
1 ,G

(2)
θ ,Q′

2 all have the same expressions as in the proof of The-
orem 1.

With the assumption α/β < 4/3, Propositions 1, 2, 4 and 5 hold true. Let us
remark that the most severe terms due to the divergent factor ε̃1−α/β are

sup
z<z0

ε̃E

∣∣∣
〈
Wε
z ,LεzG(2)θ Wε

z

〉∣∣∣ = O(ε̃4−3α/β), (108)

sup
z<z0

ε̃E

∣∣∣
〈
Wε
z ,LεzL̃εzL̃εzθ

〉∣∣∣ = O(ε̃4−3α/β) (109)

(cf. Corollary 6).
To satisfy (63) we need to show

Proposition 8. The following convergence holds in probability:

lim
ε→0

sup
z<z0

|f εj,z| = 0, j = 2, 3.
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Proof. We have the estimates

sup
z<z0

|f ε2,z| � sup
z<z0

ε̃2k2‖f ′′‖∞
[
‖W0‖2

2‖L̃εzθ‖2
2 + A

(2)
2 (Wε

z )
]
,

sup
z<z0

|f ε3,z| � sup
z<z0

ε̃2k2‖f ′‖∞
[
‖W0‖2‖L̃εzL̃εzθ‖2 + A

(2)
1 (Wε

z )
]
,

which vanish in probability by using Assumption 4, Lemma 5, 6 and Chebyshev’s
inequality. ��
Proposition 9. The following equality holds:

lim
ε→0

sup
z<z0

sup
‖ψ‖2=1

A
(1)
2 (ψ) = 0.

Proof. As in (89) we have

A
(1)
2 (ψ) = 1

2

∫
ψ(x,p)Qs

1(x,p, y,q)ψ(y,q) dxdp dydq

with the symmetrized kernel

Qs
1(x,p, y,q)

= Q1(θ ⊗ θ)(y,q, x,p)+ Q1(θ ⊗ θ)(x,p, y,q)

= ε̃2−2α/β
∫ ∞

0

∫
�̌(s,p′)eip′·(x̃−ỹ)e−ik−1sp·p′ε̃2−2α/β

× [
θ(x,p + p′/2)− θ(x,p − p′/2)

] [
θ(y,q + p′/2)− θ(y,q − p′/2)

]
dp′ ds

= ε̃2−2α/βπ

∫
�(k−1p · p′ε̃2−2α/β,p′)eip′·(x̃−ỹ)

× [
θ(x,p + p′/2)− θ(x,p − p′/2)

] [
θ(y,q + p′/2)− θ(y,q − p′/2)

]
dp′.

Taking the L2 norm and passing to the limit we have

lim
ε→0

∫
dxdpdydq

∣∣Qs
1(x,p, y,q)

∣∣2

= lim
ε→0

π2
∫
dxdpdydq

∣∣∣∣
∫
δ(

p · p′
k

)

[∫
�(w,p′)dw

]
eip

′·(x−y)/ε̃2−2α/β

× [
θ(x,p + p′/2)− θ(x,p − p′/2)

] [
θ(y,q + p′/2)− θ(y,q − p′/2)

]
dp′∣∣2

= lim
ε→0

π2
∫
dxdpdydq

∣∣∣∣
∫

k

|p|
[∫

�(w,p⊥)dw
]
eip⊥·(x−y)/ε̃2−2α/β

× [
θ(x,p + p⊥/2)− θ(x,p − p⊥/2)

]

× [
θ(y,q + p⊥/2)− θ(y,q − p⊥/2)

]
dp⊥

∣∣2 ,

where p⊥·p = 0,p⊥ ∈ R
d−1. In passing to the limit, the only problem is at the point

p = 0. But the integrand in the above integral is bounded by c|p|−2, c = const.,
which is integrable in a neighborhood of zero if d � 3. Hence the L2 norm of Qs

1
tends to zero by the dominated convergence theorem. ��
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We have the following straightforward calculation: For any real-valued, L2-
weakly convergent sequence ψε → ψ ,

lim
ε→0

A
(1)
1 (ψε)

= lim
ε→0

∫ ∞

0
ds

∫
dqdxdp ψε(x,p)�̌(s,q)ε̃2−2α/β

×
[
e−ik−1s(p+q/2)·qε̃2−2α/β [

θ(x,p + q)− θ(x,p)
]

−e−ik−1s(p−q/2)·qε̃2−2α/β [
θ(x,p)− θ(x,p − q)

] ]

= lim
ε→0

π

∫
dqdxdp ψε(x,p)

[
�(k−1(p + q/2) · qε̃2−2α/β,q)

×ε̃2−2α/β [θ(x,p + q)− θ(x,p)
]

−�(k−1(p − q/2) · qε̃2−2α/β,q)ε̃2−2α/β [θ(x,p)− θ(x,p − q)
] ]

= lim
ε→0

π

∫
dqdxdp ψε(x,p)

[
�
( |q|2 − |p|2

2k

×ε̃2−2α/β,q − p
)
ε̃2−2α/β [θ(x,p + q)− θ(x,p)

]

−�
( |q|2 − |p|2

2k
ε̃2−2α/β,q − p

)
ε̃2−2α/β [θ(x,p)− θ(x,p − q)

] ]

= 2π
∫
dxdp ψ(x,p)

∫
dqδ

( |q|2 − |p|2
2k

)

×
[∫

�(w,q − p)dw
] [
θ(x,p + q)− θ(x,p)

]

≡ Ā1(ψ) ∀θ ∈ C∞
c (R

2d)

following from the strong convergence of
∫ [

�(
|q|2 − |p|2

2k
ε̃2−2α/β,q − p)ε̃2−2α/β [θ(x,p + q)− θ(x,p)

]

−�( |q|2 − |p|2
2k

ε̃2−2α/β,q − p)ε̃2−2α/β [θ(x,p)− θ(x,p − q)
]]
dq,

to the L2 function
∫
dqδ(

|q|2 − |p|2
2k

)

[∫
�(w,q − p)dw

] [
θ(x,p + q)− θ(x,p)

]

which is square-integrable because of (10).

Proposition 10. The family of functions Aεf ε(z) is uniformly integrable.

This, of course, follows from the fact that each term in (105) has a uniformly
bounded second moment. Therefore we have completed the tightness argument.
Moreover, we have also identified the limiting equation.
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8. Proof of Theorem 4

Introducing a new parameter

ε̃ = εβ,

the fast variable

x̃ = xε−2α

and the rescaled process

V̂ εz (dq) = V̂
( z
ε̃2 , dq

)
, V εz (x) = V

( z
ε̃2 , x

)
, (110)

we rewrite the equation as

∂Wε
z

∂z
+ p
k

· ∇Wε
z + k

ε̃
LεzWε

z = 0 (111)

with, in Case (i),

LεzWε
z (x, x̃,p)

= i
∫
eiq·x̃ε2α−2

[
Wε
z (x,p+ε2−2αq/2)−Wε

z (x,p−ε2−2αq/2)
]
V̂ εz (dq), (112)

and, in Case (ii),

LεzWε
z (x, x̃,p) = iε̃1−α/β

∫
eiq·x̃ε2α−2

×
[
Wε
z (x,p + ε2−2αq/2)−Wε

z (x,p − ε2−2αq/2)
]

×V̂ εz (dq). (113)

Taking the partial inverse Fourier transform we get, in Case (i),

F−1
2 Lεzθ(x, x̃, y) = −iδεV εz (x̃, y)F−1

2 θ(x, y), (114)

and in Case (ii),

F−1
2 Lεzθ(x, x̃, y) = −iε̃1−α/βδεV εz (x̃, y)F−1

2 θ(x, y) (115)

with

δεV
ε
z (x̃, y) = ε2α−2

[
V εz (x̃ + ε2−2αy/2)− V εz (x̃ − ε2−2αy/2

]
. (116)

The proof for Case (i) is entirely analogous to that for Theorem 2 and we will
focus on Case (ii) below. And we will work with (113) and (115) and construct the
perturbed test function in the power of ε̃.

First we note that

lim sup
ε→0

ε̃−2+2α/β
E
[Lεzθ

]2
(x,p) =

∫
[q · ∇pθ(x,p)]2�(ξ,q)dξdq. (117)
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As in the proof of Theorem 3, we carry the analysis in the power of ε̃ = εβ . We
consider the rescaled process (97) and its sigma algebras.

We use the corrector

L̃εzθ(x, x̃,p)

= i

ε̃1+α/β

∫ ∞

z

∫
eiq·x̃eik−1(s−z)p·q/ε̃2α/β

ε2α−2

×[θ(x,p + ε2−2αq/2)− θ(x,p − ε2−2αq/2)]EεzV̂ εs (dq), (118)

which after the partial Fourier inversion becomes

F−1
2 L̃εzθ(x, x̃, y)

= − i

ε̃1+α/β

∫ ∞

z

eik
−1(s−z)∇y·∇x̃/ε̃

2α/β
E
ε
z[δεV εs ]F−1

2 θ(x, x̃, y)ds. (119)

The corrector solves the corrector equation (101).
Following the same argument as in the proof of Theorem 1 we have the follow-

ing estimates:

Lemma 7. The following inequality holds:

lim sup
ε̃→0

ε̃−2+2α/β
E

[
L̃εzθ

]2
(x,p)

�
[∫ ∞

0
ρ(s)ds

]2 ∫ [
q · ∇pθ(x,p)

]2
�(ξ,q)dξdq. (120)

Corollary 7. The following inequality holds:

lim sup
ε̃→0

ε̃−2+2α/β
E

[
p · ∇xL̃εzθ

]2
(x,p)

�
[∫ ∞

0
ρ(s)ds

]2 ∫ [
p · ∇xq · ∇pθ(x,p)

]2
�(ξ,q)dξdq. (121)

Lemma 8. For some constant C independent of ε,

lim sup
ε̃→0

ε̃−4+4α/β
E‖LεzL̃εzθ‖2

2

� 8C

(∫ ∞

0
ρ(s)ds

)2

E[Vz]2
∫

[q · ∇pθ(x,p)]2�(ξ,q)dξdxdqdp, (122)

lim sup
ε̃→0

ε̃−4+4α/β
E‖L̃εzL̃εzθ‖2

2

� 8C

(∫ ∞

0
ρ(s)ds

)4

E[Vz]2
∫

[q · ∇pθ(x,p)]2�(ξ,q)dξdxdqdp.
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Corollary 8. For some constant C independent of ε,

lim sup
ε̃→0

ε̃−4+4α/β
E‖p · ∇xL̃εzL̃εzθ‖2

2

� 32C

(∫ ∞

0
ρ(s)ds

)4 {
E[∇yVz]2

∫
[∇xq · ∇pθ(x,p)]2�(ξ,q)dξdxdqdp

+ E[Vz]2
∫

[∇xq · ∇pθ(x,p)]2|p|2�(ξ,q)dξdxdqdp
}
,

lim sup
ε̃→0

ε̃−6+6α/β
E‖LεzL̃εzL̃εzθ‖2

2

� 32C

(∫ ∞

0
ρ(s)ds

)4

E[Vz]4
∫

[q · ∇pθ(x,p)]2�(ξ,q)dξdxdqdp.

The rest of the argument follows the general outline of that of Theorem 3 Case
(ii).

Let us now verify that the quadratic variation vanishes in the limit.

Proposition 11. The following equality holds:

lim
ε→0

sup
z<z0

sup
‖ψ‖2=1

A
(1)
2 (ψ) = 0.

Proof. To keep the notation simple we use ε, instead of ε̃, in the following calcu-
lation. As in (89) we have

A
(1)
2 (ψ) = 1

2

∫
ψ(x,p)Qs

1(x,p, y,q)ψ(y,q) dxdp dydq

with the symmetrized kernel

Qs
1(x,p, y,q)

= Q1(θ ⊗ θ)(y,q, x,p)+ Q1(θ ⊗ θ)(x,p, y,q)

= ε2β−2α
∫ ∞

0

∫
�̌(s,p′)eip′·(x−y)/ε2α

e−ik−1sp·p′ε2β−2α

×ε2α−2
[
θ(x,p + ε2−2αp′/2)− θ(x,p − ε2−2αp′/2)

]

×ε2α−2
[
θ(y,q + ε2−2αp′/2)− θ(y,q − ε2−2αp′/2)

]
dp′ ds

= π

∫
ε2β−2α�(k−1p · p′ε2β−2α,p′)eip′·(x−y)/ε2α

×ε2α−2
[
θ(x,p + ε2−2αp′/2)− θ(x,p − ε2−2αp′/2)

]

×ε2α−2
[
θ(y,q + ε2−2αp′/2)− θ(y,q − ε2−2αp′/2)

]
dp′,

whose L2 norm has the following limit:

0 = lim
ε→0

π2
∫ ∣∣∣∣

∫

p⊥·p=0
k|p|−1

[∫
�(w,p⊥)dw

]

×eip⊥·(x−y)ε−2α |q · ∇pθ(x,p)|2dp⊥
∣∣∣
2
dxdp
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if d � 3 by the dominated convergence theorem because the integrand is bounded
by an integrable function behaving like c|p|−2 in a neighborhood of p = 0. ��

To identify the limit, we have the following straightforward calculation: For
any real-valued, L2-weakly convergent sequence ψε → ψ ,

lim
ε→0

A
(1)
1 (ψε)

= lim
ε→0

∫ ∞
0

ds

∫
dqdxdp ψε(x,p)�̌(s,q)e−ik−1sp·qε2β−2α

ε2β−2αε4α−4

×
[
e−ik−1s|q|2ε2+2β−4α/2

[
θ(x,p + ε2−2αq)− θ(x,p)

]

−eik−1s|q|2ε2+2β−4α/2
[
θ(x,p)− θ(x,p − ε2−2αq)

] ]

= lim
ε→0

∫ ∞
0

ds

∫
dqdxdp ψε(x,p)�̌(s,q)e−ik−1sp·qε2β−2α

ε2β−2αε4α−4

×
[
e−ik−1s|q|2ε2+2β−4α/2

[
θ(x,p + ε2−2αq)− θ(x,p)

]

−eik−1s|q|2ε2+2β−4α/2
[
θ(x,p)− θ(x,p − ε2−2αq)

] ]

= lim
ε→0

π

∫
ε2α−2ε2β−2α

[
�(k−1(p + ε2−2αq/2) · qε2β−2α,q)

×ε2−2α
[
θ(x,p + ε2−2αq)− θ(x,p)

]
−�(k−1(p − ε2−2αq/2) · qε2β−2α,q)

×ε2−2α
[
θ(x,p)− θ(x,p − ε2−2αq)

]]
ψε(x,p)dqdxdp

= π

∫
q · ∇p

[
δ(k−1p · q)

[∫
�(w,q)dw

]
q · ∇p

]
θ(x,p)ψ(x,p)dqdxdp

= π

∫
k|p|−1

[∫
�(w,p⊥)dw

]
(p⊥ · ∇p)

2θ(x,p)ψ(x,p)dp⊥dxdp

≡ Ā1(ψ),

where p⊥ ∈ R
d−1,p⊥ · p = 0. Note again that

∫

p·p⊥=0

∫
�(w,p⊥)p⊥ ⊗ p⊥dwdp⊥ < ∞ ∀p ∈ R

d

because of (10) and that the function

k|p|−1
∫

p⊥·p=0

[∫
�(w,p⊥)dw

]
(p⊥ · ∇p)

2θ(x,p)dp⊥

is square-integrable because of d � 3.
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Case (iii): α = β,

lim
ε→0

A
(1)
1 (ψε)

= lim
ε→0

π

∫
dqdxdp ψε(x,p)

×ε4α−4
[
�(k−1(p + ε2−2αq/2) · q,q)

[
θ(x,p + ε2−2αq)− θ(x,p)

]

− �(k−1(p − ε2−2αq/2) · q,q)
[
θ(x,p)− θ(x,p − ε2−2αq)

]]

= π

∫
dqdxdp ψ(x,p)q · ∇p

[
�(k−1p · q,q)q · ∇p

]
θ(x,p)

≡ Ā1(ψ).
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