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A compressed sensing scheme for near-field imaging of corrugations of relative sparse Fourier components is
proposed. The scheme employs random sparse measurement of near field to recover the angular spectrum of
the scattered field. Surprisingly, it can be shown heuristically and numerically that under the Rayleigh hypothesis
the angular spectrum is compressible and amenable to compressed sensing techniques. Iteration schemes are de-
veloped for recovering the surface profile from the angular spectrum. The proposed nonlinear least squares in the
Fourier basis produces accurate reconstructions even when the Rayleigh hypothesis is known to be false. © 2012
Optical Society of America

1. INTRODUCTION
Rough surface scattering is of fundamental interest in optics,
radiowave propagation, and acoustics [1–8] and forms the
basis of near-field imaging, which is the operation principle
behind such instruments as scanning near-field optical micro-
scopy [9–12] and near-field acoustic microscopy [13]. Near-
field imaging is a microscopic technique that breaks the
diffraction limit by exploiting the properties of evanescent
waves. The signal is collected by placing the detector in a dis-
tance much smaller than wavelength λ to the specimen sur-
face. An image of the surface is obtained by mechanically
moving the probe in a raster scan of the specimen, line by line,
and recording the probe-surface interaction as a function of
position. This leads to long scan times for large sample areas
or high resolution imaging.

Typically near-field imaging is analyzed by assuming a con-
tinuum or dense set of data points [14–16]. In the present
work, we focus on the setting of sparse, discretemeasurement
of near field from the perspective of compressed sensing the-
ory. This is an extension of the work [17] on potential scatter-
ing to the case of rough surface scattering. Surface scattering
involves the geometry (i.e., topography) of scatterer and is
fully nonlinear and more challenging than potential scattering.

Consider the scattering problem for a corrugation profile
described by the function z � h�x�, Fig. 1. For simplicity of
presentation, we focus on the case of two-dimensional scalar
wave with the Dirichlet boundary condition. The total field
utot satisfies

Δutot � k2utot � 0 in Ω ⊂ R2; k > 0
utot � 0 on ∂Ω;

where

Ω � fr � �x; z� ∈ R2∶z > h�x�g; h ∈ C�R�∩L∞�R�:

The total field models the sound pressure field or electric
field in the TE mode. The Dirichlet boundary condition corre-
sponds to the sound-soft boundary condition in acoustics and
the perfectly conducting boundary condition in electromag-
netism. Our approach can easily be extended to the three-
dimensional case as well as to the Neumann boundary
condition, corresponding to acoustically hard obstacles and
the insulated boundary condition.

As usual in a scattering problem, we write utot � uinc � u
where both the scattered wave u and the incident wave uinc

satisfy the Helmholtz equation. The Dirichlet condition be-
comes u � −uinc on ∂Ω.

In this paper, we consider the case of periodic surfaces that
include diffraction gratings, an important class of optical ele-
ments. We also assume that we have the knowledge of the
scattered field, which can be obtained by using, for instance,
the techniques of near-field phase-shifting interferometry [18].
The main focus of the present work is on the fully nonlinear

inverse scattering of rough surfaces and the compression of
measurements with compressed sensing techniques [19,20].

Let L be the period of h and uinc the plane incident wave

uinc�r� � eikd̂·r � eik�x cos θ−z sin θ�;

d̂ � �cos θ;− sin θ�; 0 < θ < π:

Observe that on the boundary z � h�x�

u�x� L; h�x�� � −e
ik

�
�x�L� cos θ−h�x� sin θ

�
� eikL cos θu�x; h�x��:

Hence we look for the (L, k cos θ)-quasiperiodic (or Floquet
periodic) solution satisfying
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u�x� nL; z� � einLk cos θu�x; z�
for all �x; z� ∈ Ω; n ∈ ℤ:

In particular, if θ � π∕2, then u is L periodic. To fix the idea,
we set L � 2π.

2. RADIATION CONDITION AND RAYLEIGH
HYPOTHESIS
The existence and uniqueness can be proved under the
quasiperiodicity and the radiation conditions on the solution
u [21]. The well-posedness for general nonperiodic rough sur-
faces is given in [22].

Scattering and imaging of shallow corrugations have been
treated by assuming the Kirchhoff approximation [7], the
Rytov approximation [4], or the Born approximation [23]. In-
stead our approach is based on the Rayleigh hypothesis,
which is discussed below.

For x ∈ �−π; π�, z > suph≜hmax, we write the scattered field
as the Fourier series

u�x; z� �
X
n∈Z

un�z�ei�n�k cos θ�x �
X
n∈Z

un�z�eikαnx

with

αn � n
k
� cos θ; (1)

where un satisfies

u
::
n � k2�1 − α2n�un � 0. (2)

Solving Eq. (2) and imposing the boundedness of un at z � ∞,
we obtain the general solution as

u�x; z� �
X
jαnj≤1

aneik�αnx−βnz� �incoming waves�

�
X
jαnj≤1

bneik�αnx�βnz� �outgoing waves�

�
X
jαnj>1

cneik�αnx�βnz� �evanescent waves�; (3)

where βn is given by

βn �
� �������������

1 − α2n
p

; jαnj ≤ 1
i

�������������
α2n − 1

p
; jαnj > 1.

�4�

The Rayleigh radiation condition for the region above the
grooves z > hmax amounts to dropping the incoming waves
in Eq. (3):

u�x; z� �
X
n∈Z

uneik�αnx�βnz�; z > hmax: (5)

However, in the region inside the grooves z < hmax multiple
scattering may occur and Eq. (5) may not represent the true
scattered wave in this region. For shallow corrugations, how-
ever, Eq. (5) should hold in the grooves, and this is the Ray-
leigh hypothesis. For instance, the Rayleigh hypothesis holds
for the sinusoidal profile h�x� � b sin�ax� with jabj < 0.448
[5,24,25]. On the other hand, for a general periodic surface
the validity of the Rayleigh hypothesis may be difficult to as-
sess [26]. The failure of the Rayleigh hypothesis manifests in
the breaking down of the analyticity of (5) inside grooves and
is attributable to the roughness instead of the subwavelength
modes of the profile. For example, the preceding sinusoidal
profile does not contain any subwavelength mode if jaj < k
but violates the Rayleigh hypothesis if jabj, a metric of rough-
ness, is above a certain threshold. The validity of the Rayleigh
hypothesis is often implicitly assumed in the literature
(e.g., [8]).

3. INVERSE SCATTERING FORMULATION
The goal of inverse scattering is to reconstruct h�x� by trans-
mitting incident wave uinc and measuring the scattered field u
at certain sampling locations. To resolve subwavelength struc-
ture that is hidden in the evanescent waves, the measurement
should be carried out in the near field.

Because of the quasiperiodicity, we may consider the
scattered field u in the union of

ΩΓ≜f�x; z� ∈ Ω; x ∈ �−π; π�g

and

Γ≜f�x; z� ∈ ∂Ω∶x ∈ �−π; π�g:

For z > h�x� we have the outgoing scattered wave represen-
tation Eq. (5) with [27]

un�
i

4πkβn

Z π

−π
e
−ik

�
αnx0�βnh�x0�

��
−
∂utot�r0�

∂ν0
����
r0∈Γ

� ���������������������
1�h

: 2�x0�
q

dx0:

(6)

To ensure βn ≠ 0 in Eq. (6), we assume that jαnj ≠ 1, i.e.,

���� cos θ� n
k

���� ≠ 1; n ∈ Z (7)

to avoid all grazing modes. This is a constraint on the choice of
wavenumber and the incidence angle. In the case of normal
incidence θ � π∕2, Eq. (7) means that the wavenumber k is
not an integer.

Fig. 1. Plane wave incidence upon a rough surface.
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A key assumption for our approach is that h has a small

number of significant Fourier coefficients, namely, the Four-
ier coefficients are sparse or compressible. Writing h�x� �P

n∈Zĥne
inx, we say that ĥ � fĥng is s sparse if ‖ĥ‖0, the

number of nonzero elements of ĥ, is less than or equal to s.
Note that ĥ�−n � ĥn since h is real valued. Without loss of gen-
erality, we assume that ĥ0 � 0.

The sparsity of ĥ surprisingly yields compressibility of the
scattering amplitude un, which can be used to compress the
measurements and be amenable to the treatment of compres-
sive sensing techniques.

Let �xj; z0�, j � 1; 2;…;m, be the sensor locations for mea-
suring the scattered field where z0 > hmax is fixed and xj are
randomly and independently chosen from �−π; π� according to
the uniform distribution.

In view of the identity

u�xj; z0�e−ik cos θxj �
X
n∈Z

einxjuneikβnz0

from Eq. (5), let us consider the following inverse problem
Y � AX , with entries

Xn � uneikβnz0
�����
m

p
; (8)

Yj � u�xj; z0�e−ikxj cos θ; (9)

A � �Aj;n� �
1�����
m

p einxj ; (10)

where n is restricted to a finite but sufficiently large interval
ranged from −N∕2 to N∕2 − 1. A compressive measurement
means the number of data m is significantly smaller than the
number of grid points N , giving rise to a highly underdeter-
mined system Eqs. (8)–(10).

4. COMPRESSIVE SENSING
The main thrust of compressed sensing (CS) [19,20] is to con-
vert the noisy underdetermined system

Y � AX � E (11)

into the L1-based optimization problem

min‖X‖1 subject to‖Y − AX‖2 ≤ ϵ≜‖E‖2; (12)

where E is the external noise vector. Equation (12) is called
the basis pursuit (BP) [28]. In addition to quadratic program-
ming, many iterative and greedy algorithms are available for
solving the system Eq. (11).

Let us first review a basic notion in CS, which provides a
performance guarantee for BP. We say a matrix A ∈ Cm×N sa-
tisfies the restricted isometry property (RIP) if

�1 − δ�‖Z‖
2

2
≤ ‖AZ‖

2

2
≤ �1� δ�‖Z‖

2

2
; δ ∈ �0; 1�; (13)

holds for all s-sparse Z ∈ CN . The smallest constant satisfying
Eq. (13) is called the restricted isometry constant of order s
and is denoted by δs.

The following theorem says that the random Fourier matrix
satisfies RIP if m is sufficiently large [29].

Theorem 1. Let ξj ∈ �0; 1�, j � 1; 2;…;m, be independent
uniform random variables. If

m
ln m

≥ Cδ−2s ln2s ln N ln
1
η ; η ∈ �0; 1�

for some universal constant C and sparsity level s, then the
restricted isometry constant of the random Fourier measure-
ment matrix with

Anj �
1�����
m

p e2πinξj ; n � −N∕2;…; N∕2 − 1; (14)

satisfies δs ≤ δ with probability at least 1 − η.
Denote Xs to be the best s-term approximation of the solu-

tion X , and let ~X be the solution of BP Eq. (12). Note that Xs

consists of the s largest components, in magnitude, of X .
Theorem 2 [30]. Let A satisfy the RIP with

δ2s <
���
2

p
− 1

and ~X be the solution to BP. Then

‖~X − X‖2 ≤ C0
1���
s

p ‖Xs − X‖1 � C1ϵ; ‖~X − X‖1

≤ C0‖Xs − X‖1 � C1ϵ

for some constants C0, C1 independent of X .
Once the estimate ~X is obtained from BP, we reconstruct un

by

~un � 1�����
m

p e−ikβnz0 ~Xn: (15)

The problem with Eq. (15) is that the evanescent modes yield
the exponentially large factor e−ikβnz0 if

jαnj �
���� cos θ� n

k

���� ≫ 1. (16)

This can magnify the error in ~Xn and produce an undesirable
result in ~un. This observation also shows that X may be
much more compressible (i.e., faster decaying components)
than fung.

A simple remedy would be to apply a hard thresholding by
restricting the identity Eq. (15) up to n0 sufficiently small and
setting the rest of ~un zero for jnj > n0. Let us now give a rough
estimate for the number of modes that should be preserved by
the hard thresholding rule.

We define the stably recoverable evanescent modes to be
those modes satisfying Eq. (16) and

kjβnjz0 ≤ Ce

for some constant Ce (in [17], Ce � 2π). On the other hand,

βn �
����������������������������������������������������������
cos2 θ� 2

n
k
cos θ� n2

k2
− 1

s
≥
jnj
k

− 1:
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Hence the stably recoverable modes necessarily satisfy

k
�jnj

k
− 1

�
z0 ≤ kjβnjz0 ≤ Ce

or equivalently

jnj ≤ n0≜
Ce

z0
� k; (17)

which is a rough characterization of the stably recoverable
(evanescent) modes. We see that n0 increases as k increases
or z0 decreases.

Summing up the previous analysis, we conclude the reco-
verability of the scattering amplitude fung by the following
theorem.

Theorem 3. Let z0 > hmax be fixed and let xj ,
j � 1; 2;…;m, be independent, identically distributed (i.i.d.)
uniform random variables in �−π; π�. Let n0 � Ce

z0
� k for some

positive constant Ce > 0. Let ~X , Xs be the BP solution and the
best s-term approximated solution of the system Eq. (11), re-
spectively, and assume

m
ln m

>
C

�
�����������
2 − 1

p
�2 s ln

2 s ln N ln
1
η

for some absolute constant C and any η ∈ �0; 1�. Let
u � �u−n0

;…; un0
�, ~u � �~u−n0

;…; ~un0
�, where ~un is given by

Eq. (15). Then the reconstruction error satisfies

‖~u − u‖2 ≤
eCe�����
m

p
�
C0

1���
s

p ‖Xs − X‖1 � C1ϵ
�

(18)

for some absolute constants C0, C1 with probability at
least 1 − η.

Proof. With xj � 2π�ξj − 1
2�, the sensing matrix (10)

becomes

�Aj;n� �
1�����
m

p ein2π�ξj−
1
2� � 1�����

m
p e2πinξj �−1�n:

By combining the factor �−1�n into Xn and writing
Wn � �−1�nXn , n � −N∕2;…; N∕2 − 1, we have ‖ ~W −W‖2 �
‖~X − X‖2, ‖Ws −W‖1 � ‖Xs − X‖1, where ~W and Ws are
defined in the same manner.

Hence with i.i.d. uniform random variables xj ,
j � 1; 2;…;m, in �0; 2π�, the matrix A defined in Eq. (10) sa-
tisfies the same reconstruction error bound as the random
Fourier measurement Eq. (14) with i.i.d. uniform random vari-
ables ξj on �0; 1�. By Theorems 1 and 2, we have the estimate

‖~X − X‖2 ≤ C0
1���
s

p ‖Xs − X‖1 � C1ϵ

for some constants C0, C1 with probability at least 1 − η. On
the other hand,

‖~X − X‖
2

2
�

Xn0

n�−n0

����~uneikβnz0
�����
m

p
− uneikβnz0

�����
m

p ����2

�
X
n∈Λ

����~Xn − Xn

����2;

where Λ≜f−N∕2;…;−n0 � 1; n0 � 1; N∕2 − 1g. Moreover, for
jnj ≤ n0 we have 0 < je−Ce j ≤ jeikβnz0 j ≤ 1, which gives

‖~X − X‖
2

2
≥ mje−Ce j2

Xn0

n�−n0

j~un − unj2 � 0 � m
e2Ce

‖~u − u‖2
2;

where u � �u−n0
;…; un0

� and ~u � �~u−n0
;…; ~un0

�. Combining
these inequalities, we have the bound

‖~u − u‖2 ≤
eCe�����
m

p
�
C0

1���
s

p ‖Xs − X‖1 � C1ϵ
�

for some constants C0, C1 with probability at least 1 − η.

5. COMPRESSIBILITY OF THE ANGULAR
SPECTRUM
Let us now analyze the compressibility of coefficients fung.
We present a heuristic argument suggesting that the angular
spectrum of the scattered field is sparse for shallow corru-
gations.

Assuming the validity of the Rayleigh hypothesis we have

−uinc�x; h�x�� � u�x; h�x�� �
X
n∈Z

uneik�αnx�βnh�x��; (19)

or equivalently

−e−ikh�x� sin θ �
X
n∈Z

uneikβnh�x�einx:

For sufficiently flat and smooth surface h, a nearly normal in-
cidence θ ≈ π

2 tends to produce a nearly specular diffracted
wave [16], and hence fung is concentrated at n � 0. This ob-
servation suggests that it may be reasonable to approximate
the outgoing wave vector kβn by the negative incoming wave
vector kβ0, or, equivalently, to replace βn by β0 � sin θ. With
this approximation, we have

X
n∈Z

uneinx ≈
−e−1kh�x� sin θ

e1kβ0h�x�
� −1� 2ikh�x�β0 �O�k2jhj2�:

Hence, we have

un ≈ υn≜
�

−1 n � 0
2ikĥnβ0 n ≠ 0;

(20)

which is sparse by the sparseness assumption on fĥng (cf. [6]).
Let Z � �����

m
p �υneikβnz0�. In view of Eq. (8) we have the estimate

‖X − Xs‖1 ≈ ‖X − Z‖1 �
XN∕2−1

n�−N∕2

�����
m

p jeikβnz0 jjun − υnj ≤
�����
m

p
ϵu;

where ϵu≜
PN∕2−1

n�−N∕2 jun − υnj. Our numerical simulation
shows that υn given in Eq. (20) is indeed an excellent approx-
imation to un, at least when the Rayleigh hypothesis is valid.

6. BOUNDARY INTEGRAL FORMULATION
We compute the scattered field u�x; z0� by the boundary inte-
gral method [31,32]. The scattered wave can be represented
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by the Brakhage-Werner–type ansatz, i.e., the representation
via mixed single-layer (S) and double-layer (K) potentials

u � �K − iηS�ψ on ΩΓ

with a mixed layer density ψ for a constant η > 0, which can
be adjusted to improve the condition number of the system.
Explicitly, we can write

u�x; z� �
Z π

−π

�
∂

∂ν0 Φ��x; z�; �x0; h�x0��� − iηΦ��x; z�; �x0; h�x0���
�

× ψ�x0� ·
����������������������
1� h

: 2�x0�
q

dx0: (21)

Taking the limit z → h�x�� and using the properties of single-
and double-layer potentials, we obtain the boundary integral
equation [31,33]

−uinc�x; h�x�� � 1
2
ψ�x� �

Z π

−π

�
∂

∂ν0 Φ��x; h�x��; �x0; h�x0���

−iηΦ��x; h�x��; �x0; h�x0���
�

× ψ�x0�
����������������������
1� h

: 2�x0�
q

dx0 (22)

(see Appendix A). Note that the integral in Eq. (22) has a
weakly singular kernel, and the integral exists as an improper
integral since the periodic Green’s function

Φ�r; r0� � i
4

X
n∈Z

e2πink cos θH�1�
0 �kjr − r0 − 2πn�1; 0�j�;

x; x0 ∈ �−π; π�

has the same singularity asH�1�
0 �r� ≈ 1� 2i

π �ln r
2 � γ�, where γ ≈

0.5772 is the Euler-Mascheroni constant. Moreover,

∂

∂ν0 H
�1�
0 �kjr − r0j� � −kH�1�

1 �kjr − r0j� �r − r0� · ν�r0�
jr − r0j

converges to a finite limit (a curvaturelike term with respect
to the boundary) as r → r0 [34], implying the boundedness of
∂
∂ν0 Φ on Γ.

With ψ solved from Eq. (22) and the Sommerfeld integral
representation

H�1�
0 �kjrj� � 1

π

Z
eik�jzjβ�xα� dα

β ; (23)

where

β �
� �������������

1 − α2
p

; jαj < 1
i

�������������
α2 − 1

p
; jαj > 1;

(24)

we obtain from Eq. (21) the outgoing wave expansion for the
scattered field

u�x; z� �
X
n∈Z

eik�αnx�βnz�
�
1
4π

Z π

−π
e−ik�αnx

0�βnh�x0��gn�x0�ψ�x0�dx0
�
;

z > hmax; (25)

where gn is the geometric factor

gn�x0� � k − kh
:
�x0� αnβn

� η
βn

����������������������
1� h

. 2�x0�
q

: (26)

Comparing Eq. (25) with Eq. (5) we arrive at the expression

un � 1
4π

Z π

−π
e−ik�αnx

0�βnh�x0��gn�x0�ψ�x0�dx0 (27)

relating the angular spectrum of the scattered field to the
mixed layer density ψ .

7. NUMERICAL RESULTS
Equations (22) and (27) suggest the following iterative recon-
struction scheme. Given h�m� , m � 1; 2; 3;…, first solve for
ψ �m� from

−uinc�x; h�m��x�� � 1
2
ψ �m��x�

�
Z π

−π

�
∂

∂ν0 Φ��x; h�m��x��; �x0; h�m��x0���

− iηΦ��x; h�m��x��; �x0; h�m��x0���
�
ψ �m��x0�

×
�������������������������������
1� jh

: �m�j2�x0�
q

dx0 (28)

and then solve for h�m�1� from

un � 1
4π

Z π

−π
e−ik�αnx

0�βnh�m��x0��g�m�1�
n �x0�ψ �m��x0�dx0; n ∈ Z;

(29)

g�m�1�
n �x0� � k − kh

: �m�1��x0� αnβn
� η

βn

�������������������������������
1� jh

: �m�j2�x0�
q

: (30)

Note that both Eq. (28) and Eq. (29) are linear equations and
can be inverted by Tikhonov regularization.

A natural candidate for the initial guess of the preceding
iteration is the one obtained under the Rayleigh hypothesis
that the validity of Eq. (25) is extended to the region
z > h�x�. Specifically, we extend Eq. (25) all the way to the
boundary and study the nonlinear equation Eq. (19). Indeed,
this alone produces excellent results for shallow corrugations
and will be the focus of our numerical experiments.

In our numerical simulations, we set 64 nodes to solve the
boundary integral equation, Eq. (22), by the Nyström method,
with η � 1. Figure 2 shows two examples of the computed
scattered field. For a profile of multiple Fourier modes, we
define Ra�h�≜maxn2jnĥnj as a metric of surface roughness.

A. Surface Reconstruction
To solve h�x� from Eq. (19), we consider the following three
algorithms: the first two are pointwise iterative schemes and
the third is a global fitting scheme.

1. Pointwise, fixed-point iteration for h�x�;∀x ∈ �−π; π�.
A fixed-point iteration algorithm was introduced in [14,16]
and is described below. The initial condition h�0��x� is chosen
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in the following way. As explained in Section 5, we substitute
βn by 1 in Eq. (19) and obtain

eikh�x� ·
X
n∈Z

uneikαnx � −eik�x cos θ−h�x� sin θ�: (31)

We then solve Eq. (31) by the iterative scheme

h�0��x� �
ln
�
−
P

n∈Zuneikαnx
�

−2ik
; (32)

h�n�1��x� �
ln
�
−
P

n∈Zuneik�αnx��βn−1�h�n��x��
�

−2ik
(33)

for n � 1; 2;… and all x ∈ �−π; π�.
2. Newton’s method. From Eq. (19), for each x ∈ �−π; π�

we set

e�h; x� � eikxj cos θe−ikh sin θ �
X
n∈Z

uneikαnxj eikβnh; (34)

and find the root e�h; x� � 0 by Newton’s method

h�i�1� � h�i� −
e�h�i�;x�
d
dh e�h�i�; x�

with initial value Eq. (32). This method is similar to the one
adopted in [8].

3. Nonlinear least squares (NLS) fitting. Let

F�a� � ‖e
�X

n
anϕn�·�; ·

�
‖
2
�

X
j

����e
�X

n

anϕn�xj�; xj
�����2;

where e�h;xj� is defined in Eq. (34) and a � �a1; a2; :::::� is the
coefficient vector of h with respect to a basis fϕng, i.e.,
h � P

nanϕn. We then solve the nonlinear least squares
problem

min
a
F�a�:

For our simulation we use basis functions sin�nx� and cos�nx�
for n ∈ Π ⊂ N with the index set Π corresponding to the sig-
nificant components ~un. We use the MATLAB subroutine
lsqnonlin, which is based on the subspace trust region
method.
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0.01 sin�12x� � 0.007 cos�7x� (bottom) with the normal incident
plane wave.
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Fig. 3. (Color online) The profile h�x� � 0.01�P4
p�0 sin��1� 3p�x��

and the reconstructions (bottom). The top panels show the real part
(top left) and the imaginary part (right) of the angular spectrum un
(blue crosses), the reconstructed angular spectrum ~un (red dots),
and the theoretical prediction vn (green circles).
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B. Examples
In our experiments we set θ � π

2, with the wave number k �
3.2 (i.e., the wavelength λ ≈ 1.9635). After computing the scat-
tered field u�xj; z0� for j � 1; 2;…; 64, we add 1% noise to the
data. The profile functions h are 2π periodic. We set Ce �
log�25� for the cutoff mode [Eq. (17)]. We use the Basis Pursuit
solver YALL1 [35] to solve Eq. (10) for vector ~X . We also filter
out the components in ~X below τ � 0.1maxn≠0j~Xnj before
computing ~un from Eq. (15). The roughness of some of our
numerical examples is comparable to those demonstrated
in [6,8], which, however, did not study subwavelength modes
as we do here.

In Figs. 3–8, the bottom panels show the exact profiles h�x�
(black solid line), and the recovered profiles by the three al-
gorithms: Newton’s method “Newton,” fixed-point iteration
“Fixed pt iter,” and nonlinear least squares fitting “NLS fit.”
The length of the black strip on the top of each plot indicates
the wavelength, and its height indicates the vertical coordi-
nate z0 of the sampling points. The top left and right panels
show the real (left) and imaginary (right) parts, the angular
spectrum un (blue crosses), the recovered angular spectrum
~un (red dots), and the theoretical prediction υn (green circles).
Note the different scales for the real and imaginary parts in
Figs. 3 –6 where Ra is relatively small. This is no longer the

case in Figs. 7 and 8 for which the Rayleigh hypothesis is
known to be false.

Figures 3 and 4 show the results for profiles h�x� with
sparse Fourier coefficients. The theoretical prediction υn cap-
tures well the dominant component ℜ�u0�, as does the sparse
reconstruction ~un the other significant components of the
angular spectrum. For reconstruction (right panels) the
nonlinear least squares is the best performer while the point-
wise iterative methods undershoot at the peaks and troughs.

For the Gaussian profile (Fig. 5) and subwavelength double
peaks (Fig. 6), again υn captures well the dominant compo-
nent ℜ�u0�, as does ~un most other significant components
of the angular spectrum. The angular spectrum for the latter
profile occupies a wider range of modes than the former since
the two peaks are sharper than the Gaussian. As a conse-
quence, the reconstruction is more accurate for the former
case. For the latter case, all three reconstructions undershoot
the peaks and produce fluctuations at the flat part of the
profile.

Figures 7 and 8 are the results for simple sinusoids when
the Rayleigh hypothesis is known to be invalid (ab > 0.448).
Like [6,8] these examples do not contain subwavelength
modes, and our purpose is to test how violation of the Ray-
leigh hypothesis degrades the imaging quality.
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Fig. 4. (Color online) The profile h�x� � 0.01 sin�12x� �
0.007 cos�7x� and the reconstructions (bottom). The labeling is the
same as in Fig. 3.
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Fig. 5. (Color online) Periodized Gaussian
h�x� � b

�
e−�ax�

2
− erf�aπ�

π ��πp
�
· ~χ �−0.9π;0.9π��x�, a � 2, b � 0.01 and the recon-

structions where ~χ is a smoothed indicator function (bottom). The
labeling is the same as in Fig. 3.
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The violation of the Rayleigh hypothesis manifests in the
broadening of the support of the angular spectrum. Further-
more, the imaginary part of the angular spectrum is an order
of magnitude larger than those in Figs. 3–6. As a result, the
angular spectrum fung is less compressible, and only the
dominant modes are recovered by the compressed sensing
techniques. In both cases, the simple prediction υn fails to cap-
ture even the dominant components of the angular spectrum.

Nevertheless, the nonlinear least squares fitting provides an
accurate reconstruction of the profile in both cases. The New-
ton iteration converges in Fig. 7 but fails near the peaks and
troughs in Fig. 8, while the fixed-point iteration fails to con-
verge near the peaks and troughs in both figures. When ab is
further increased (to, e.g., 0.736), all three methods fail to re-
cover the profile.

8. CONCLUSIONS
We have proposed a compressed sensing scheme for near-
field imaging of corrugations of relative sparse Fourier com-
ponents. The scheme employs random sparse measurement of
near field to recover the angular spectrum of the scattered

field. We have shown heuristically and numerically that under
the Rayleigh hypothesis the angular spectrum is indeed
sparse or compressible and amenable to compressed sensing
techniques.

We have considered three iteration schemes for recovering
the surface profile from the angular spectrum. The nonlinear
least squares method has the best performance among the
three and produces accurate reconstructions even when
the Rayleigh hypothesis is known to be invalid.

We have not studied the full iteration scheme Eqs. (28) and
(29) beyond the limitation of the Rayleigh hypothesis, which
will require nonsparse measurements for the angular spec-
trum data. We also have neglected the detector tip effect,
which may be significant particularly in near-field optics
[36]. These issues will be the subject of future investigation.

APPENDIX A: DERIVATION OF BOUNDARY
INTEGRAL EQUATION (22)
The term 1

2ψ�x� in Eq. (22) arises because of the jump discon-
tinuity for the double-layer potential across the boundary,
whereas the single-layer potential is continuous. More speci-
fically, let
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Fig. 6. (Color online) Double subwavelength peaks
h�x� � b�ζ�a�x − 1

2�� � ζ�a�x� 1
2���, a � 2.5, b � 0.01, ζ�x� �

exp �1 − 1
x2−1

�χ�−1;1��x� � c0 and the reconstructions (bottom). Here
the constant c0 is chosen such that ζ̂0 � 0. The labeling is the same
as in Fig. 3.
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Fig. 7. (Color online) The sinusoidal profile h�x� � 0.491 cos�x� and
the reconstructions (bottom). The labeling is the same as in Fig. 3.
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uS�r� �
Z
Γ
Φ�r; r0�ψS�r0�dS�r0�; (A1)

uD�r� �
Z
Γ

∂

∂ν0 Φ�r; r0�ψD�r0�dS�r0� (A2)

be the single- and double-layer potentials, respectively, for
r � �x; z� ∈ R2∖Γ. Furthermore, we denote r� � r0 � ρν�r0�
for some small ρ > 0 and r0 ∈ Γ (assuming that the boundary
is of class C2 so the representation of r� is unique for r� near
the boundary). Clearly

lim
ρ→0

uS�r�� � lim
ρ→0

uS�r−� � uS�r0�:

On the other hand, write

uD�r�� � ψD�r0�
Z
Γ

∂

∂ν0 Φ0�r�; r0�dS�r0� � v�r��; (A3)

uD�r−� � ψD�r0�
Z
Γ

∂

∂ν0 Φ0�r−; r0�dS�r0� � v�r−� (A4)

so that

v�r�� �
Z
Γ

∂

∂ν0 Φ�r�; r0��ψD�r0� − ψD�r0��dS�r0� � ψD�r0�

×
Z
Γ

�
∂

∂ν0 Φ�r�; r0� − ∂

∂ν0 Φ0�r�; r0�
�
dS�r0�; (A5)

where Φ0 is Green’s function for the Laplace equation. It is
easy to see that integral Eq. (A5) is continuous in the neigh-
borhood of ρ � 0.

The jump condition

lim
ρ→0

�uD�r�� − uD�r−�� � ψD�r0�

now follows from the calculation

Z
Γ

∂

∂ν0 Φ0�r�; r0�dS�r0� �
1
2

Z
∂Bρ�r0�

∂

∂ν0 Φ0�r�; r0�dS�r0�

� 1
4πρ

Z
∂Bρ�r0�

�1dS�r0� → � 1
2
; ρ → 0

by applying the divergence theorem, integrating over the
circle Bρ�r0� of radius ρ, and shrinking radius ρ to 0.
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