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Abstract

We analyze the time reversal of waves in a turbulent medium using the parabolic Markovian model. We prove that fo
in a fractal medium with a sufficiently small Fresnel number the time reversal resolution can be a nonlinear (between li
quadratic) function of the wavelength and independent of the aperture. We establish the duality between the forward pr
and time reversal. The duality holds true for any media and has two aspects: First there is an uncertainty inequality
the turbulence-induced wave spread and time-reversal resolution. The inequality becomes an equality when the wav
function is Gaussian. Second, the turbulence-induced resolution in time reversal is identical to the turbulence-induced c
length. As a consequence, the turbulence-induced aperture can be estimated by 2π times the forward spread, independent of
original aperture.
 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Time reversal is the process of recording the signal from a remote source, time-reversing and back-pro
it to retrofocus around the source. Time reversal of acoustic waves has been demonstrated to hold excitin
logical potentials in subwavelength focusing, dispersion compensation, communications, imaging, remote
and target detection in unknown environments (see[12–14,16,17,19]and references therein). The same sho
hold for the electromagnetic waves as well. Time reversal of electromagnetic waves is closely related to
phase conjugation which used to be limited to monochromatic waves[2,3,15]. With the advent of experimen
tal techniques, time reversal of high frequency EM waves hold diverse potential applications including re
adaptive optics, laser resonators, high-power laser systems, optical communication and information pro
image transmission, spatial and temporal filtering, spectroscopy, etc.[18,22].

Time reversal refocusing is the result of the time-reversal invariance of the wave equations, acoustic or
magnetic, in time invariant media. The surprising and important fact is that the refocal spot in a richly sca
medium is typicallysmaller than that in the homogeneous medium. That is, the time reversal resolution is enh
rather than hampered by the inhomogeneities of the medium. This subdiffraction-limit retrofocusing is som
calledsuperresolution and in certain regimes has been explained mathematically in terms of an enlarged e
aperture as a result of random media[1].

In the previous experimental, numerical or theoretical results the superresolution comes as alinear function of
the wavelength butindependent of the aperture. In this Letter we show that in fractal media the resolution ca
a superlinear (between linear and quadratic) function of the wavelength and at the same time independen
aperture. The lowest achievable refocal spot size in this nonlinear regime is on the order of the smallest
the medium fluctuations. Above the outer scale the resolution is diffraction-limited while below the inner s
is the previously reported aperture-independent enhanced resolution[1,14].

We will focus our analysis on the widely usedparabolic Markovian model for waves in atmospheric turb
lence[21]. Neglecting the depolarization effect let us write the forward propagating wave fieldE at the carrier wave
numberk asE(t, z,x) = Ψ (z,x)ei(kz−ωt),x ∈ R

2 where the complex wave amplitudeΨ satisfies the Schrödinge
equation in the non-dimensionalized form

(1)i
∂Ψ

∂z
+ γ

2k
∆⊥Ψ + k

γ
V (z,x) ◦ Ψ = 0

with ∆⊥ being the Laplacian in the transverse coordinatesx ∈ R
2 andV the fluctuation of the refractive index

Here the Fresnel numberγ equalsLzk
−1
0 L−2

x with k0 being the reference wavenumber,Lz andLx the reference
scales in the longitudinal and transverse directions, respectively. The notation◦ in Eq. (1) means the Stratonovic
product (v.s. Itô product). In the Markovian modelV (z, ·) is assumed to be aδ-correlated-in-z stationary random
field such that〈

V (z,x)V (z′,x′)
〉 = δ(z − z′)

∫
Φ(0,p)eip·(x−x′) dp,

whereΦ(0,p) is the power spectrum density of the refractive index fluctuation at the mode�k = (0,p) ∈ R
3 and, in

the case of atmospheric turbulence, has a power-law behavior in the inertial range. For simplicity of pres
we assume an isotropic power-law

(2)Φ(�k) = σH |�k|−1−2H |�k|−2, �k = (ξ,p) ∈ R
3, |�k| ∈ (

L−1
0 , �−1

0

)
,

whereL0 and�0 are respectively the outer and inner scales of the turbulence andσH a constant factor. UsuallyH
is taken to be 1/3 in the self-similar theory of turbulence. We assume that the spectrum decays sufficiently
|�k| � �−1

0 while staying bounded for|�k| � L−1
0 .

We will also establish rigorously the duality relation between the forward propagation and time revers
duality has two aspects: First there is an uncertainty inequality for random media where the conjugate q
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are the turbulence enhancements of forward wave spread and time-reversal resolution. The inequality
an equality when the wave structure function is Gaussian. Second, there is an identity between the tur
enhancements of time reversal resolution and coherence length of the scattered wave field prior to time
This relation has been observed in a time reversal experiment with a different random medium[6]. The duality
holds true for any power spectrum, not limited to the power law(2).

2. Time reversal process

In the time reversal procedure, a sourceΨ0(x) located atz = L emits a signal with the carrier wavenumbek
toward the time reversal mirror (TRM) of apertureA located atz = 0 through a turbulent medium. The transmitt
field is captured and time reversed at the TRM and then sent back toward the source point through t
turbulent medium, seeFig. 1, [10,11].

The time-reversed, back-propagated wave field atz = L can be expressed as

Ψtr(x) =
∫

G(L,x,xm)G(L,xs ,xm)Ψ0(xs)IA(xm)dxm dxs

(3)=
∫

eip·(x−xs )/γ W

(
L,

x + xs

2
,p

)
Ψ0(xs) dpdxs,

whereIA is the indicator function of the TRM,G the propagator of the Schrödinger equation(1) and W the
mixed-state Wigner distribution function

W(z,x,p) =
∫

W(z,x,p;xm)IA(xm)dxm,

W(z,x,p;xm) = 1

(2π)2

∫
e−ip·yG(z,x + γ y/2,xm)G(z,x − γ y/2,xm)dy,

which is the convex combination of the pure-state Wigner distributionsW(· ;xm). Here we have used the fact th
time reversing of the signal is equivalent to the phase conjugating of its spatial component.

Fig. 1. The time reversal process.
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The Wigner distributions (pure or mixed) satisfy a closed form equation, the Wigner–Moyal equation, a
the Markovian model all the moments also satisfy closed form equations[8]. In particular, the mean field equatio
is

(4)
∂〈W 〉
∂z

+ p
k

· ∇x〈W 〉 = Q〈W 〉
with the scattering operatorQ given by

(5)Qf (x,p) = k2

2γ 2

∫
Φ(0,q)

[−2f (x,p) + f (p + γ q) + f (x,p − γ q)
]
dq.

Eq.(4) is exactly solvable and its Green function is

GW(z,x,p, x̄, p̄) = 1

(2π)4

∫
exp

[
i
(
q · (x − x̄) + y · (p − p̄) − zq · p̄/k

)]

(6)× exp

[
− k2

γ 2

z∫
0

D∗(γ y + qγ s/k) ds

]
dydq,

where the (medium) structure functionD∗ is given by

(7)D∗(x) =
∫

Φ(0,q)
[
1− eix·q]

dq.

We shall refer to exp[−k2/γ 2
∫ z

0 D∗(γ y + qγ s/k) ds] as thewave structure function. WithGW we can calculate

any two-point functions associated with Eq.(1). Here and belowf̂ denotes the Fourier transformFf of f . The
main property ofD∗ we need in the subsequent analysis is the inertial range asymptotic:

(8)D∗(r) ≈ C2∗r2H∗ , �0 � r � L0,

where the effective Hölder exponentH∗ is given by

(9)H∗ =
{

H + 1/2 for H ∈ (0,1/2),

1 for H ∈ (1/2,1),

and the structure parameterC∗ is proportional toσ 1/2
H . Outside of the inertial range we have insteadD∗(r) ∼ r2,

r � �0 andD∗(r) → D∗(∞) for r → ∞ whereD∗(∞) > 0 is a finite constant.
Let us consider a point source located at(L,0) by substituting the Dirac-delta functionδ(x) for Ψ0 in (3)

and calculate〈Ψtr〉 with the Green function(6). We then obtain the point-spread function for the time rever
refocused wave field written asPtr(x) = P0(x)Ttr(x) with

(10)P0(x) ≡
(

k

γL

)2

exp

[
i
k|x|2
2γL

]
ÎA

(
kx
γL

)
, Ttr(x) ≡ exp

[
− k2

γ 2
L

1∫
0

D∗(−sx) ds

]
.

In the absence of random inhomogeneity the functionTtr is unity and the resolution scaleρ0 is determined solely
by P0:

(11)ρ0 ∼ γ
λL

A
, λ = 2π

k
.

This is the classical (Rayleigh) resolution formula where the retrofocal spot size is proportional toλ and the
distance to the TRM, and inversely proportional to the apertureA.
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3. Anomalous retrofocal spot-size

First we consider the situation where there may be an inertial range behavior. This requires from(10) that

(12)k2γ −2D∗(∞)L � 1,

whereD∗(∞) = limr→∞ D∗(r). Condition(12)holds for a sufficiently small Fresnel numberγ .
In the presence of random inhomogeneities the retrofocal spot size is determined byP0 or Ttr depending on

which has a smaller support. For the power-law spectrum(2) we have the inertial range asymptotic

(13)Ttr(x) ∼ exp
[−C2∗k2γ −2L|x|2H∗(4H∗ + 2)−1]

for �0 � |x| � L0. We define the turbulence-induced time-reversal resolution as

(14)ρtr =
√∫

|x|2T 2
tr (x) dx

/∫
T 2

tr (x) dx,

which by(13)has the inertial range asymptotic

(15)ρtr ∼
(

γ λ

C∗
√

L

)1/H∗
, �0 � ρtr � L0.

Under the following condition

(16)ρtr � ρ0

the functionTtr is much more sharply localized aroundx = 0 thanP0. Note that asH∗ < 1 the condition(16)holds
for a sufficiently smallγ . The nonlinear law(15) is valid only down to the inner scale�0 below which the linear
law prevailsρtr ∼ γ λL−1/2. We see that under(12) and(16) ρtr is independent of the aperture, has a superlin
dependence on the wavelength in the inertial range and the resolution is further enhanced as the distanL and
random inhomogeneities (C∗) increase. This effect can be explained by the notion of turbulence-induced ap
which enlarges asL andC∗ increase as the TRM is now able to capture signals initially propagating in the
oblique directions (see Section4 for more on this).

To recover the linear law previously reported in[1], let us consider the situation whereρtr = O(γ ) and take the
limit of vanishing Fresnel numberγ → 0 in Eq.(7) by settingx = γ y. Then we have

lim
γ→0

γ −2D∗(γ y) = D0|y|2, D0 = 1

2

∫
Φ(0,q)|q|2 dq.

The resulting mean retrofocused field〈Ψtr(γ y)〉 is Gaussian in the offset variabley and the refocal spot size on th
original scale is given by

ρtr ∼ γ λ(D0L)−1/2.

Hence the linear law prevails in the subinertial range.

4. Duality and turbulence-induced aperture

Intuitively speaking, the turbulence-induced aperture referred to in the previous section is closely related
a wave is spread in the course of propagation through the turbulent medium. A quantitative estimation can
by analyzing the spread of wave energy.

To this end let us calculate the mean energy density with the Gaussian initial wave amplitude

(17)Ψ (0,x) = exp
[−|x|2/(2α2)].
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〈∣∣Ψ (L,x)
∣∣2〉 = (

α

2
√

π

)d ∫
exp

[−|q|2[α2/4+ γ 2L2/
(
4k2α2)]]

× exp[iq · x]exp

[
−k2L

γ 2

1∫
0

D∗(qsγL/k)ds

]
dq.

Hence the turbulence-induced spread can be identified as convolution with the kernel which is the inverse
transformF−1T of the transfer function

T (q) = exp

[
−k2L

γ 2

1∫
0

D∗(qsγL/k)ds

]
.

In view of (10), we obtain that

(18)F−1T (x) = k2

γ 2L2
F−1Ttr

(
kx
γL

)
.

In this case it is reasonable to define the turbulence-induced forward spreadσ∗ as

σ∗ =
√∫

|x|2∣∣F−1T
∣∣2(x) dx

/∫ ∣∣F−1T
∣∣2(x) dx,

which, in view of(14)and(18), then satisfies the uncertainty inequality (see also[10])

(19)σ∗ρtr � γL

k
.

The equality holds whenTtr is Gaussian, i.e., whenH ∗ = 1 or in the subinertial range. This strongly sugge
the definition of the turbulence-induced aperture asA∗ = γ λL/ρtr in complete analogy to(11). And we have the
inequality

A∗ � 2πσ∗,

where equality holds true for a Gaussian wave structure function.

5. Coherence length and time-reversal resolution

Another physical variable that is naturally dual to the wave spread is the coherence length. The physical
is that the larger the spread the smaller the coherence length.

In the Markovian model with the Gaussian data(17) the coherence length has the following expression:〈
Ψ (L,x + y/2)Ψ (L,x − y/2)

〉
=

(
α√
2π

)2 ∫
exp

[−|q|2α2/4
]
exp

[
−|y − γLq/k|2

4α2

]

(20)× exp[iq · x]exp

[
− k2

γ 2

L∫
0

D∗
(−y + γ q(L − s)/k

)
ds

]
dq.
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In the point-source limitα → 0, we have〈
Ψ (L,x + y/2)Ψ (L,x − y/2)

〉
(21)≈

(√
2kα2

γL

)2

exp

[
i

k

γL
y · x

]
exp

[
−k2L

γ 2

1∫
0

D∗(−ys) ds

]
.

In view of (21) let us define the turbulence-induced coherence lengthδ∗ as

δ∗ =
√∫

|y|2T 2
2 (y) dy

/∫
T 2

2 (y) dy, T2(y) = exp

[
−k2L

γ 2

1∫
0

D∗(−ys) ds

]
.

SinceT2 = Ttr, δ∗ is equal to the turbulence-induced time-reversal resolutionρtr and is related to the wave spre
as

σ∗δ∗ � γL

k
,

where the equality holds for a Gaussian wave structure function. Because of the identity ofδ∗ andρtr the time
reversal refocal spot size can be used to estimate the coherence length of the wave field which is more d
measure directly.

6. Discussion

In summary, we have proved three main results for the parabolic Markovian model. First, for a fractal m
with a sufficiently small Fresnel number the time reversal resolution can be aperture independent and depe
wavelength in a nonlinear (between linear and quadratic) way. This is due to the self-similar nature of the
Second, we prove an uncertainty inequality for random media where the conjugate variables are the tu
enhancements of forward wave spread and time-reversal resolution. We show that the turbulence-induced
is bounded from above by 2π times the wave spread. The equality is attained when the wave structure func
Gaussian. Finally we show that the turbulence-induced coherence length is the same as the turbulence-ind
reversal resolution. The last two results constitute the duality between the forward propagation and time
The duality is a general result not limited to the power-law spectrum(2) and is related to, but different from, th
duality established in[11] for the power-law spectrum which takes the form of asymptotic equality.

The preceding analysis has been carried out for a narrow-band signal. Because of the linearity of the e
wide-band signalu0(t,x) can be decomposed into frequency components each of which can be analyzed a
and then resynthesized. The mean retrofocused signal can be calculated as

〈utr〉(τ,x) = 1

2πγ 2L2

∫
dydt u0(t,y)

∫
dk ÎA

(
k(x + y)

γL

)
e−ik(t+τ)

× eik|x|2/(2γL)e−ik|y|2/(2γL)k2Ttr(x − y)

from which it follows that the turbulence-induced spread in time is given by convolution with aGaussian ker-
nel becauseTtr is Gaussian ink, see(10). The Gaussian kernel has an offset-x-depending varianceσ 2

tr(x) =
L

∫ 1
0 D∗(sx) ds/γ 2 which grows rapidly with the offset ifγ � 1. It is precisely this rapid change of tempo

dispersion rate with the offset that produces the sharp spatial retrofocusing of the time-reversed pulse.
Our results above have been limited to the mean value of the time-reversed retrofocused field. Its se

higher moments can be determined from those of the Wigner distribution which are not exactly solvable.
of self-averaging, however, the mean field is sufficient for determining all the higher moments. Self-ave
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occurs, for example, when the narrow-band beam width in the transverse directions is large compared to
relation length of the random medium or when the signal is wide-band[5,7]. The former case has been analyz
extensively in the literature (see[9,10] and references therein) and there arise several canonical radiative tr
equations as the self-averaging scaling limits. The case of temporally localized signals has only been stu
thex-independent layered medium in a scaling limit where the superresolution in thetransverse direction does no
occur, see[4,20]. In the near-self-averaging regime the second moment of the Wigner distribution can be cal
perturbatively and the result will be reported elsewhere.
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