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Nonlinear Schr̈odinger equation with a white-noise potential:
Phase-space approach to spread and singularity
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Abstract

We propose a phase-space formulation for the nonlinear Schrödinger equation with a white-noise potential in order to shed
light on two issues: the rate of spread and the singularity formation in the average sense. Our main tools are the energy law and
the variance identity. The method is completely elementary.

For the problem of wave spread, we show that the ensemble-averaged dispersion in the critical or defocusing case follows
the cubic-in-time law while in the supercritical and subcritical focusing cases the cubic law becomes an upper and lower bound
respectively.

We have also found that in the critical and supercritical focusing cases the presence of a white-noise random potential results
in different conditions for singularity-with-positive-probability from the homogeneous case but does not prevent singularity
formation. We show that in the supercritical focusing case the ensemble-averaged self-interaction energy and the momentum
variance can exceed any fixed level in a finite time with positive probability.
c© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

High-intensity laser beams propagating in dielectric media such as optical fibers, films or air are important
problems both from fundamental and practical perspectives. The physical process is nonlinear and the amplitude
modulationΨ is customarily described by a nonlinear Schrödinger equation with an additional inhomogeneous
potentialV representing the random impurities in the medium.
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Let z andx ∈ Rd be the longitudinal and transverse coordinates of the wave beam. In the physical setting, the
transverse dimensiond may be 0, 1, 2. The simplest non-dimensional form of the nonlinear Schrödinger (NLS)
equation with a white-noise potential dzV then reads [11]

idzΨ +
γ

2
∆xΨdz + γ −1g|Ψ |

2σΨdz + γ −1Ψ ◦ dzV = 0, σ > 0. (1)

Similar equations also arise in many other contexts such as in plasma physics and the Bose–Einstein condensation,
see [13] and references therein. Here we have written the equation in the comoving reference frame at the group
velocity and non-dimensionalized the equation with the longitudinal and transverse reference lengthsLz, Lx;
γ = Lz/(kL2

x) is the Fresnel number;g is the nonlinear coupling coefficient withg > 0 representing the self-
focusing case andg < 0 the self-defocusing case. For a nonlinear Kerr mediumσ = 1 leading to the cubic NLS
equation. We shall letσ be an arbitrary positive constant. We shall consider white-noise-in-z, x-homogeneous
random potentialV with

〈dzV(z, x)dzV(z′, x′)〉 = δ(z − z′)dz
∫

ei(x−x′)·pΦ(p)dp

whereΦ(p) is the power spectral density and the productV ◦Ψ in Eq.(1) stands for the Stratonovich product. Here
and below the bracket〈·〉 denotes the ensemble average w.r.t. the random medium. In view of the real-valuedness
of V we may assume

Φ(−p) = Φ(p), ∀p ∈ Rd. (2)

Such a short-range-in-z potential arises in long-distance propagation when the longitudinal lengthLz of the
wave beam is much larger than the correlation length of the random impurities in the medium resulting in
rapidly fluctuating potential in the non-dimensionalized coordinates. And it is well known that in the short-range-
correlation scaling limit a non-white-in-z multiplicative noise gives rise to a Stratonovich, instead of Itô, integral
with respect to a white-in-z noise [12].

We are particularly interested in the problems of wave spread and singularity formation. To this end we shall
use the phase-space approach of the Wigner distribution which is particularly useful in the regime of low Fresnel
numberγ � 1 which can be viewed as a high-frequency limit. The main ingredient of our analysis is the phase-
space variance identity by which we derive various estimates for the mean spread, defined in(9), including precise
behavior in the defocusingg ≤ 0 or critical case dσ = 2. To our knowledge, these are significant improvements
over previous results (e.g. [1,14,3]) which are mostly for the linear problem. Wave spread is an important physical
quantity in itself and in technological applications such as estimating the effect of nonlinearity on the information
capacity of optical fiber communications [8,10].

Using the variance identity we further show that the scattering by the random potentials results in conditions for
singularity-with-positive-probability that are different from those for the homogeneous case.

In the present setting the physical roles oft andz are interchanged: the variablet is space-like while the variable
z is time-like and we will refer to it as “time” occasionally, especially in the discussion of finite-time singularity.

2. Wigner distribution

We consider the Wigner distribution of the form

W(z, x, p) =
1

(2π)d

∫
e−ip·yΨ

(
z, x +

γ y
2

)
Ψ∗

(
z, x −

γ y
2

)
dy (3)

which is always real-valued and may be thought of as quasi-probability density on the phase space [9,6]. First its
marginals are essentially the position and momentum densities
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W(z, x, p)dp = |Ψ |

2(z, x) ≡ ρ(z, x)

1

(2π)d

∫
W(z, x, p)dx =

1

γ d
|Ψ̂(z, p)|2

which are nonnegative; indeed any marginal on ad-dimensional subspace is nonnegative everywhere. Also, the
energy flux is given by

1

2i
(Ψ∇Ψ∗

− Ψ∗
∇Ψ) =

∫
Rd

pW(z, x, p)dp. (4)

In the whole phase space, however, the Wigner distribution is not everywhere nonnegative in general and hence
cannot be a true probability density. Asγ → 0, the Wigner distribution has a nonnegative-measure-valued weak
limit, called the Wigner measure [9]. Therefore the Wigner distribution is particularly useful for analyzing high
frequency behaviors of waves.

3. The evolution equations

From the NLS equation(1) it is straightforward to derive the closed-form (Wigner–Moyal) equation for the
Wigner distribution in the It̂o sense [4], [5]

dzW + p · ∇xWdz + Uγ Wdz −Qγ Wdz + dzVγ W = 0. (5)

Here theself-adjointoperatorQγ is the Stratonovich correction term

Qγ W(z, x, p) =
1

2

∫
Φ(q)γ −2

[−2W(z, x, p) + W(z, x, p − γ q) + W(z, x, p + γ q)]dq

andUγ andVγ are the nonlinear and linear Moyal operators, respectively

Uγ W(z, x, p) = i
∫

eiq·xγ −1
[W(z, x, p + γ q/2) − W(z, x, p − γ q/2)]Û (z, q)dq,

Vγ W(z, x, p) = i
∫

eiq·xγ −1
[W(z, x, p + γ q/2) − W(z, x, p − γ q/2)]V̂(z, dq)

with

U = gρσ .

Here we have somewhat abused the notation by writingÛ as the Fourier-transform-in-x of the functionU (z, ·) and
V̂(dz, dq) as the spectral measure of the white-noise potentialV(z, ·). The spectral measurêV(dz, dp) is related
to the power spectral densityΦ of V as

〈dzV̂(z, dp)dzV̂∗(z′, dq)〉 = δ(z − z′)δ(p − q)Φ(p)dzdpdq.

An important property of these integral operators is∫
Qγ Wdp =

∫
Uγ Wdp =

∫
Vγ Wdp = 0 (6)

which will be useful in deriving the energy law and the variance identity.
A major advantage of formulating the wave process on the phase space using the Wigner distribution is that the

(high-frequency) low-Fresnel number limitγ can be easily obtained. Formally we see that asγ → 0
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Uγ W(z, x, p) → U0W(z, x, p) ≡ ∇xU (z, x) · ∇pW(z, x, p)

Vγ W(z, x, p) → V0W(z, x, p) ≡ ∇xV(z, x) · ∇pW(z, x, p)

Qγ W(z, x, p) → Q0W(z, x, p) = ∇p · D∇pW(z, x, p)

with the diffusion coefficient

D =

∫
Φ(p)p ⊗ pdp. (7)

We shall refer to Eq.(5) as the nonlinear Wigner–Moyal–Itô (NWMI) equation whenγ > 0 and as the nonlinear
Liouville–Itô (NLI) equation whenγ = 0.

Another advantage of working with Eq.(5) is that one can use it to evolve the mixed-state initial condition. The
mixed-state Wigner distribution is a convex combination of the pure-state Wigner distributions(3) described as
follows.

Let {Ψα} be a family ofL2 functions parametrized byα which is weighted by a probability measureP(dα).
Denote the pure-state Wigner distribution(3) by W[Ψα]. A mixed-state Wigner distribution is given by∫

W[Ψα]P(dα). (8)

The limiting set, asγ → 0, of the mixed state Wigner distributions constitutes the nonnegative Wigner measures
[6,9]. The NWMI or NLI equation preserves the mixed-state form(8).

3.1. Basic properties

The NWMI and NLI equations conserve the total mass, i.e.

d

dz
N = 0, N =

∫
W(z, x, p)dxdp

and theL2 norm

d

dz

∫
W2(z, x, p)dxdp = 0.

One can absorb the effect of the total massN into g by the obvious rescaling ofW in Eq. (5). Henceforth we
assume thatN = 1.

Let Sx andSp be the spreads (or variances) of position and momentum, respectively

Sx(z) =

∫
|x|

2W(z, x, p)dxdp (9)

Sp(z) =

∫
|p|

2W(z, x, p)dxdp. (10)

A natural space of initial data and solutions is the subspaceW ⊂ L2(R2d) with a finite Dirichlet form

−

∫
WQγ Wdxdp < ∞

and finite, positive (pre-ensemble-averaged) variancesSx ∈ (0, ∞), Sp ∈ (0, ∞). In addition, we shall also assume
that the initial data have a finite HamiltonianH ∈ (−∞, ∞) with
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H =
1

2
Sp −

g

σ + 1

∫
ρσ+1dx, ρ(z, x) =

∫
W(z, x, p)dp. (11)

The first term inH is the kinetic energy and the second term is the (self-interaction) potential energy. Note that
in the presence of a random potential, the value of the Hamiltonian(11) is not conserved under the evolution(5).
Indeed, the ensemble-averaged value of the Hamiltonian increases in time, cf.(27)below.

4. Energy and variance identity

Let us analyze the evolution of the mean Hamiltonian〈H〉 and the average spread〈Sx〉. First note the result of
Uγ acting on the quadratic polynomials:

Uγ x = 0 (12)

Uγ p = i
∫

eiq·xqÛ (q)dq = ∇xU (13)

Uγ |x|
2

= 0 (14)

Uγ x · p = i
∫

eiq·xx · qÛ (q)dq = x · ∇xU (15)

Uγ |p|
2

= i
∫

eiq·x2p · qÛ (q)dq = 2p · ∇xU. (16)

A remarkable fact is that these results are independent ofγ ≥ 0.
Using(12)–(16)and(6) we obtain by integrating Eq.(5) that

d

dz
〈Sp〉 =

〈∫
∇xU · 2pWdxdp

〉
+

∫
Qγ |p|

2
〈W〉dpdx

d

dz

g

σ + 1

∫
〈ρσ+1

〉dx =

〈∫
∇xU · pWdpdx

〉
from which the evolution equation for the mean value of the Hamiltonian follows

d

dz
〈H〉 =

1

2

∫
Qγ |p|

2
〈W〉dpdx. (17)

We shall refer to(17)as theenergy law.

4.1. Variance identity

The variance identity has been long used to derive the wave collapse condition for the NLS in the homogeneous
case [13]. Below we reformulate it for the phase space evolution equation(5).

We have another set of remarkably simple properties ofQγ independent ofγ ≥ 0:

Qγ x = 0 (18)

Qγ p = 0 (19)

Qγ |x|
2

= 0 (20)

Qγ x · p = 0 (21)

Qγ |p|
2

=

∫
Φ(q)|q|

2dq ≡ 2R. (22)
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For the diffusion operatorQ0 we haveR = 2 × tr(D) where the diffusion matrixD is given by(7). We shall use
the above identities to perform integrating by parts in the derivation of the variance identity.

Combining the results from the previous section and(18)–(22)we obtain the rate of change of〈Sx〉

d

dz
〈Sx〉 = 2〈Sxp〉 (23)

whereSxp is the cross-moment

Sxp =

∫
x · pWdxdp.

DifferentiatingSxp and taking expectation we obtain

d

dz
〈Sxp〉 = 〈Sp〉 −

gdσ

σ + 1

∫
〈ρσ+1

〉dx.

Hence the second derivative ofSx becomes

d2

dz2
〈Sx〉 = 4〈H〉 +

2(2 − dσ)g

σ + 1

∫
〈ρσ+1

〉dx. (24)

Alternatively using the definition ofH we can rewrite the variance identity(24)as

d2

dz2
〈Sx〉 = 2dσ 〈H〉 + (2 − dσ)〈Sp〉 (25)

which in the critical case dσ = 2 becomes

d2

dz2
〈Sx〉 = 2dσ 〈H〉. (26)

Both (24)and(25)will be useful for estimating wave spread.

5. Dispersion rate

Although the medium is lossless, reflected in the fact that the total massN = 1 is conserved, the value of
the Hamiltonian, however, is not conserved by the evolution since the random scattering is not elastic due to the
time-varying nature of the random potential. Indeed, by(17) and(22), the average Hamiltonian is an increasing
function of time

d

dz
〈H〉 = R, 〈H〉(z) = H(0) + Rz (27)

due to the diffusion-like spread in the momentump.
In the critical case dσ = 2, we obtain from Eqs.(26)and(27) the exact result

d2

dz2
〈Sx〉 = 4〈H〉 = 4H(0) + 4Rz (28)

before any singularity formation causes a possible breakdown of the variance identity. Integrating(28) twice we
obtain the exact spread rate as stated below.

Proposition 1. If dσ = 2 or g = 0, then

〈Sx〉(z) = Sx(0) + 2Sxp(0)z + 2H(0)z2
+

2R

3
z3. (29)
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The analogous result(Sx ∼ z3) for the linear Schr̈odinger equation(d = 1, g = 0) with a random potential has
been proved previously [1,3].

Next we consider the supercritical case and the defocusing case. We have from(24) that

d2

dz2
〈Sx〉 = 4〈H〉 +

(4 − 2dσ)g

σ + 1

∫
〈ρσ+1

〉dx (30)

and hence

d2

dz2
〈Sx〉 ≤ 4〈H〉 = 4H(0) + 4Rz, for g(2 − dσ) < 0

d2

dz2
〈Sx〉 ≥ 4〈H〉 = 4H(0) + 4Rz, for g(2 − dσ) ≥ 0.

On the other hand, from(25)we obtain for anyg

d2

dz2
〈Sx〉 ≤ 2dσ 〈H〉, for 2 − dσ ≤ 0

d2

dz2
〈Sx〉 ≥ 2dσ 〈H〉, for 2 − dσ ≥ 0.

Integrating the above inequalities twice, we obtain the following.

Proposition 2. The following estimates hold

〈Sx(z)〉 ≤ Sx(0) + 2Sxp(0)z + 2H(0)z2
+

2

3
Rz3, g(2 − dσ) ≤ 0 (31)

〈Sx(z)〉 ≥ Sx(0) + 2Sxp(0)z + 2H(0)z2
+

2

3
Rz3, g(2 − dσ) ≥ 0 (32)

and

〈Sx(z)〉 ≤ Sx(0) + 2Sxp(0)z + dσ H(0)z2
+

dσ

3
Rz3, 2 ≤ dσ (33)

〈Sx(z)〉 ≥ Sx(0) + 2Sxp(0)z + dσ H(0)z2
+

dσ

3
Rz3, 2 ≥ dσ. (34)

Therefore

Corollary 3. Assume g< 0 (hence H≥ 0). Then

〈Sx(z)〉 ≤ Sx(0) + 2Sxp(0)z + (dσ ∨ 2)H(0)z2
+

dσ ∨ 2

3
Rz3

and

〈Sx(z)〉 ≥ Sx(0) + 2Sxp(0)z + (dσ ∧ 2)H(0)z2
+

dσ ∧ 2

3
Rz3. (35)

In other words the variance〈Sx〉 is cubic-in-time in the defocusing case. Forg > 0 in the subcritical case,
however, the cubic law is a lower bound while in the supercritical case the cubic law is an upper bound.
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6. Finite-time singularity

Finite-time singularity for the critical or supercritical(dσ ≥ 2) self-focusing NLS equation in the homogeneous
case is a well known effect [13]. In this case the singularity is the blow-up typeSp,

∫
|ρ|

σ+1
→ ∞. Here we

call breakdown of the variance identity(24) and(25) or the energy law(17) as finite-time singularity and seek the
sufficient conditions for singularity with positive probability. We show that in the supercritical case with additional
assumptions the finite-time singularity is of the blow-up type in the sense that〈Sp〉,

∫
〈ρσ+1

〉 tend to infinity. As
such the blow-up phenomenon discussed here is not necessarily a sure event but rather an event of a positive
probability thatSp and

∫
ρσ+1 can exceed any fixed level in a finite time.

For g ≥ 0, dσ ≥ 2 one can boundSx as in the inequality(33)

〈Sx(z)〉 ≤ Sx(0) + 2Sxp(0)z + dσ H(0)z2
+

dσ R

3
z3

≡ F(z) (36)

and as motivated by the homogeneous case we look for the conditions whenF(z) vanishes at a finitez ≥ 0.
A sufficient condition forF(z) to vanish at a finite positivez can be derived from thatF(z) takes a non-positive

valueF(z0) ≤ 0 at its local minimum pointz0 > 0. The local minimum pointz0 is given by

z0 =

−H(0) +

√
H(0)2 − 2RSxp(0)/(dσ)

R
. (37)

Therefore we are led to the following conditions for singularity.

Proposition 4. Assumedσ ≥ 2, g > 0. The solutions of the NWMI or NLI equation develop singularities with
positive probability at a finite time z∗ ≤ z0 given by(37) under the condition F(z0) ≤ 0 and either one of the
following conditions

Sxp(0) < 0 (38)

Sxp(0) > 0, H(0) < −

√
2RSxp(0)

dσ
. (39)

Remark 1. Clearly, the conditionF(z0) ≤ 0 requiresH(0) to be sufficiently belowH̄ by allowing the self-
interaction energy

−
g

σ + 1

∫
ρσ+1(0)dxdp

to be sufficiently negative.

Remark 2. Using, instead, inequality(31)one can obtain an alternative expression

z0 =

−H(0) +

√
H(0)2 − RSxp(0)

R
(40)

and the corresponding conditions for singularity formation, namely eitherSxp(0) < 0 or Sxp(0) > 0, H(0) <

−
√

RSxp(0).

It may be the case that for a given initial condition the solutions develop singularity at different times depending
on the realization of random potential [2]. To analyze such an effect we need the probabilistic versions of variance
identity and energy law which are much more involved.
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6.1. Blow-up

We will follow the argument of Glassey [7] to show more explicitly the blow-up mechanism in the case with the
supercritical, self-focusing nonlinearity and give a sharper bound onz∗ under certain circumstances.

Proposition 5. Supposedσ > 2, g > 0. Then under the conditions(38)and

〈H(z∗)〉 = H(0) + Rz∗ ≤ 0, with z∗ =
2Sx(0)

Sxp(0)(2 − dσ)
, (41)

d〈Sx〉/dz and〈Sp〉 blow up before or at a finite time z∗.

Proof. Since blow-up is a local phenomenon,Sx is a poor indicator of its occurrence. A more relevant object to
consider isSp. From(25) it follows that

d2

dz2
〈Sx〉 = 2

d

dz
〈Sxp〉 ≤ (2 − dσ)〈Sp〉 < 0, z ≤ z∗. (42)

Since d〈Sx(0)〉/dz = 2〈Sxp(0)〉 < 0 by (42) and(38), d〈Sx〉/dz is a negative, decreasing function up to the time
z∗. Hence we have

0 ≤ 〈Sxp〉
2

≤ 〈Sx〉〈Sp〉 ≤ Sx(0)〈Sp〉, z ∈ [0, z∗] (43)

which implies

〈Sp〉 ≥
〈Sxp〉

2

Sx(0)
. (44)

Let A(z) = −〈dSx(z)/dz〉 ≥ 0, z ≤ z∗. We have from(42), (44)and(23) the differential inequality

d

dz
A ≥ C A2, C =

dσ − 2

4Sx(0)
> 0 (45)

which yields the estimate

A(z) ≥
A(0)

1 − zC A(0)
, z <

1

C A(0)
= z∗

and thus the blow-up ofA(z) before or atz∗. This along with(44) then implies the blow-up ofSp at a finite
time. �

The preceding argument demonstrates clearly the blow-up mechanism, namely the quadratic growth
property(45).

Remark 3. It should be noted that, since〈H(z0)〉 > 0, the condition(41) implies thatz∗ < z0, as given by either
(37) or (40). Therefore, under the condition(41), z∗ provides a sharper upper bound on the time of singularity
thanz0.

Remark 4. Since 〈H(z)〉 is bounded over compact sets ofz, Proposition 5implies the blow-up of the self-
interaction energy

∫
〈ρσ+1

〉 in a finite time.

7. Conclusion

We have presented an elementary approach for analyzing the nonlinear Schrödinger equation with a white-noise
potential. We have focused on the ensemble-averaged quantities such as the variance identity and energy law in
order to shed light on two problems: the rate of spread and the singularity formation.



204 A.C. Fannjiang / Physica D 212 (2005) 195–204

We have shown that the ensemble-averaged spread in the critical or defocusing case follows the cubic-in-time
law while in the supercritical and subcritical focusing cases the cubic law becomes an upper and lower bound
respectively. In a separate publication we will use these estimates to analyze the limitation on channel capacity in
optical fibers due to self-phase and cross-phase modulations [8].

We have also found singularity conditions in the critical and supercritical focusing cases. And we show the
finite-time singularity in the supercritical case is of the blow-up type. The singularity/blow-up discussed in the
present paper is not necessarily a sure event but that of a positive probability.
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