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Coded-aperture phase retrieval

Mask (wavefront) µ + propagation + intensity measurement:

µ-coded diffraction pattern = |Φ(f � µ)|2, Φ = Fourier transform.

Ambiguities with one randomly coded diffraction pattern:

(harmless) constant phase f (·) −→ e iθf (·)
translation f (·) −→ f (·+ n)

conjugate inversion f (·) −→ f (−·)
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Uniqueness theory

Redundancy: 1+ randomly coded pattern.

Theorem (F. 2012)

Suppose f is a non-line object. Then the object is uniquely determined by
two independent coded diffraction patterns up to a constant phase factor
with probability one.

Noise stability?
M × N Gaussian measurement matrix: M = O(N)

→ Candes-Strohmer-Voroninski 2013, Candes-Li 2014, Demanet-Hand
2014, Hand 2017

→ PhaseMax: Goldstein-Studer 2018, Dhifallah-Thrampoulidis-Lu 2017
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Numerics

(Empirical) global convergence

→ Gradient-descent + special initialization methods: Alternating
Projections (AP) or Wirtinger Flow (WF).

→ Initialization methods:
– Spectral: Netrapalli-Jain-Sanghavi 2015, Chen-Candes 2017
– Null-vector: Chen-F.-Liu 2017
– Optimal spectral: Mondelli-Montanari 2019, Luo-Alghamdi-Lu 2019.

→ Initialization methods are ineffective for blind phasing.
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ADMM/DRS: Globally and linearly convergent algorithm: Luke 2005,
F.-Zhang 2020

Convergence proof:

→ Local convergence for the Fourier case with two diffraction patterns
(Chen-F.-Liu 2017, Chen-F. 2018).

→ Global convergence for suboptimal algorithms: Li-Pong 2016.
→ Global convergence for the Gaussian case with many diffraction

patterns (Cand‘es-Strohmer-Voroninski 2013, Candes-Li 2014,
Candes-Li-Soltanolkotabi 2015).
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Ptychography

Phase retrieval with windowed Fourier intensities.

Measurement scheme:
→ Window function?
→ Scan pattern?
→ Overlap?
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Mask/probe retrieval

Thibault et al. 08/09

Relative residual reduces (from 32% to 18%) after mask recovery
routine is turned on.

Simultaneous recovery of the mask and the object?
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Maiden-Johnson-Li 2017

The mask is randomly initialized and the object is initialized as a
constant.

Overlap ratio 70− 80%.
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Measurement scheme: notation & set-up

T : t ∈ Z2 (pixel space) involved in ptychography.

µ0 the initial mask; µt the t-shifted mask

M0 = Z2
m; Mt the domain of µt.

M := ∪t∈TMt

f t: the object restricted to Mt

Twin(f t): 180◦-rotation of f t around the center of Mt

f = ∨tf
t with support ⊆M.

The original object is broken up into a set of overlapping object parts,
each of which produces a coded diffraction pattern (coded by µt).
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Raster scan

Raster scan: tkl = τ(k , l), k, l ∈ Z where τ is the step size.
M = Z2

n, M0 = Z2
m, n > m, with the periodic boundary condition.
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Measurement scheme

Mt = nodes
Two nodes are s-connected if |Mt ∩Mt′ ∩ supp(f )| ≥ s ≥ 2.

Theorem (Chen-F. 2017)

Suppose that ptychographic graph is s-connected (s ≥ 2). If the known
mask comprises non-vanishing independent continuous random variables
and every object part f t is non-line, then the object is uniquely, up to a
constant phase factor, by the ptychographic data.

Iwen-Viswanathan-Wang 2016: Uniqueness for standard raster scan with a
standard Gabor window function shifted by one pixel at a time.
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Graph representation
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Raster scan with Fresnel mask can be ineffective

Twin-like ambiguity: Chen & F (2017)

Fresnel mask µ0(k) := exp
{
iπρ|k|2/m

}

No uniqueness for a discrete set of ρ (except with one pixel shifts)!
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Affine phase ambiguity

Fundamental ambiguity with blind ptychography.
Consider the probe and object estimates

ν0(n) = µ0(n) exp(−ia− iw · n), n ∈M0

g(n) = f (n) exp(ib + iw · n), n ∈ Z2
n

for any a, b ∈ R and w ∈ R2. Then

νt(n)g t(n) = µt(n)f t(n) exp(i(b − a)) exp(iw · t)

exp(iw · t) depends on t but not on n ⇒ g and ν0 produce the same
ptychographic data as f and µ0.
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Phase drift

Necessary condition for blind ptychography:

(?) νt � g t = e iθtµt � f t, ∀t ∈ T ,

for some θt (phase drift).

Theorem (F 2019)

Let T = {tk} be a v-generated cyclic group of order q and Mk the
tk -shifted mask domain. Suppose that

νk(n)gk(n) = e iθkµk(n)f k(n), for all n ∈Mk and tk ∈ T .

If

Mk ∩Mk+1 ∩ supp(f ) ∩ (supp(f )⊕ v) 6= ∅, ∀k

then {θ0, θ1, . . . , θq−1} form an arithmetic progression.
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Intermediate step

Theorem (F-Chen 2020)

Let the scheme be s-connected and each f t is a non-line object. Suppose
that some f t has a tight support in Mt and that µ0 6= 0 has independently
distributed random phases over at least the range of length π.
Suppose that ν0 with

(MPC) <
[
ν0(n)µ0(n)

]
> 0, ∀n ∈M0,

and an arbitrary object g = ∪kgk produce the same ptychographic data as
f and µ0. Then the phase drift equation

(?) νt � g t = e iθtµt � f t, ∀t ∈ T ,

holds with probability at least 1− cs , c < 1, where c depends on the
mask phase distribution.
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Object support constraint (OSC)

f t has a tight support in Mt: Each and every side of Mt intersects with
supp(f t).

OSC for a measurement scheme (the scan pattern): any translation of f
would move some nonzero pixels across ∪t∂Mt.
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OSC counter-example

Let m = 2n/3, t = (m/2, 0) f 0 = [0, f 01 ] and f t = [f 10 , 0] with f 01 = f 10 .
Likewise, µ0 = [µ00, µ

0
1], µt = [µ10, µ

1
1].

Let ν0 = µ0, νt = µt and g0 = [g0
0 , 0], g t = [0, g1

1 ] where

g0(n) = f̄ 0(N− n)µ̄0(N− n)/µ0(n), ∀n ∈M0

g t(n) = f̄ t(N + 2t− n)µ̄t(N + 2t− n)/µt(n), ∀n ∈Mt.

Hence g0 � µ0 and g t � µt produce the same diffraction patterns as
f 0 � µ0 and f t � µt but

g0 � µ0 6= e iθ0f 0 � µ0

g t � µt 6= e iθtf t � µt

even when the mask is completely known.
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Block phase ambiguity

For q = 3, τ = m/2, let

f =

f00 f10 f20
f01 f11 f21
f02 f12 f22

 , g =

 f00 e i2π/3f10 e i4π/3f20
e i2π/3f01 e i4π/3f11 f21
e i4π/3f02 f12 e i2π/3f22


be the object and its reconstruction, respectively, where fij , gij ∈ Cn/3×n/3.
Let

µkl =

[
µkl00 µkl10
µkl01 µkl11

]
, νkl =

[
µkl00 e−i2π/3µkl10

e−i2π/3µkl01 e−i4π/3µkl11

]
, k, l = 0, 1, 2,

be the probe and its estimate, respectively, where µklij , ν
kl
ij ∈ Cn/3×n/3.

=⇒ ν ij � g ij = e i(i+j)2π/3µij � f ij .
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Periodic ambiguity (raster grid pathology)

(τ = m/2) tkl -shifted probes µkl and νkl can be written as

µkl =

[
µkl00 µkl10
µkl01 µkl11

]
, νkl =

[
ε� µklij

]
Let

ε = [α(n) exp(iφ(n))], ε−1 = [α−1(n) exp(−iφ(n))] ∈ Cτ×τ .

Consider the two objects

f =

 f00 . . . fq−1,0
...

...
...

f0,q−1 . . . fq−1,q−1

 , g =
[
ε−1 � fij

]
Two exit waves µkl � f kl and νkl � gkl are identical. But the estimates are
far off.
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Mixing schemes

Rank-one perturbation tkl = τ(k , l) + (δ1k , δ
2
l ).

Full-rank perturbation tkl = τ(k, l) + (δ1kl , δ
2
kl).
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Global uniqueness

Theorem (F. 2019)

Suppose f does not vanish in Z2
n. Let aij = 2δij+1 − δij − δij+2 and let {δijk}

be the subset of perturbations satisfying gcdjk{|a
i
jk
|} = 1, i = 1, 2, and

τ ≥ max
i=1,2
{|aijk |+ δijk+1 − δijk}

2τ ≤ m − max
i=1,2
{δijk+2 − δijk}, (> 50% overlap)

m − τ ≥ 1 + max
k ′

max
i=1,2
{|aijk |+ δik ′+1 − δik ′}.

Then APA and SF are the only ambiguities, i.e. for some explicit r

g(n)/f (n) = α−1(0) exp(in · r),

ν0(n)/µ0(n) = α(0) exp(iφ(0)− in · r)

θkl = θ00 + tkl · r.
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Mixing schemes

Theorem (F.-Chen 2020)

If T satisfies the mixing property, then

g(n)/f (n) = α−1(0) exp(in · r),

ν0(n)/µ0(n) = α(0) exp(iφ(0)− in · r)

θt = θ0 + t · r.

Counterexamples exist for perturbed raster scans with < 50% overlap.

Iwen-Preskitt-Saab-Viswanathan 2020: T = Z2
n ⇒ noise stability.
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Initialization with mask phase constraint

Mask/probe initialization

µ1(n) = µ0(n) exp [iφ(n)],

where φ(n) i.i.d. uniform on (−π/2, π/2) =⇒

<
[
µ1(n)µ0(n)

]
> 0, ∀n ∈M0,

Relative error of the mask estimate√
1

π

∫ π/2

−π/2
|e iφ − 1|2dφ =

√
2(1− 2

π
) ≈ 0.8525

Object initialization: f1 = constant or random phase object.
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Noise-aware ADMM

Let F(ν, x) = the totality of the Fourier (magnitude and phase) data
for any mask ν and object x .

Chang-Enfedaque-Marchesini 2019 consider the augmented
Lagrangian

L(ν, x , z , λ) =
1

2
‖b − |z |‖2 + λ∗(z −F(ν, x)) +

β

2
‖z −F(ν, x)‖2

and the ADMM scheme

µk+1 = arg minL(ν, xk , zk , λk)

xk+1 = arg minL(µk+1, x , zk , λk)

zk+1 = arg minL(µk+1, xk+1, z , λk)

λk+1 = λk + β(zk+1 −F(µk+1, xk+1)).
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Fourier domain algorithms

F.-Strohmer 2020 considers the augmented Lagrangian

L(y , z , λ) =
1

2
‖|z | − b‖2 + λ∗(z − y) +

ρ

2
‖z − y‖2 + IF (y)

where IF is the indicator function of {y : y = F(ν, x) for some ν, x}.

⇒


(zk+1, µk+1) = arg minz L(yk , z , xk , ν, λk)
(yk+1, xk+1) = arg miny L(y , zk+1, x , µk+1, λk)

λk+1 = λk + ρ(zk+1 − yk+1)

⇒


zk+1 = 1

ρ+1Pb(yk − λk/ρ) + ρ
ρ+1(yk − λk/ρ)

µk+1 = B+
k yk

yk+1 = Ak+1A
+
k+1(zk+1 + λk/ρ)

xk+1 = A+
k+1yk+1 (needed for Bk+1)

λk+1/ρ = λk/ρ+ zk+1 − yk+1.

where Aνx := F(ν, x) = concatenation of {Φdiag(νt)} and
Bxν = F(ν, x) = {Φdiag(x t)}. Both have orthogonal columns.
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eGaussian-DRS

In terms of the new variable uk = zk + λk−1/ρ, we have

uk+1

=
1

ρ+ 1
Pb(2AkA

+
k uk − uk) +

ρ

ρ+ 1
(2AkA

+
k uk − uk) + uk − AkA

+
k uk

=
uk
ρ+ 1

+
ρ− 1

ρ+ 1
AkA

+
k uk +

1

ρ+ 1
Pb(2AkA

+
k uk − uk)

with µk+1 = B+
k AkA

+
k uk , xk+1 = A+

k+1uk+1.
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Noise-agnostic ADMM

Consider

L(z , ν, x , λ) = Ib(z) + λ∗(z −F(ν, x)) +
1

2
‖z −F(ν, x)‖2

and the following ADMM scheme

zk+1 = arg min
z
L(z , µk , xk , λk) = Pb [F(µk , xk)− λk ]

(µk+1, xk+1) = arg min
ν
L(zk+1, ν, x , λk)

λk+1 = λk + zk+1 −F(µk+1, xk+1).

If we simplify the bilinear optimization step by one-step alternating
minimization

µk+1 = arg min
ν
L(zk+1, ν, xk , λk) = B+

k (zk+1 + λk)

xk+1 = arg min
g
L(zk+1, µk+1, x , λk) = A+

k+1(zk+1 + λk)

then we obtain the DM algorithm of Thibault et al. 2008/2009.
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eRAAR

Consider the augmented Lagrangian

L(y , z , ν, x , λ) = IY (z) +
1

2
‖y −F(ν, x)‖2 + λ∗(z − y) +

γ

2
‖z − y‖2

⇒


(yk+1, xk+1) = arg miny L(y , zk , x , µk , λk)
(zk+1, µk+1) = arg minz L(yk+1, z , xk+1, ν, λk)

λk+1 = λk + γ(zk+1 − yk+1).

In terms of the new variable uk+1 := yk+1 − λk/γ and Rb = 2Pb − I

⇒


uk+1 = βuk + (1− 2β)Pbuk + βPkRbuk
µk+1 = B+

k+1(uk+1 + Pbuk − uk)

xk+1 = A+
k Rbuk
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Test objects and error metric

+ ı

× exp ı

RE(k) = min
α∈C,k∈R2

‖f (r)− αe−ı
2π
n

k·rfk(r)‖2
‖f ‖2
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Scan patterns

Rank-one perturbation tkl = 30(k , l) + (δ1k , δ
2
l ) where δ1k and δ2l

are randomly selected integers in [−4, 4].

Full-rank perturbation tkl = 30(k , l) + (δ1kl , δ
2
kl) where δ1kl and δ2kl

are randomly selected integers in [−4, 4] .

The adjacent probes overlap by roughly 50%.

Boundary conditions:

Periodic BC
Dark-field (enforced or not)
Bright-field (enforced or not)
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eGaussian-DRS vs eRAAR
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Figure 22: eDRS on CiB with ⇢ = 1/3.
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(a) 50% overlap; δ = 0.45
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Figure 22: eDRS on CiB with ⇢ = 1/3.
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(b) 66% overlap; δ = 0.4
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Figure 22: eDRS on CiB with ⇢ = 1/3.
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(c) 75% overlap; δ = 1/2

Figure: eGaussian-DRS with ρ = 1/3 for CiB
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Figure 21: eRAAR on CiB with � = 0.8.
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(a) 50% overlap; δ = 0.45
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Figure 21: eRAAR on CiB with � = 0.8.

B.3 eRAAR/eDRS Comparison

In the following, we make a comparison between eRAAR ( � = 0.8) with eDRS with (⇢ = 1/3). The
selection of parameters are to ensure the equivalent fixed points. In Fig. 21, figures in top row and middle
row show the convergence under � = ⇡/2 and large overlapping 66% and 75%. The convergence speed of
75% is faster than that of 66%.( I double checked with RPP case. We does not have convergence under
75% under 1200 iterations. I do not know why. Maybe much more iterations are needed.)

Bottom row shows the case with 50% and various uncertainty level �. As � gets close to ⇡/2,
more iterations are needed to get convergence. But not clear whether we would have convergence for
� = 9.5⇡/20.

Next, in Fig. ??, we conduct eDRS on the same CiB. In general, if DRS converges, the convergence
speed is faster than eRAAR. See the middle row for the 75% case with � = ⇡/2. I cannot get the
convergence for 66% with � = ⇡/2. So, I consider the case � = 4⇡/5 (since it does not converge for 9⇡/20
either). Bottom row shows the case of 50%.

Conclusion: eDRS gives faster convergence than eRAAR, if it does converge.
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(b) 66% overlap; δ = 0.4
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Figure 21: eRAAR on CiB with � = 0.8.
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75% is faster than that of 66%.( I double checked with RPP case. We does not have convergence under
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more iterations are needed to get convergence. But not clear whether we would have convergence for
� = 9.5⇡/20.

Next, in Fig. ??, we conduct eDRS on the same CiB. In general, if DRS converges, the convergence
speed is faster than eRAAR. See the middle row for the 75% case with � = ⇡/2. I cannot get the
convergence for 66% with � = ⇡/2. So, I consider the case � = 4⇡/5 (since it does not converge for 9⇡/20
either). Bottom row shows the case of 50%.

Conclusion: eDRS gives faster convergence than eRAAR, if it does converge.
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(c) 75% overlap; δ = 1/2

Figure: eRAAR with β = 0.8 for CiB.
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Local convexity

Let L(Ax) := ‖b − |Ax |‖ and B = diag
[
sgn(Ax)

]
A.

(gradient) 2<[ζ∗∇L(Ax)] = <(x∗ζ)− b><(Bζ), ∀ζ ∈ Cn2

(stationarity) B∗ [|Ax | − b] = 0

(Hessian) <[ζ∗Hessxζ] = ‖ζ‖2 −=(Bζ)Tdiag

[
b

|Ax |

]
=(Bζ).

Theorem (Chen-F. 2018)

Suppose f t is not a line object for any t. For any connective scheme, the
Hessian at x = f (nonvanishing almost surely) is positive semi-definite and
the eigenvalue zero has multiplicity one.

Proof: the second largest singular value λ2 of

B =
[
−<(B) =(B)

]
is strictly less than 1 with probability one.
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Gaussian-DRS with known mask

Fourier domain fixed points: PX = AA+,RX = 2PX − I

PXu + ρP⊥X u = b � sgn(RXu).

Theorem (F.-Zhang 2020)

Let u be a fixed point.
(i) ρ ≥ 1: If u is attracting, then |PXu| = b (i.e. regular solution).
(ii) ρ > 0: If |PXu| = b then u is attracting.
(iii) ρ = 0: local linear convergence near the true object

DRS (ρ ≥ 1): A fixed point is linearly attracting iff it is a true
solution.
DR (ρ = 0): continuously distributed unstable fixed points in the
vicinity of the true solution =⇒ sub-linearly attracting.
Convergence rate achieves the minimum

λ2√
1 + ρ∗

at ρ∗ = 2λ2

√
1− λ22 ∈ [0, 1].
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Conclusion and Questions

1 Blind ptychography not realizable with the regular raster scan:
→ Mixing schemes: connective graph with overlap ≥ 50%
→ Mask prior: mask phase constraint.

Extension: 3D tomographic phase retrieval with uncertain
orientations.

2 Local convergence analysis for Gaussian-DRS with known mask.
Global convergence: cf. Li-Pong 2016.
Noise leads to infeasible optimization problem:

3 Blind ptychography algorithms:
→ Little convergence analysis: cf. Hesse-Luke-Sabach-Tam 2015
→ Initialization method?
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