Ptychography: Theory \& Algorithms

Albert Fannjiang

University of California, Davis

UC Irvine, June 10, 2021.

Fannjiang-Strohmer, Acta Numerica (2020), 125-228.

Coded-aperture phase retrieval

- Mask (wavefront) $\mu+$ propagation + intensity measurement: μ-coded diffraction pattern $=|\Phi(f \odot \mu)|^{2}, \quad \Phi=$ Fourier transform.
- Ambiguities with one randomly coded diffraction pattern:

$$
\begin{aligned}
\text { (harmless) constant phase } & f(\cdot) \longrightarrow e^{i \theta} f(\cdot) \\
\text { translation } & f(\cdot) \longrightarrow f(\cdot+\mathbf{n}) \\
\text { conjugate inversion } & f(\cdot) \longrightarrow \bar{f}(-\cdot)
\end{aligned}
$$

Uniqueness theory

- Redundancy: 1+ randomly coded pattern.

Theorem (F. 2012)

Suppose f is a non-line object. Then the object is uniquely determined by two independent coded diffraction patterns up to a constant phase factor with probability one.

- Noise stability?
$M \times N$ Gaussian measurement matrix: $M=\mathcal{O}(N)$
\rightarrow Candes-Strohmer-Voroninski 2013, Candes-Li 2014, Demanet-Hand 2014, Hand 2017
\rightarrow PhaseMax: Goldstein-Studer 2018, Dhifallah-Thrampoulidis-Lu 2017

Numerics

- (Empirical) global convergence
\rightarrow Gradient-descent + special initialization methods: Alternating Projections (AP) or Wirtinger Flow (WF).
\rightarrow Initialization methods:
- Spectral: Netrapalli-Jain-Sanghavi 2015, Chen-Candes 2017
- Null-vector: Chen-F.-Liu 2017
- Optimal spectral: Mondelli-Montanari 2019, Luo-Alghamdi-Lu 2019.

(a) NSR 0\%

(b) NSR 10%

(c) NSR 20%
\rightarrow Initialization methods are ineffective for blind phasing.
- ADMM/DRS: Globally and linearly convergent algorithm: Luke 2005, F.-Zhang 2020

- Convergence proof:
\rightarrow Local convergence for the Fourier case with two diffraction patterns (Chen-F.-Liu 2017, Chen-F. 2018).
\rightarrow Global convergence for suboptimal algorithms: Li-Pong 2016.
\rightarrow Global convergence for the Gaussian case with many diffraction patterns (Cand'es-Strohmer-Voroninski 2013, Candes-Li 2014, Candes-Li-Soltanolkotabi 2015).

Ptychography

- Phase retrieval with windowed Fourier intensities.
- Measurement scheme:
\rightarrow Window function?
\rightarrow Scan pattern?
\rightarrow Overlap?

Mask/probe retrieval

Thibault et al. 08/09

- Relative residual reduces (from 32\% to 18\%) after mask recovery routine is turned on.
- Simultaneous recovery of the mask and the object?

Maiden-Johnson-Li 2017

- The mask is randomly initialized and the object is initialized as a constant.
- Overlap ratio $70-80 \%$.

Measurement scheme: notation \& set-up

- $\mathcal{T}: \mathbf{t} \in \mathbb{Z}^{2}$ (pixel space) involved in ptychography.
- μ^{0} the initial mask; $\mu^{\mathbf{t}}$ the \mathbf{t}-shifted mask
- $\mathcal{M}^{0}=\mathbb{Z}_{m}^{2} ; \mathcal{M}^{\mathbf{t}}$ the domain of $\mu^{\mathbf{t}}$.
- $\mathcal{M}:=\cup_{\mathbf{t} \in \mathcal{T}} \mathcal{M}^{\mathbf{t}}$
- f^{t} : the object restricted to \mathcal{M}^{t}
- Twin $\left(f^{\mathbf{t}}\right): 180^{\circ}$-rotation of $\overline{f^{\mathbf{t}}}$ around the center of $\mathcal{M}^{\mathbf{t}}$
- $f=V_{\mathbf{t}} f^{\mathbf{t}}$ with support $\subseteq \mathcal{M}$.

The original object is broken up into a set of overlapping object parts, each of which produces a coded diffraction pattern (coded by $\mu^{\mathbf{t}}$).

Raster scan

Raster scan: $\mathbf{t}_{k l}=\tau(k, l), k, l \in \mathbb{Z}$ where τ is the step size. $\mathcal{M}=\mathbb{Z}_{n}^{2}, \mathcal{M}^{0}=\mathbb{Z}_{m}^{2}, n>m$, with the periodic boundary condition.

Measurement scheme

- $\mathcal{M}^{\mathbf{t}}=$ nodes
- Two nodes are s-connected if $\left|\mathcal{M}^{\mathbf{t}} \cap \mathcal{M}^{\mathbf{t}^{\prime}} \cap \operatorname{supp}(f)\right| \geq s \geq 2$.

(a) raster scan

(b)

(c)

Theorem (Chen-F. 2017)

Suppose that ptychographic graph is s-connected ($s \geq 2$). If the known mask comprises non-vanishing independent continuous random variables and every object part $f^{\mathbf{t}}$ is non-line, then the object is uniquely, up to a constant phase factor, by the ptychographic data.

Iwen-Viswanathan-Wang 2016: Uniqueness for standard raster scan with a standard Gabor window function shifted by one pixel at a time.

Graph representation

Raster scan with Fresnel mask can be ineffective

Twin-like ambiguity: Chen \& F (2017)
Fresnel mask $\mu^{0}(\mathbf{k}):=\exp \left\{\mathbf{i} \pi \rho|\mathbf{k}|^{2} / m\right\}$

(b) $q=4$

No uniqueness for a discrete set of ρ (except with one pixel shifts)!

Affine phase ambiguity

- Fundamental ambiguity with blind ptychography.

Consider the probe and object estimates

$$
\begin{aligned}
\nu^{0}(\mathbf{n}) & =\mu^{0}(\mathbf{n}) \exp (-\mathrm{i} a-\mathrm{i} \mathbf{w} \cdot \mathbf{n}), \quad \mathbf{n} \in \mathcal{M}^{0} \\
g(\mathbf{n}) & =f(\mathbf{n}) \exp (\mathrm{i} b+\mathrm{i} \mathbf{w} \cdot \mathbf{n}), \quad \mathbf{n} \in \mathbb{Z}_{n}^{2}
\end{aligned}
$$

for any $a, b \in \mathbb{R}$ and $\mathbf{w} \in \mathbb{R}^{2}$. Then

$$
\nu^{\mathbf{t}}(\mathbf{n}) g^{\mathbf{t}}(\mathbf{n})=\mu^{\mathbf{t}}(\mathbf{n}) f^{\mathbf{t}}(\mathbf{n}) \exp (\mathrm{i}(b-a)) \exp (\mathrm{i} \mathbf{w} \cdot \mathbf{t})
$$

- $\exp ($ iw $\cdot \mathbf{t})$ depends on \mathbf{t} but not on $\mathbf{n} \Rightarrow g$ and ν^{0} produce the same ptychographic data as f and μ^{0}.

Phase drift

Necessary condition for blind ptychography:

$$
(\star) \quad \nu^{\mathbf{t}} \odot g^{\mathbf{t}}=e^{\mathrm{i} \theta_{\mathbf{t}}} \mu^{\mathbf{t}} \odot f^{\mathbf{t}}, \quad \forall \mathbf{t} \in \mathcal{T},
$$

for some $\theta_{\mathbf{t}}$ (phase drift).
Theorem (F 2019)
Let $\mathcal{T}=\left\{\mathbf{t}_{k}\right\}$ be a \mathbf{v}-generated cyclic group of order q and M^{k} the \mathbf{t}_{k}-shifted mask domain. Suppose that

$$
\nu^{k}(\mathbf{n}) g^{k}(\mathbf{n})=e^{\mathrm{i} \theta_{k}} \mu^{k}(\mathbf{n}) f^{k}(\mathbf{n}), \quad \text { for all } \mathbf{n} \in \mathcal{M}^{k} \text { and } \mathbf{t}_{k} \in \mathcal{T}
$$

If

$$
\mathcal{M}^{k} \cap \mathcal{M}^{k+1} \cap \operatorname{supp}(f) \cap(\operatorname{supp}(f) \oplus \mathbf{v}) \neq \emptyset, \quad \forall k
$$

then $\left\{\theta_{0}, \theta_{1}, \ldots, \theta_{q-1}\right\}$ form an arithmetic progression.

Intermediate step

Theorem (F-Chen 2020)
Let the scheme be s-connected and each $f^{\mathbf{t}}$ is a non-line object. Suppose that some $f^{\mathbf{t}}$ has a tight support in $\mathcal{M}^{\mathbf{t}}$ and that $\mu^{0} \neq 0$ has independently distributed random phases over at least the range of length π. Suppose that ν^{0} with

$$
(M P C) \quad \Re\left[\overline{\nu^{0}}(\mathbf{n}) \mu^{0}(\mathbf{n})\right]>0, \quad \forall \mathbf{n} \in \mathcal{M}^{0}
$$

and an arbitrary object $g=\cup_{k} g^{k}$ produce the same ptychographic data as f and μ^{0}. Then the phase drift equation

$$
(\star) \quad \nu^{\mathbf{t}} \odot g^{\mathbf{t}}=e^{\mathrm{i} \theta_{\mathbf{t}}} \mu^{\mathbf{t}} \odot f^{\mathbf{t}}, \quad \forall \mathbf{t} \in \mathcal{T},
$$

holds with probability at least $1-c^{s}, c<1$, where c depends on the mask phase distribution.

Object support constraint (OSC)

$f^{\mathbf{t}}$ has a tight support in $\mathcal{M}^{\mathbf{t}}$: Each and every side of $\mathcal{M}^{\mathbf{t}}$ intersects with $\operatorname{supp}\left(f^{\mathrm{t}}\right)$.

OSC for a measurement scheme (the scan pattern): any translation of f would move some nonzero pixels across $\cup_{t} \partial \mathcal{M}^{t}$.

OSC counter-example

Let $m=2 n / 3, \mathbf{t}=(m / 2,0) f^{0}=\left[0, f_{1}^{0}\right]$ and $f^{\mathbf{t}}=\left[f_{0}^{1}, 0\right]$ with $f_{1}^{0}=f_{0}^{1}$.
Likewise, $\mu^{0}=\left[\mu_{0}^{0}, \mu_{1}^{0}\right], \mu^{\mathbf{t}}=\left[\mu_{0}^{1}, \mu_{1}^{1}\right]$.
Let $\nu^{0}=\mu^{0}, \nu^{\mathbf{t}}=\mu^{\mathbf{t}}$ and $g^{0}=\left[g_{0}^{0}, 0\right], g^{\mathbf{t}}=\left[0, g_{1}^{1}\right]$ where

$$
\begin{aligned}
g^{0}(\mathbf{n}) & =\bar{f}^{0}(\mathbf{N}-\mathbf{n}) \bar{\mu}^{0}(\mathbf{N}-\mathbf{n}) / \mu^{0}(\mathbf{n}), \quad \forall \mathbf{n} \in \mathcal{M}^{0} \\
g^{\mathbf{t}}(\mathbf{n}) & =\bar{f}^{\mathbf{t}}(\mathbf{N}+2 \mathbf{t}-\mathbf{n}) \bar{\mu}^{\mathbf{t}}(\mathbf{N}+2 \mathbf{t}-\mathbf{n}) / \mu^{\mathbf{t}}(\mathbf{n}), \quad \forall \mathbf{n} \in \mathcal{M}^{\mathbf{t}}
\end{aligned}
$$

Hence $g^{0} \odot \mu^{0}$ and $g^{\mathbf{t}} \odot \mu^{\mathbf{t}}$ produce the same diffraction patterns as $f^{0} \odot \mu^{0}$ and $f^{\mathbf{t}} \odot \mu^{\mathbf{t}}$ but

$$
\begin{aligned}
g^{0} \odot \mu^{0} & \neq e^{\mathrm{i} \theta_{0}} f^{0} \odot \mu^{0} \\
g^{\mathbf{t}} \odot \mu^{\mathbf{t}} & \neq e^{\mathrm{i} \theta_{\mathbf{t}}} f^{\mathbf{t}} \odot \mu^{\mathbf{t}}
\end{aligned}
$$

even when the mask is completely known.

Block phase ambiguity

For $q=3, \tau=m / 2$, let

$$
f=\left[\begin{array}{ccc}
f_{00} & f_{10} & f_{20} \\
f_{01} & f_{11} & f_{21} \\
f_{02} & f_{12} & f_{22}
\end{array}\right], \quad g=\left[\begin{array}{ccc}
f_{00} & e^{\mathrm{i} 2 \pi / 3} f_{10} & e^{\mathrm{i} 4 \pi / 3} f_{20} \\
e^{\mathrm{i} 2 \pi / 3} f_{01} & e^{\mathrm{i} 4 \pi / 3} f_{11} & f_{21} \\
e^{\mathrm{i} 4 \pi / 3} f_{02} & f_{12} & e^{\mathrm{i} 2 \pi / 3} f_{22}
\end{array}\right]
$$

be the object and its reconstruction, respectively, where $f_{i j}, g_{i j} \in \mathbb{C}^{n / 3 \times n / 3}$. Let
$\mu^{k l}=\left[\begin{array}{ll}\mu_{00}^{k l} & \mu_{10}^{k l} \\ \mu_{01}^{k l} & \mu_{11}^{k l}\end{array}\right], \quad \nu^{k l}=\left[\begin{array}{cc}\mu_{00}^{k l} & e^{-\mathrm{i} 2 \pi / 3} \mu_{10}^{k l} \\ e^{-\mathrm{i} 2 \pi / 3} \mu_{01}^{k l} & e^{-\mathrm{i} 4 \pi / 3} \mu_{11}^{k l}\end{array}\right], \quad k, I=0,1,2$,
be the probe and its estimate, respectively, where $\mu_{i j}^{k l}, \nu_{i j}^{k l} \in \mathbb{C}^{n / 3 \times n / 3}$.
$\Longrightarrow \nu^{i j} \odot g^{i j}=e^{i(i+j) 2 \pi / 3} \mu^{i j} \odot f^{i j}$.

Periodic ambiguity (raster grid pathology)

$(\tau=m / 2) \mathbf{t}_{k l}$-shifted probes $\mu^{k l}$ and $\nu^{k l}$ can be written as

$$
\mu^{k l}=\left[\begin{array}{ll}
\mu_{00}^{k l} & \mu_{10}^{k l} \\
\mu_{01}^{k l} & \mu_{11}^{k l}
\end{array}\right], \quad \nu^{k l}=\left[\epsilon \odot \mu_{i j}^{k l}\right]
$$

Let

$$
\epsilon=[\alpha(\mathbf{n}) \exp (\mathrm{i} \phi(\mathbf{n}))], \quad \epsilon^{-1}=\left[\alpha^{-1}(\mathbf{n}) \exp (-\mathrm{i} \phi(\mathbf{n}))\right] \in \mathbb{C}^{\tau \times \tau} .
$$

Consider the two objects

$$
f=\left[\begin{array}{ccc}
f_{00} & \ldots & f_{q-1,0} \\
\vdots & \vdots & \vdots \\
f_{0, q-1} & \ldots & f_{q-1, q-1}
\end{array}\right], \quad g=\left[\epsilon^{-1} \odot f_{i j}\right]
$$

Two exit waves $\mu^{k l} \odot f^{k l}$ and $\nu^{k l} \odot g^{k l}$ are identical. But the estimates are far off.

Mixing schemes

- Rank-one perturbation $\quad \mathbf{t}_{k l}=\tau(k, I)+\left(\delta_{k}^{1}, \delta_{l}^{2}\right)$.
- Full-rank perturbation $\quad \mathbf{t}_{k l}=\tau(k, I)+\left(\delta_{k l}^{1}, \delta_{k l}^{2}\right)$.

0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0

Global uniqueness

Theorem (F. 2019)

Suppose f does not vanish in \mathbb{Z}_{n}^{2}. Let $a_{j}^{i}=2 \delta_{j+1}^{i}-\delta_{j}^{i}-\delta_{j+2}^{i}$ and let $\left\{\delta_{j_{k}}^{i}\right\}$ be the subset of perturbations satisfying $\operatorname{gcd}_{j_{k}}\left\{\left|a_{j_{k}}^{i}\right|\right\}=1, \quad i=1,2$, and

$$
\begin{aligned}
\tau & \geq \max _{i=1,2}\left\{\left|a_{j_{k}}^{i}\right|+\delta_{j_{k}+1}^{i}-\delta_{j_{k}}^{i}\right\} \\
2 \tau & \leq m-\max _{i=1,2}\left\{\delta_{j_{k}+2}^{i}-\delta_{j_{k}}^{i}\right\}, \quad(>50 \% \text { overlap }) \\
m-\tau & \geq 1+\max _{k^{\prime}} \max _{i=1,2}\left\{\left|a_{j_{k}}^{i}\right|+\delta_{k^{\prime}+1}^{i}-\delta_{k^{\prime}}^{i}\right\} .
\end{aligned}
$$

Then APA and SF are the only ambiguities, i.e. for some explicit \mathbf{r}

$$
\begin{aligned}
g(\mathbf{n}) / f(\mathbf{n}) & =\alpha^{-1}(0) \exp (\mathbf{i n} \cdot \mathbf{r}), \\
\nu^{0}(\mathbf{n}) / \mu^{0}(\mathbf{n}) & =\alpha(0) \exp (\mathrm{i} \phi(0)-\mathrm{in} \cdot \mathbf{r}) \\
\theta_{k l} & =\theta_{00}+\mathbf{t}_{k l} \cdot \mathbf{r} .
\end{aligned}
$$

Mixing schemes

Theorem (F.-Chen 2020)

If \mathcal{T} satisfies the mixing property, then

$$
\begin{aligned}
g(\mathbf{n}) / f(\mathbf{n}) & =\alpha^{-1}(0) \exp (\mathbf{i n} \cdot \mathbf{r}), \\
\nu^{0}(\mathbf{n}) / \mu^{0}(\mathbf{n}) & =\alpha(0) \exp (\mathrm{i} \phi(0)-\mathrm{in} \cdot \mathbf{r}) \\
\theta_{\mathbf{t}} & =\theta_{0}+\mathbf{t} \cdot \mathbf{r} .
\end{aligned}
$$

- Counterexamples exist for perturbed raster scans with $<50 \%$ overlap.
- Iwen-Preskitt-Saab-Viswanathan 2020: $\mathcal{T}=\mathbb{Z}_{n}^{2} \Rightarrow$ noise stability.

Initialization with mask phase constraint

- Mask/probe initialization

$$
\mu_{1}(\mathbf{n})=\mu^{0}(\mathbf{n}) \exp [\mathrm{i} \phi(\mathbf{n})]
$$

where $\phi(\mathbf{n})$ i.i.d. uniform on $(-\pi / 2, \pi / 2) \Longrightarrow$

$$
\Re\left[\overline{\mu_{1}}(\mathbf{n}) \mu^{0}(\mathbf{n})\right]>0, \quad \forall \mathbf{n} \in \mathcal{M}^{0}
$$

Relative error of the mask estimate

$$
\sqrt{\frac{1}{\pi} \int_{-\pi / 2}^{\pi / 2}\left|e^{\mathrm{i} \phi}-1\right|^{2} d \phi}=\sqrt{2\left(1-\frac{2}{\pi}\right)} \approx 0.8525
$$

- Object initialization: $f_{1}=$ constant or random phase object.

Noise-aware ADMM

- Let $\mathcal{F}(\nu, x)=$ the totality of the Fourier (magnitude and phase) data for any mask ν and object x.
- Chang-Enfedaque-Marchesini 2019 consider the augmented Lagrangian
$\mathcal{L}(\nu, x, z, \lambda)=\frac{1}{2}\|b-|z|\|^{2}+\lambda^{*}(z-\mathcal{F}(\nu, x))+\frac{\beta}{2}\|z-\mathcal{F}(\nu, x)\|^{2}$
and the ADMM scheme

$$
\begin{aligned}
\mu_{k+1} & =\arg \min \mathcal{L}\left(\nu, x_{k}, z_{k}, \lambda_{k}\right) \\
x_{k+1} & =\arg \min \mathcal{L}\left(\mu_{k+1}, x, z_{k}, \lambda_{k}\right) \\
z_{k+1} & =\arg \min \mathcal{L}\left(\mu_{k+1}, x_{k+1}, z, \lambda_{k}\right) \\
\lambda_{k+1} & =\lambda_{k}+\beta\left(z_{k+1}-\mathcal{F}\left(\mu_{k+1}, x_{k+1}\right)\right)
\end{aligned}
$$

Fourier domain algorithms

- F.-Strohmer 2020 considers the augmented Lagrangian

$$
\mathcal{L}(y, z, \lambda)=\frac{1}{2}\||z|-b\|^{2}+\lambda^{*}(z-y)+\frac{\rho}{2}\|z-y\|^{2}+\mathbb{I}_{\mathcal{F}}(y)
$$

where $\mathbb{I}_{\mathcal{F}}$ is the indicator function of $\{y: y=\mathcal{F}(\nu, x)$ for some $\nu, x\}$.

$$
\begin{aligned}
& \Rightarrow\left\{\begin{aligned}
\left(z_{k+1}, \mu_{k+1}\right) & =\arg \min _{z} \mathcal{L}\left(y_{k}, z, x_{k}, \nu, \lambda_{k}\right) \\
\left(y_{k+1}, x_{k+1}\right) & =\arg \min _{y} \mathcal{L}\left(y, z_{k+1}, x, \mu_{k+1}, \lambda_{k}\right) \\
\lambda_{k+1} & =\lambda_{k}+\rho\left(z_{k+1}-y_{k+1}\right)
\end{aligned}\right. \\
& \Rightarrow\left\{\begin{aligned}
& z_{k+1}= \frac{1}{\rho+1} P_{b}\left(y_{k}-\lambda_{k} / \rho\right)+\frac{\rho}{\rho+1}\left(y_{k}-\lambda_{k} / \rho\right) \\
& \mu_{k+1}= B_{k}^{+} y_{k} \\
& y_{k+1}=A_{k+1} A_{k+1}^{+}\left(z_{k+1}+\lambda_{k} / \rho\right) \\
& x_{k+1}\left.=A_{k+1}^{+} y_{k+1} \quad \text { (needed for } B_{k+1}\right) \\
& \lambda_{k+1} / \rho= \\
& \lambda_{k} / \rho+z_{k+1}-y_{k+1} .
\end{aligned}\right.
\end{aligned}
$$

where $A_{\nu} x:=\mathcal{F}(\nu, x)=$ concatenation of $\left\{\Phi \operatorname{diag}\left(\nu^{\mathbf{t}}\right)\right\}$ and $B_{x} \nu=\mathcal{F}(\nu, x)=\left\{\Phi \operatorname{diag}\left(x^{\mathbf{t}}\right)\right\}$. Both have orthogonal columns.

eGaussian-DRS

In terms of the new variable $u_{k}=z_{k}+\lambda_{k-1} / \rho$, we have

$$
\begin{aligned}
u_{k+1} & \\
& =\frac{1}{\rho+1} P_{b}\left(2 A_{k} A_{k}^{+} u_{k}-u_{k}\right)+\frac{\rho}{\rho+1}\left(2 A_{k} A_{k}^{+} u_{k}-u_{k}\right)+u_{k}-A_{k} A_{k}^{+} u_{k} \\
& =\frac{u_{k}}{\rho+1}+\frac{\rho-1}{\rho+1} A_{k} A_{k}^{+} u_{k}+\frac{1}{\rho+1} P_{b}\left(2 A_{k} A_{k}^{+} u_{k}-u_{k}\right)
\end{aligned}
$$

with $\mu_{k+1}=B_{k}^{+} A_{k} A_{k}^{+} u_{k}, \quad x_{k+1}=A_{k+1}^{+} u_{k+1}$.

Noise-agnostic ADMM

- Consider

$$
\mathcal{L}(z, \nu, x, \lambda)=\mathbb{I}_{b}(z)+\lambda^{*}(z-\mathcal{F}(\nu, x))+\frac{1}{2}\|z-\mathcal{F}(\nu, x)\|^{2}
$$

and the following ADMM scheme

$$
\begin{aligned}
z_{k+1} & =\arg \min _{z} \mathcal{L}\left(z, \mu_{k}, x_{k}, \lambda_{k}\right)=P_{b}\left[\mathcal{F}\left(\mu_{k}, x_{k}\right)-\lambda_{k}\right] \\
\left(\mu_{k+1}, x_{k+1}\right) & =\arg \min _{\nu} \mathcal{L}\left(z_{k+1}, \nu, x, \lambda_{k}\right) \\
\lambda_{k+1} & =\lambda_{k}+z_{k+1}-\mathcal{F}\left(\mu_{k+1}, x_{k+1}\right) .
\end{aligned}
$$

- If we simplify the bilinear optimization step by one-step alternating minimization

$$
\begin{aligned}
\mu_{k+1} & =\arg \min _{\nu} \mathcal{L}\left(z_{k+1}, \nu, x_{k}, \lambda_{k}\right)=B_{k}^{+}\left(z_{k+1}+\lambda_{k}\right) \\
x_{k+1} & =\arg \min _{g} \mathcal{L}\left(z_{k+1}, \mu_{k+1}, x, \lambda_{k}\right)=A_{k+1}^{+}\left(z_{k+1}+\lambda_{k}\right)
\end{aligned}
$$

then we obtain the DM algorithm of Thibault et al. 2008/2009.

eRAAR

Consider the augmented Lagrangian

$$
\begin{aligned}
& \mathcal{L}(y, z, \nu, x, \lambda)=\mathbb{I}_{Y}(z)+\frac{1}{2}\|y-\mathcal{F}(\nu, x)\|^{2}+\lambda^{*}(z-y)+\frac{\gamma}{2}\|z-y\|^{2} \\
& \Rightarrow\left\{\begin{aligned}
\left(y_{k+1}, x_{k+1}\right) & =\arg \min _{y} \mathcal{L}\left(y, z_{k}, x, \mu_{k}, \lambda_{k}\right) \\
\left(z_{k+1}, \mu_{k+1}\right) & =\arg \min _{z} \mathcal{L}\left(y_{k+1}, z, x_{k+1}, \nu, \lambda_{k}\right) \\
\lambda_{k+1} & =\lambda_{k}+\gamma\left(z_{k+1}-y_{k+1}\right) .
\end{aligned}\right.
\end{aligned}
$$

In terms of the new variable $u_{k+1}:=y_{k+1}-\lambda_{k} / \gamma$ and $R_{b}=2 P_{b}-I$

$$
\Rightarrow\left\{\begin{aligned}
u_{k+1} & =\beta u_{k}+(1-2 \beta) P_{b} u_{k}+\beta P_{k} R_{b} u_{k} \\
\mu_{k+1} & =B_{k+1}^{+}\left(u_{k+1}+P_{b} u_{k}-u_{k}\right) \\
x_{k+1} & =A_{k}^{+} R_{b} u_{k}
\end{aligned}\right.
$$

Test objects and error metric

$$
\operatorname{RE}(k)=\min _{\alpha \in \mathbb{C}, \mathbf{k} \in \mathbb{R}^{2}} \frac{\left\|f(\mathbf{r})-\alpha e^{-\imath \frac{2 \pi}{n} \mathbf{k} \cdot \mathbf{r}} f_{k}(\mathbf{r})\right\|_{2}}{\|f\|_{2}}
$$

Scan patterns

- Rank-one perturbation $\quad \mathbf{t}_{k l}=30(k, l)+\left(\delta_{k}^{1}, \delta_{l}^{2}\right)$ where δ_{k}^{1} and δ_{l}^{2} are randomly selected integers in $[-4,4]$.
- Full-rank perturbation $\quad \mathbf{t}_{k l}=30(k, l)+\left(\delta_{k l}^{1}, \delta_{k l}^{2}\right)$ where $\delta_{k l}^{1}$ and $\delta_{k l}^{2}$ are randomly selected integers in $[-4,4]$.
- The adjacent probes overlap by roughly 50%.
- Boundary conditions:

Periodic BC
Dark-field (enforced or not)
Bright-field (enforced or not)

eGaussian-DRS vs eRAAR

(a) 50% overlap; $\delta=0.45$

(b) 66% overlap; $\delta=0.4$

(c) 75% overlap; $\delta=1 / 2$

Figure: eGaussian-DRS with $\rho=1 / 3$ for CiB

(a) 50% overlap; $\delta=0.45$

(b) 66% overlap; $\delta=0.4$
(c) 75% overlap; $\delta=1 / 2$

Figure: eRAAR with $\beta=0.8$ for CiB.

Local convexity

- Let $L(A x):=\|b-|A x|\|$ and $B=\operatorname{diag}[\operatorname{sgn}(\overline{A x})] A$.
(gradient) $2 \Re\left[\zeta^{*} \nabla L(A x)\right]=\Re\left(x^{*} \zeta\right)-b^{\top} \Re(B \zeta), \quad \forall \zeta \in \mathbb{C}^{n^{2}}$
(stationarity) $B^{*}[|A x|-b]=0$

$$
\text { (Hessian) } \Re\left[\zeta^{*} \text { Hess }_{x} \zeta\right]=\|\zeta\|^{2}-\Im(B \zeta)^{T} \operatorname{diag}\left[\frac{b}{|A x|}\right] \Im(B \zeta)
$$

Theorem (Chen-F. 2018)

Suppose $f^{\mathbf{t}}$ is not a line object for any \mathbf{t}. For any connective scheme, the Hessian at $x=f$ (nonvanishing almost surely) is positive semi-definite and the eigenvalue zero has multiplicity one.

Proof: the second largest singular value λ_{2} of

$$
\mathcal{B}=[-\Re(B) \quad \Im(B)]
$$

is strictly less than 1 with probability one.

Gaussian-DRS with known mask

- Fourier domain fixed points: $P_{X}=A A^{+}, R_{X}=2 P_{X}-I$

$$
P_{X} u+\rho P_{X}^{\perp} u=b \odot \operatorname{sgn}\left(R_{X} u\right) .
$$

Theorem (F.-Zhang 2020)
Let u be a fixed point.
(i) $\rho \geq 1$: If u is attracting, then $\left|P_{X} u\right|=b$ (i.e. regular solution).
(ii) $\rho>0$: If $\left|P_{X} u\right|=b$ then u is attracting.
(iii) $\rho=0$: local linear convergence near the true object

- DRS $(\rho \geq 1)$: A fixed point is linearly attracting iff it is a true solution.
- DR $(\rho=0)$: continuously distributed unstable fixed points in the vicinity of the true solution \Longrightarrow sub-linearly attracting.
- Convergence rate achieves the minimum

$$
\frac{\lambda_{2}}{\sqrt{1+\rho_{*}}} \quad \text { at } \quad \rho_{*}=2 \lambda_{2} \sqrt{1-\lambda_{2}^{2}} \in[0,1] .
$$

Conclusion and Questions

(1) Blind ptychography not realizable with the regular raster scan:
\rightarrow Mixing schemes: connective graph with overlap $\geq 50 \%$
\rightarrow Mask prior: mask phase constraint.

Extension: 3D tomographic phase retrieval with uncertain orientations.

(2) Local convergence analysis for Gaussian-DRS with known mask. Global convergence: cf. Li-Pong 2016.
Noise leads to infeasible optimization problem:
(3) Blind ptychography algorithms:
\rightarrow Little convergence analysis: cf. Hesse-Luke-Sabach-Tam 2015
\rightarrow Initialization method?

References I

- Cand'es-Li 2014: "Solving quadratic equations via PhaseLift when there are about as many equations as unknowns", Found. Comput. Math. 14, 10171026.
- Cand'es-Li-Soltanolkotabi 2015, "Phase retrieval from coded diffraction patterns", Appl. Comput. Harmon. Anal. 39, 277299.
- Cand'es-Strohmer-Voroninski 2013: "PhaseLift: Exact and stable signal recovery from magnitude measurements via convex programming", Commun. Pure Appl. Math. 66, 12411274.
- Chen-Cand'es 2017: "Solving random quadratic systems of equations is nearly as easy as solving linear systems", Commun. Pure Appl. Math. 70, 822-883.
- Chen-Chi-Fan-Ma 2019: "Gradient descent with random initialization: Fast global convergence for nonconvex phase retrieval", Math. Program. 176, 537.
- Chen-Fannjiang 2017: "Coded-aperture ptychography: Uniqueness and reconstruction," Inverse Problems 34, 025003.
- Chen-Fannjiang 2018, "Phase retrieval with a single mask by Douglas-Rachford algorithms," Appl. Comput. Harmon. Anal. 44, 665-699
- Chen-Fannjiang-Liu 2017: "Phase retrieval by linear algebra". SIAM Journal on Matrix Analysis and Applications 38 854-868.
- Chen-Fannjiang-Liu 2018: "Phase retrieval with one or two diffraction patterns by alternating projections with the null initialization", J. Fourier Anäl. Appl. 24, 719-758.

Ref. II

- Demanet-Hand 2014, "Stable optimizationless recovery from phaseless linear measurements," J. Fourier Anal. Appl. 20, 199-221.
- Fannjiang 2012: "Absolute uniqueness of phase retrieval with random illumination," Inverse Problems 28075008.
- Fannjiang 2019: "Raster Grid Pathology and the Cure" Multiscale Model. Simul. 17, 973-995.
- Fannjiang-Chen 2020: "Blind ptychography: Uniqueness \& ambiguities," Inverse Problems 36, 045005.
- Fannjiang-Strohmer 2020, "The numerics of phase retrieval," Acta Numerica, 125-228.
- Fannjiang-Zhang 2020: "Blind Ptychography by Douglas-Rachford Splitting," SIAM J. Imaging Sci. 13, 609-650.
- Hand 2017, "PhaseLift is robust to a constant fraction of arbitrary errors", Appl. Comput. Harmon. Anal. 42, 550-562.
- Hesse-Luke-Sabach-Tam 2015, "Proximal heterogeneous block implicit-explicit method and application to blind ptychographic diffraction imaging," SIAM J. Imaging Sci. 8, 426-457.
- Iwen-Preskitt-Saab-Viswanathan 2020: "Phase retrieval from local measurements: Improved robustness via eigenvector-based angular synchronization" "A $\bar{p} p l$. Comput. Harmon. Anal. 48, 415-444.

Ref. III

- Iwen-Viswanathan-Wang 2016: "Fast phase retrieval from local correlation measurements", SIAM J. Imaging Sci., 9, 1655-1688.
- Li-Pong 2016, "Douglas-Rachford splitting for nonconvex optimization with application to nonconvex feasibility problems", Math. Program. A 159, 371-401
- Luke 2005, "Relaxed averaged alternating reflections for diffraction imaging," Inverse Problems 21, 37-50.
- Luo-Alghamdi-Lu 2019: "Optimal spectral initialization for signal recovery with applications to phase retrieval", IEEE Trans. Signal Pro- cess. 67, 2347-2356.
- Maiden-Johnson-Li 2017: "Further improvements to the ptychographical iterative engine", Optica, 4, 736-745.
- Mondelli-Montanari 2019: "Fundamental limits of weak recovery with applications to phase retrieval", Found. Comput. Math. 19, 703-773.
- Netrapalli-Jain-Sanghavi 2015: "Phase retrieval using alternating minimization," IEEE Transactions on Signal Processing 63 4814-4826.
- Thibault-Dierolf-Bunk-Menzel-Pfeiffer 2009: "Probe retrieval in ptychographic coherent diffractive imaging", Ultramicroscopy 109, 338-343.
- Thibault-Dierolf-Menzel-Bunk-David-Pfeiffer 2008: "High-resolution scanning x-ray diffraction microscopy", Science 321, 379-382.

