3.36 pt

Fixed Point Algorithms for Phase Retrieval and Ptychography

Albert Fannjiang

University of California, Davis

Mathematics of Imaging Workshop:
Variational Methods and Optimization in Imaging
IHP, Paris, February 4th-8th 2019
Collaborators: Pengwen Chen (NCHU), Gi-Ren Liu (NCKU), Zheqing Zhang (UCD)

Outline

- Introduction
- Alternating projection for feasibility
- Douglas-Rachford splitting/ADMM
- Convergence analysis
- Initialization methods
- Blind ptychoraphy
- Conclusion

Phase retrieval

- X-ray crystallography: von Laue, Bragg etc. since 1912.
- Non-periodic structures: Gerchberg, Saxton, Fienup etc since 1972, delay due to low SNR.
- Nonlinear signal model: data $=$ diffraction pattern $=|\mathcal{F}(f)|^{2}$
$\mathcal{F}=$ Fourier transform, $\quad|\cdot|=$ componentwise modulus.

Coded diffraction pattern

Alternating projections

Nonconvex feasibility

- Masking $\mu+$ propagation $\mathcal{F}+$ intensity measurement:

$$
\text { coded diffraction pattern }=|\mathcal{F}(f \odot \mu)|^{2}
$$

- F (2012): Uniqueness with probability one

$$
\begin{array}{lll}
& b=|A x|, & x \in \mathcal{X} \\
(1 \text { mask }) & \mathcal{X}=\mathbb{R}^{n}, & A=\Phi \operatorname{diag}(\mu) \\
(2 \text { masks }) & \mathcal{X}=\mathbb{C}^{n}, & A=\left[\begin{array}{l}
\Phi \operatorname{diag}\left(\mu_{1}\right) \\
\Phi \operatorname{diag}\left(\mu_{2}\right)
\end{array}\right]
\end{array}
$$

- Non-convex feasibility:

$$
\text { Find } \begin{aligned}
\hat{y} & \in A \mathcal{X} \cap \mathcal{Y} \\
\mathcal{Y} & :=\left\{y \in \mathbb{C}^{N}:|y|=b\right\}
\end{aligned}
$$

Intersection of N-dim torus \mathcal{Y} and n - or $2 n$-dim subspace $A \mathcal{X}$

Alternating projections

von Neuman 1933

Cheney-Goldstein 1959
Bregman 1965

Non convex: local convergence?

Coded vs plain diffraction pattern

(a) coded; 40 iter

(c) plain;1000 iter

(b) error

(d) error

- AP: real-valued Cameraman with one diffraction pattern.
- Plain diffraction pattern allows ambiguities such as translation, twin-image which are forbidden by the presence of a random mask.

Douglas－Rachford splitting

Alternating minimization

Minimization with a sum of two objective functions

$$
\arg \min _{u} K(u)+\mathcal{L}(v), \quad u=v
$$

where

$$
\begin{aligned}
K & =\text { Indicator function of } \quad\left\{A x: x \in \mathbb{C}^{n}\right\} \\
\mathcal{L}(v) & =\sum_{i}|v[i]|^{2}-b^{2}[i] \ln |v[i]|^{2} \quad \text { (Poisson log-likelihood). }
\end{aligned}
$$

- Projection onto $K=A A^{\dagger} u$.
- Linear constraint $u=v$.
- \mathcal{L} has a simple asymptotic form

Gaussian log-likelihood

- High SNR: Gaussian distribution with variance $=$ mean: $\frac{e^{-\left(b^{2}-\lambda\right)^{2} /(2 \lambda)}}{\sqrt{2 \pi \lambda}}$.
- Gaussian log-likelihood: $\lambda=|v|^{2}$

$$
\sum_{j} \ln |v[j]|+\frac{1}{2}\left|\frac{b^{2}[j]}{|v[j]|}-|v[j]|\right|^{2} \longrightarrow \mathcal{L}
$$

- In the vicinity of b, we make the substitution

$$
\frac{b[j]}{|v[j]|} \rightarrow 1, \quad \ln |v[j]| \rightarrow \ln \sqrt{b[j]}
$$

to obtain

$$
\text { const. }+\frac{1}{2} \sum_{j}\left|b[j]-|v[j]|^{2} \longrightarrow \mathcal{L}\right.
$$

which is the smoothest of the 3 functions.

Alternating projections revisited

- Hard constraint $u=v$

$$
\arg \min _{u} K(u)+\mathcal{L}(u)=\arg \min _{x} \mathcal{L}(u), \quad u=A x
$$

where

$$
\begin{aligned}
K & =\text { Indicator function of } \quad\left\{A x: x \in \mathbb{C}^{n}\right\} \\
\mathcal{L}(u) & =\frac{1}{2}\|b-|u|\|^{2} \quad \text { (Gaussian log-likelihood). }
\end{aligned}
$$

- \mathcal{L} non-smooth where b vanishes.
- $\mathrm{AP}=$ gradient descent with unit stepsize: $x^{k+1}=x^{k}-\nabla \mathcal{L}\left(x^{k}\right)$.
- Wirtinger flow $=$ gradient descent with

$$
\mathcal{L}=\frac{1}{2}\left\||A x|^{2}-b\right\|^{2} \quad \text { (additive i.i.d. Gaussian noise). }
$$

Proximal optimality

- Proximity operators are generalization of projections:

$$
\begin{aligned}
\operatorname{prox}_{\mathcal{L} / \rho}(u) & =\arg \min _{x} \mathcal{L}(x)+\frac{\rho}{2}\|x-u\|^{2} \\
\operatorname{prox}_{K / \rho}(u) & =A A^{\dagger} u .
\end{aligned}
$$

For simplicity, set $\rho=1$.

- Proximal reflectors $R_{\mathcal{L}}=2 \operatorname{prox}_{\mathcal{L}}-I, \quad R_{K}=2 \operatorname{prox}_{K}-I$
- Proximal optimality:

$$
0 \in \partial \mathcal{L}(x)+\partial K(x) \quad \text { iff } \quad \xi=R_{\mathcal{L}} R_{K}(\xi), \quad x=\operatorname{prox}_{K}(\xi)
$$

Proximal optimality: proof

- Let $\eta=R_{K}(\xi)$. Then $\xi=R_{\mathcal{L}}(\eta)$.
- Also $\zeta:=\frac{1}{2}(\xi+\eta)=\operatorname{prox}_{\mathcal{L}}(\eta)=\operatorname{prox}_{K}(\xi)$. Equivalently

$$
\xi \in \partial K(\zeta)+\zeta, \quad \eta \in \partial \mathcal{L}(\zeta)+\zeta
$$

- Adding the two equations: $0 \in \partial K(\zeta)+\partial \mathcal{L}(\zeta)$.
- Finally $\zeta=\operatorname{prox}_{K}(\xi)$ is a stationary point.

Douglas-Rachford splitting (DRS)

- Optimality leads to Peaceman-Rachford splitting: $z^{k+1}=R_{\mathcal{L} / \rho} R_{K / \rho}\left(z^{k}\right)$.
- $\operatorname{DRS} z^{I+1}=\frac{1}{2} z^{\prime}+\frac{1}{2} R_{\mathcal{L} / \rho} R_{K / \rho}\left(z^{\prime}\right):$ for $I=1,2,3 \cdots$

$$
\begin{aligned}
y^{I+1} & =\operatorname{prox}_{K / \rho}\left(u^{\prime}\right) \\
z^{I+1} & =\operatorname{prox}_{\mathcal{L} / \rho}\left(2 y^{I+1}-u^{\prime}\right) \\
u^{I+1} & =u^{I}+z^{I+1}-y^{I+1}
\end{aligned}
$$

- $\gamma=1 / \rho=$ stepsize; $\rho=0$ the classical DR algorithm.
- Alternating Direction Method of Multipliers (ADMM) applied to the dual problem

$$
\max _{\lambda} \min _{y, z} \mathcal{L}^{*}(y)+K^{*}\left(-A^{*} z\right)+\left\langle\lambda, y-A^{*} z\right\rangle+\frac{\rho}{2}\left\|A^{*} z-y\right\|^{2}
$$

DRS map

- Object update: $f=A^{\dagger} u^{\infty}$ where u^{∞} is the terminal value of

$$
\begin{aligned}
u^{\prime+1} & =\frac{1}{\rho+1} u^{\prime}+\frac{\rho-1}{\rho+1} P u^{\prime}+\frac{1}{\rho+1} b \odot \operatorname{sgn}\left(2 P u^{\prime}-u^{\prime}\right) \\
& =\frac{1}{2} u^{\prime}+\frac{\rho-1}{2(\rho+1)} R u^{\prime}+\frac{1}{\rho+1} b \odot \operatorname{sgn}\left(R u^{\prime}\right)
\end{aligned}
$$

where $P=A A^{\dagger}$ is the orthogonal projection onto the range of A and $R=2 P-I$ is the corresponding reflector.

- $\rho=0$: the classical Douglas-Rachford algorithm

$$
\begin{aligned}
u^{I+1} & =\frac{1}{2} u^{\prime}-\frac{1}{2} R u^{\prime} u^{\prime}+b \odot \operatorname{sgn}\left(R u^{\prime}\right) \\
& =u^{\prime}-P u^{\prime}+b \odot \operatorname{sgn}\left(R u^{\prime}\right)
\end{aligned}
$$

Convergence analysis

Convergence analysis

- Lewis-Malick (2008): local linear convergence of AP for transversally intersecting smooth manifolds.
- Lewis-Luke-Malick (2009): transversal intersection \longrightarrow linearly regular intersection (LRI).
- Aragoón-Borwein (2012): global convergence of DR $(\rho=0)$ for intersection of a line and a circle.
- Hesse-Luke (2013): local geometric convergence of DR $(\rho=0)$ for LRI of an affine set and a super-regular set.
- Li-Pong (2016):
$\rightarrow \mathcal{L}$ has uniformly Lipschitz gradient (ULG).
\rightarrow DRS with ρ sufficiently large, depending on Lipschitz constant.
\rightarrow Global convergence: cluster point $=$ stationary point.
\rightarrow Local geometric convergence for semi-algebraic case.
K and \mathcal{L} don't have ULG and optimal performance is with $\rho \sim 1$.
- Candes et at. (2015): global convergence of Wirtinger flow with spectral initialization.

Fixed point equation

- Fixed point equation

$$
u=\frac{1}{2} u+\frac{\rho-1}{2(\rho+1)} R_{\infty} u+\frac{1}{\rho+1} b \odot \operatorname{sgn}\left(R_{\infty} u\right)
$$

- The differential map is given by $\Omega J_{A}(\eta)$ where

$$
\begin{aligned}
J_{A}(\eta)= & C C^{\dagger} \eta-\frac{1}{1+\rho}\left[\Re\left(2 C C^{\dagger} \eta-\eta\right)\right. \\
& \left.+\imath(I-\operatorname{diag}(b /|R u|)) \Im\left(2 C C^{\dagger} \eta-\eta\right)\right]
\end{aligned}
$$

where

$$
\Omega=\operatorname{diag}(\operatorname{sgn}(R u)), \quad C=\Omega^{*} A
$$

Fixed point analysis

Two randomly coded diffraction patterns:

- F (2012) - intersection $\sim S^{1}$ (arbitrary phase factor).
- Chen \& F (2016) - DR $(\rho=0)$ fixed points u take the form

$$
\begin{aligned}
u & =e^{\mathrm{i} \theta}(b+r) \odot \operatorname{sgn}(A f), \quad r \in \mathbb{R}^{N}, \quad b+r \geq 0 \\
\Longrightarrow \operatorname{sgn}(u) & =\theta+\operatorname{sgn}(A f)
\end{aligned}
$$

where r is a real null vector of $A^{\dagger} \operatorname{diag}[\operatorname{sgn}(A f)]$
\Longrightarrow DR fixed point set has real dimension $N-n$.

- Chen, F \& Liu (2016) - AP based on the hard constraint $u=v$

AP fixed point $x_{*}: \quad\left\|A x_{*}\right\|=\|A f\| \quad$ iff $\quad x_{*}=\alpha f, \quad|\alpha|=1$.

Spectral gap and linear convergence rate

J_{A} can be analyzed by the eigen-structure of

$$
H:=\left[\begin{array}{l}
\Re\left[A^{\dagger} \Omega\right] \\
\Im\left[A^{\dagger} \Omega\right]
\end{array}\right], \quad \Omega=\operatorname{diag}(\operatorname{sgn}(A f))
$$

- $\left\|J_{A}(\eta)\right\|=\|\eta\|$ occurs at $\eta= \pm$ ib.
- Linear convergence rate is related to the spectral gap of H.
- One randomly coded diffraction pattern:
\rightarrow Chen \& F (2016) - the differential map at $A f$ has the largest singular value 1 corresponding to the constant phase and a positive spectral gap \Longrightarrow the true solution is an attractor (local linear convergence).
\rightarrow F \& Zhang (2018) - the differential map at any DR fixed point has a spectral radius $=1$.
\rightarrow Chen, F \& Liu (2016) - same for AP (parallel or serial).

DRS fixed points

Proposition

Let u be a fixed point and $f_{\infty}:=A^{\dagger} u$.
(i) $\rho \geq$ 1: If $\left\|J_{A}(\eta)\right\|_{2} \leq\|\eta\|_{2}$ then $\left|\mathcal{F}\left(\mu, f_{\infty}\right)\right|=b$.
(ii) $\rho \geq 0$: If $\left|\mathcal{F}\left(\mu, f_{\infty}\right)\right|=b$ then $\left\|J_{A}(\eta)\right\|_{2} \leq\|\eta\|_{2}$. where the equality holds iff η parallels $\imath b$.

Summary:

- DRS $(\rho \geq 1)$ fixed point is linearly stable iff it is a true solution
- DR $(\rho=0)$ introduces harmless, stable fixed points.
- AP likely introduces spurious nonsolution fixed points.
- Linear convergence rate:

$$
\text { Serial } \mathrm{AP}<\text { parallel } \mathrm{AP} \sim \operatorname{DRS}(\rho=1)<\operatorname{DR}(\rho=0)
$$

Initialization

Initialization by feature extraction

$b=|A f|$ where $A \in \mathbb{C}^{N \times n}$ is the measurement matrix.
Feature: two sets of signals, weak and strong.

- Weak signals selected by a threshold τ, i.e. $b_{i} \leq \tau, i \in I$.
- $x_{\text {null }}:=$ ground state of A_{l}.

Isometry: $\|A x\|^{2}=\left\|A_{I}\right\|^{2}+\left\|A_{I_{c}} x\right\|^{2}=\|x\|^{2} \Longrightarrow$

$$
\begin{aligned}
x_{\text {null }} & =\arg \min \left\{\left\|A_{l} x\right\|^{2}:\|x\|=\|f\|\right\} \\
& =\arg \max \left\{\left\|A_{I_{c}} x\right\|^{2}:\|x\|=\|f\|\right\}
\end{aligned}
$$

solved by the power method efficiently.
Non-isometry $\Longrightarrow \mathbf{Q R}: A=Q R$

Null vector algorithm

Let $\mathbf{1}_{c}$ be the characteristic function of the complementary index I_{c} with $\left|I_{c}\right|=\gamma N$.

```
Algorithm 1: The null vector method
    Random initialization: \(x_{1}=x_{\text {rand }}\)
    Loop:
    for \(k=1: k_{\text {max }}-1\) do
    \begin{tabular}{l|l}
\(\mathbf{4}\) & \(\frac{x_{k}^{\prime} \leftarrow A\left(\mathbf{1}_{c} \odot A^{*} x_{k}\right) ;}{x_{k+1} \leftarrow\left[x_{k}^{\prime}\right]_{\mathcal{X}} / \|\left[x_{k}^{\prime}\right]_{\mathcal{X}}}{ }^{\boldsymbol{5}} \|\)
\end{tabular}
    6 end
    7 Output: \(x_{\text {null }}=x_{k_{\text {max }}}\).
```

```
Algorithm 2: The spectral vector method
    1 Random initialization: \(x_{1}=x_{\text {rand }}\)
    2 Loop:
    3 for \(k=1: k_{\text {max }}-1\) do
    \(\left.\begin{array}{l|l}4 & \frac{x_{k}^{\prime} \leftarrow A\left(|b|^{2} \odot A^{*} x_{k}\right) ;}{}{ }_{5} \\ x_{k+1} \leftarrow\left[x_{k}^{\prime}\right]_{\mathcal{X}} / \|\left[x_{k}^{\prime}\right]_{\mathcal{X}}\end{array}\right] ;\)
    6 end
    7 Output: \(x_{\text {spec }}=x_{k_{\max }}\).
```

Truncated spectral vector

$$
x_{t-\text { spec }}=\arg \max _{\|x\|=1} \frac{\left\|A\left(\mathbf{1}_{\tau} \odot|b|^{2} \odot A^{*} x\right)\right\|}{\left\{i:\left|A^{*} x(i)\right| \leq \tau\|b\|\right\}}
$$

Performance guarantee: Gaussian case

Theorem (Chen-F.-Liu 2016)
Let A be drawn from the $n \times N$ standard complex Gaussian ensemble. Let

$$
\sigma:=|I| / N<1, \quad \nu=n /|I|<1 .
$$

Then for any $x_{0} \in \mathbb{C}^{n}$ the following error bound

$$
\left\|x_{0} x_{0}^{*}-x_{\text {null }} x_{\text {null }}^{*}\right\|^{2} \leq c_{0} \sigma\left\|x_{0}\right\|^{4}
$$

holds with probability at least

$$
1-5 \exp \left(-c_{1}|/|^{2} / N\right)-4 \exp \left(-c_{2} n\right)
$$

- Non-asymptotic estimate: $n<|I|<N<|I|^{2}, \quad L=N / n$

$$
|I|=N^{\alpha} n^{1-\alpha} \Longrightarrow \operatorname{RE} \sim L^{(\alpha-1) / 2}, \alpha \in[1 / 2,1)
$$

2 CDPs，$|I|=\sqrt{n N}$ ．

Uniqueness of phase retrieval with 2 CDPs（F．2012）．

（e）phantom

（h） $\mathrm{NSR}=10 \%$

（f）Spectral vector

（i） $\mathrm{NSR}=15 \%$

（g）Null vector

（j）$N S R=20 \%$

三 つのく
$27 / 46$

Experiments: with null initialization

- PAP: two diffraction patterns used in parallel
- SAP: two diffraction patterns used in serial

Comparison with Wirtinger flow

Complex Gaussian noise

- $b=\mid A f+$ complex Gaussian noise \mid
- NSR = noise/signal

Blind ptychography

Ptychography: extended objects

Hoppe (1969), Nellist-Rodenburg (95), Faulkner-Rodenburg (04, 05). , Thibault et al. $(08,09)$

- Inverse problem with shifted windowed Fourier intensities.
- Unlimited, extended objects: structural biology, materials science etc.

Linear phase ambiguity

Consider the probe and object estimates

$$
\begin{aligned}
\nu^{0}(\mathbf{n}) & =\mu^{0}(\mathbf{n}) \exp (-\mathrm{i} a-\mathrm{i} \mathbf{w} \cdot \mathbf{n}), \quad \mathbf{n} \in \mathcal{M}^{0} \\
g(\mathbf{n}) & =f(\mathbf{n}) \exp (\mathrm{i} b+\mathrm{i} \mathbf{w} \cdot \mathbf{n}), \quad \mathbf{n} \in \mathbb{Z}_{n}^{2}
\end{aligned}
$$

for any $a, b \in \mathbb{R}$ and $\mathbf{w} \in \mathbb{R}^{2}$. We have all $\mathbf{n} \in \mathcal{M}^{\mathbf{t}}, \mathbf{t} \in \mathcal{T}$

$$
\nu^{\mathbf{t}}(\mathbf{n}) g^{\mathbf{t}}(\mathbf{n})=\mu^{\mathbf{t}}(\mathbf{n}) f^{\mathbf{t}}(\mathbf{n}) \exp (\mathrm{i}(b-a)) \exp (\mathrm{i} \mathbf{w} \cdot \mathbf{t})
$$

Raster scan pathology

Raster scan: $\mathbf{t}_{k l}=\tau(k, l), k, l \in \mathbb{Z}$ where τ is the step size. $\mathcal{M}=\mathbb{Z}_{n}^{2}, \mathcal{M}^{0}=\mathbb{Z}_{m}^{2}, n>m$, with the periodic boundary condition.

Mixing schemes

- Partial perturbation $\quad \mathbf{t}_{k l}=\tau(k, l)+\left(\delta_{k}^{1}, \delta_{l}^{2}\right)$.
- Full perturbation $\mathbf{t}_{k l}=\tau(k, I)+\left(\delta_{k l}^{1}, \delta_{k l}^{2}\right)$.

$$
\begin{array}{|lllllllllll}
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{array}
$$

Mask phase constraint (MPC)

- μ^{0} : independent phases with range $\geq \pi$.
- ν^{0} satisfies MPC if $\nu_{0}(\mathbf{n})$ and $\mu^{0}(\mathbf{n})$ form an acute angle

$$
\left|\arg \left[\nu^{0}(\mathbf{n}) / \mu^{0}(\mathbf{n})\right]\right|<\pi / 2
$$

Global uniqueness

Theorem (F 2018)

Suppose f does not vanish in \mathbb{Z}_{n}^{2}. Let $a_{j}^{i}=2 \delta_{j+1}^{i}-\delta_{j}^{i}-\delta_{j+2}^{i}$ and let $\left\{\delta_{j_{k}}^{i}\right\}$ be the subset of perturbations satisfying $\operatorname{gcd}_{j_{k}}\left\{\left|a_{j_{k}}^{i}\right|\right\}=1, \quad i=1,2$, and

$$
\begin{aligned}
& 2 \tau \leq m-\max _{i=1,2}\left\{\delta_{j_{k}+2}^{i}-\delta_{j_{k}}^{i}\right\} \quad \text { (Overlap }>50 \% \text {) } \\
& \max _{i=1,2}\left[\left|a a_{j_{k}}^{i}\right|+\max _{k^{\prime}}\left\{\delta_{k^{\prime}+1}^{i}-\delta_{k^{\prime}}^{i}\right\}\right] \leq m-\tau \\
& \delta_{j_{k}+1}^{i}-\delta_{j_{k}+2}^{i} \leq \tau \leq m-1+\delta_{j_{k}+1}^{i}-\delta_{j_{k}+2}^{i} .
\end{aligned}
$$

Then APA and SF are the only ambiguities, i.e. for some explicit \mathbf{r}

$$
\begin{aligned}
g(\mathbf{n}) / f(\mathbf{n}) & =\alpha^{-1}(0) \exp (\mathbf{i n} \cdot \mathbf{r}), \\
\nu^{0}(\mathbf{n}) / \mu^{0}(\mathbf{n}) & =\alpha(0) \exp (\mathrm{i} \phi(0)-\mathrm{in} \cdot \mathbf{r}) \\
\theta_{k l} & =\theta_{00}+\mathbf{t}_{k l} \cdot \mathbf{r} .
\end{aligned}
$$

Initialization with mask phase constraint

- Mask/probe initialization

$$
\mu_{1}(\mathbf{n})=\mu^{0}(\mathbf{n}) \exp [\mathrm{i} \phi(\mathbf{n})],
$$

where $\phi(\mathbf{n})$ i.i.d. uniform on $(-\pi / 2, \pi / 2)$
Relative error of the mask estimate

$$
\sqrt{\frac{1}{\pi} \int_{-\pi / 2}^{\pi / 2}\left|e^{\mathrm{i} \phi}-1\right|^{2} d \phi}=\sqrt{2\left(1-\frac{2}{\pi}\right)} \approx 0.8525
$$

- Object initialization: $f_{1}=$ constant or random phase object.

Alternating minimization

$|\mathcal{F}(\mu, f)|=b:$ the ptychographic data. Define $A_{k} h:=\mathcal{F}\left(\mu_{k}, h\right)$,
$B_{k} \eta:=\mathcal{F}\left(\eta, f_{k+1}\right)$. We have $A_{k} f_{j+1}=B_{j} \mu_{k}$.
(1) Initial guess μ_{1}.
(2) Update the object estimate $\quad f_{k+1}=\underset{g \in \mathbb{C}^{n \times n}}{\operatorname{argmin}} \mathcal{L}\left(A_{k}^{*} g\right)$
(3) Update the probe estimate $\mu_{k+1}=\underset{\nu \in \mathbb{C}^{m \times m}}{\operatorname{argmin}} \mathcal{L}\left(B_{k}^{*} \nu\right)$
(9) Terminate when $\left\|B_{k}^{*} \mu_{k+1} \mid-b\right\|$ is less than tolerance or stagnates. If not, go back to step 2 with $k \rightarrow k+1$.

Fixed point algorithm with $\rho=1$

- $\rho=1$
- Reflectors: $R_{k}=2 P_{k}-I, S_{k}=2 Q_{k}-I$.
- Gaussian:

$$
\begin{aligned}
u_{k}^{I+1} & =\frac{1}{2} u_{k}^{\prime}+\frac{1}{2} b \odot \operatorname{sgn}\left(R_{k} u_{k}^{\prime}\right) \\
v_{k}^{I+1} & =\frac{1}{2} v_{k}^{\prime}+\frac{1}{2} b \odot \operatorname{sgn}\left(S_{k} v_{k}^{\prime}\right)
\end{aligned}
$$

- Poisson:

$$
\begin{aligned}
u_{k}^{I+1} & =\frac{1}{2} u_{k}^{\prime}-\frac{1}{3} R_{k} u_{k}^{\prime}+\frac{1}{6} \sqrt{\left|R_{k} u_{k}^{\prime}\right|^{2}+24 b^{2}} \odot \operatorname{sgn}\left(R_{k} u_{k}^{\prime}\right) \\
v_{k}^{I+1} & =\frac{1}{2} v_{k}^{\prime}-\frac{1}{3} S_{k} v_{k}^{\prime}+\frac{1}{6} \sqrt{\left|S_{k} v_{k}^{\prime}\right|^{2}+24 b^{2}} \odot \operatorname{sgn}\left(S_{k} v_{k}^{\prime}\right) .
\end{aligned}
$$

Masks

correlation length $c=0,0.4 m, 0.7 m, 1 m$

Rank-one vs. full-rank

Independent vs. correlated mask

Poisson noise

- Photon counting noise: $b^{2}=$ Poisson r.v. with mean $=|A f|^{2}$.
- Gaussian log-likelihood outperforms Poisson log-likelihood.

Conclusion

(1) Disorder can better condition measurement schemes: random mask, random perturbation to raster scan
(2) Analytical and statistical considerations can guide our way to a better objective function
(3) Fixed point analysis can help determine parameters or select algorithms
(9) Initialization by feature extraction

Thank you!

References

(1) F (2012), "Absolute uniqueness of phase retrieval with random illumination," Inverse Problems 28075008.
(2) Netrapalli, Jain \& Sanghavi (2015) "Phase retrieval using alternating minimization," IEEE Transactions on Signal Processing 63 4814-4826.
(3) Chen, F. \& Liu (2017) "Phase retrieval by linear algebra". SIAM J. Matrix Anal. Appl. 38 854-868.
(4) Chen, F \& Liu (2018) "Phase retrieval with one or two diffraction patterns by alternating projections of the null vector". J. Fourier Anal. Appl. 24 719-758.
(5) Chen \& F. (2018) "Fourier phase retrieval with a single mask by Douglas-Rachford Algorithm," Appl. Comput. Harm. Anal. 44 (2018) 665-69.
(6) Chen \& F (2017), "Coded-aperture ptychography: Uniqueness and reconstruction," Inverse Problems 34, 025003.
(7) F \& Chen (2018), "Blind ptychography: Uniqueness \& ambiguities," arXiv: 1806.02674.
(8) F \& Zhang (2018), "Blind Ptychography by Douglas-Rachford Splitting," arXiv: 1809.00962
(9) F (2018): "Raster Grid Pathology and the Cure" arXiv: 1810.00852

