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PART I:

Introduction

Summary: We will briefly go over some related results on free algebras with one Lie

bracket.
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Lie algebra and Poisson algebra

Fix a commutative ring R with unit.
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Lie algebra and Poisson algebra

Fix a commutative ring R with unit.

We recall a Lie algebra over R is an R-module V equipped with a bilinear binary

operation ��, ��, called a Lie bracket, satisfying two properties: for any x, y, z > V,

antisymmetry �x, y� � ��y, x�,
Jacobi identity �x, �y, z�� � �y, �z, x�� � �z, �x, y�� � 0.
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Lie algebra and Poisson algebra

Fix a commutative ring R with unit.

We recall a Lie algebra over R is an R-module V equipped with a bilinear binary

operation ��, ��, called a Lie bracket, satisfying two properties: for any x, y, z > V,

antisymmetry �x, y� � ��y, x�,
Jacobi identity �x, �y, z�� � �y, �z, x�� � �z, �x, y�� � 0.

A Poisson algebra over R is an R-module V equipped with two bilinear binary oper-

ations: a Lie bracket ��, �� and an associative commutative multiplication such that the

Lie bracket is a derivation of the commutative multiplication: that is, for any x, y, z > V,

we have �x, yz� � �x, y�z � y�x, z�.
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Multilinear parts of free algebras with one Lie bracket

Let X � �x1 � x2 � � � � � xn� be an ordered alphabet.
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Multilinear parts of free algebras with one Lie bracket

Let X � �x1 � x2 � � � � � xn� be an ordered alphabet.

The free Lie algebra on X over R is the Lie algebra over R that is generated by all

possible Lie bracketings of elements of X with no relations other than antisymmetries

and Jacobi identities.

Let L ie�n� be the multilinear part of this free Lie algebra: i.e., the subspace con-

sisting of all elements containing each xi exactly once.
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Multilinear parts of free algebras with one Lie bracket

Let X � �x1 � x2 � � � � � xn� be an ordered alphabet.

The free Lie algebra on X over R is the Lie algebra over R that is generated by all

possible Lie bracketings of elements of X with no relations other than antisymmetries

and Jacobi identities.

Let L ie�n� be the multilinear part of this free Lie algebra: i.e., the subspace con-

sisting of all elements containing each xi exactly once.

We define the free Poisson algebra on X similarly, and let P�n� be its multilinear

part.
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Multilinear parts of free algebras with one Lie bracket

Let X � �x1 � x2 � � � � � xn� be an ordered alphabet.

The free Lie algebra on X over R is the Lie algebra over R that is generated by all

possible Lie bracketings of elements of X with no relations other than antisymmetries

and Jacobi identities.

Let L ie�n� be the multilinear part of this free Lie algebra: i.e., the subspace con-

sisting of all elements containing each xi exactly once.

We define the free Poisson algebra on X similarly, and let P�n� be its multilinear

part.

Example: Monomials in L ie�2� � �x1, x2�, �x2, x1�.
A basis for L ie�2� � ��x1, x2��.
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Multilinear parts of free algebras with one Lie bracket

Let X � �x1 � x2 � � � � � xn� be an ordered alphabet.

The free Lie algebra on X over R is the Lie algebra over R that is generated by all

possible Lie bracketings of elements of X with no relations other than antisymmetries

and Jacobi identities.

Let L ie�n� be the multilinear part of this free Lie algebra: i.e., the subspace con-

sisting of all elements containing each xi exactly once.

We define the free Poisson algebra on X similarly, and let P�n� be its multilinear

part.

Example: Monomials in L ie�2� � �x1, x2�, �x2, x1�.
A basis for L ie�2� � ��x1, x2��.

Monomials in P�2� � �x1, x2�, �x2, x1�, x1x2, x2x1.

A basis for P�2� � ��x1, x2�, x1x2�.
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Dimension formulas and bases for L ie�n� and P�n�

Example: A basis for L ie�3� � ��x1, �x2, x3��, �x2, �x1, x3���.�x3, �x1, x2�� � ��x1, �x2, x3�� � �x2, �x1, x3�� by the Jacobi identity.
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Dimension formulas and bases for L ie�n� and P�n�

Example: A basis for L ie�3� � ��x1, �x2, x3��, �x2, �x1, x3���.�x3, �x1, x2�� � ��x1, �x2, x3�� � �x2, �x1, x3�� by the Jacobi identity.

A basis for L ie�n� ���xσ�1�, �xσ�2�, �xσ�3�, ��, �xσ�n�1�, xn������ S σ > Sn�1�.
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Dimension formulas and bases for L ie�n� and P�n�

Example: A basis for L ie�3� � ��x1, �x2, x3��, �x2, �x1, x3���.�x3, �x1, x2�� � ��x1, �x2, x3�� � �x2, �x1, x3�� by the Jacobi identity.

A basis for L ie�n� ���xσ�1�, �xσ�2�, �xσ�3�, ��, �xσ�n�1�, xn������ S σ > Sn�1�.
L ie�n� has dimension �n � 1�!.

Page 6



Combinatorial bases for L ie2�n� Fu Liu

Dimension formulas and bases for L ie�n� and P�n�

Example: A basis for L ie�3� � ��x1, �x2, x3��, �x2, �x1, x3���.�x3, �x1, x2�� � ��x1, �x2, x3�� � �x2, �x1, x3�� by the Jacobi identity.

A basis for L ie�n� ���xσ�1�, �xσ�2�, �xσ�3�, ��, �xσ�n�1�, xn������ S σ > Sn�1�.
L ie�n� has dimension �n � 1�!.

A basis for P�3� ���x1, �x2, x3��, �x2, �x1, x3��, x1�x2, x3�, �x1, x3�x2, �x1, x2�x3, x1x2x3�.
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Dimension formulas and bases for L ie�n� and P�n�

Example: A basis for L ie�3� � ��x1, �x2, x3��, �x2, �x1, x3���.�x3, �x1, x2�� � ��x1, �x2, x3�� � �x2, �x1, x3�� by the Jacobi identity.

A basis for L ie�n� ���xσ�1�, �xσ�2�, �xσ�3�, ��, �xσ�n�1�, xn������ S σ > Sn�1�.
L ie�n� has dimension �n � 1�!.

A basis for P�3� ���x1, �x2, x3��, �x2, �x1, x3��, x1�x2, x3�, �x1, x3�x2, �x1, x2�x3, x1x2x3�.
Suppose B�X� is a basis for L ie�n� on the alphabet X. Then the following is a

basis for P�n� ��b1b2�bk S8i�1Xi is a partition of X with max�X1� � � � � � max�Xk�, and bi > B�Xi��
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Dimension formulas and bases for L ie�n� and P�n�

Example: A basis for L ie�3� � ��x1, �x2, x3��, �x2, �x1, x3���.�x3, �x1, x2�� � ��x1, �x2, x3�� � �x2, �x1, x3�� by the Jacobi identity.

A basis for L ie�n� ���xσ�1�, �xσ�2�, �xσ�3�, ��, �xσ�n�1�, xn������ S σ > Sn�1�.
L ie�n� has dimension �n � 1�!.

A basis for P�3� ���x1, �x2, x3��, �x2, �x1, x3��, x1�x2, x3�, �x1, x3�x2, �x1, x2�x3, x1x2x3�.
Suppose B�X� is a basis for L ie�n� on the alphabet X. Then the following is a

basis for P�n� ��b1b2�bk S8i�1Xi is a partition of X with max�X1� � � � � � max�Xk�, and bi > B�Xi��

P�n� has dimension n!.
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PART II:

Statement and examples of the theorems

Summary: In this part, we introduce free algebras with two compatible brackets.

After defining the problem and giving a little background, we state our main theorems

together with examples in the cases when n � 3.
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Free algebras with two compatible Lie brackets

We consider a free algebra on X with two Lie brackets ��, �� and `�, �e, which are

compatible: that is, any linear combination of them is a Lie bracket.

If we write out this condition explicitly, the compatibility gives one condition, which

we call the mixed Jacobi identity, in addition to the antisymmetry and Jacoby identity for

each of the two brackets. For any x, y, z,

(S1) �x, y� � �y, x� � 0,

(S2) `x, ye � `y, xe � 0,

(J1) �x, �y, z�� � �y, �z, x�� � �z, �x, y�� � 0,

(J2) `x, `y, zee � `y, `z, xee � `z, `x, yee � 0,

(MJ) �x, `y, ze�� �y, `z, xe�� �z, `x, ye�� `x, �y, z�e� `y, �z, x�e� `z, �x, y�e � 0.
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Free algebras with two compatible Lie brackets (cont’d)

Let L ie2�n� be the multilinear part of this free algebra.
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Free algebras with two compatible Lie brackets (cont’d)

Let L ie2�n� be the multilinear part of this free algebra.

Similarly, we let P2�n� be the multilinear part of the free algebra with two compat-

ible Lie brackets and one associative commutative multiplication, where both of the Lie

brackets are derivations of the commutative multiplication.
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Free algebras with two compatible Lie brackets (cont’d)

Let L ie2�n� be the multilinear part of this free algebra.

Similarly, we let P2�n� be the multilinear part of the free algebra with two compat-

ible Lie brackets and one associative commutative multiplication, where both of the Lie

brackets are derivations of the commutative multiplication.

Example: Monomials in L ie2�2� � �x1, x2�, �x2, x1�, `x1, x2e, `x2, x1e.
A basis for L ie2�2� � ��x1, x2�, `x1, x2e�.
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Free algebras with two compatible Lie brackets (cont’d)

Let L ie2�n� be the multilinear part of this free algebra.

Similarly, we let P2�n� be the multilinear part of the free algebra with two compat-

ible Lie brackets and one associative commutative multiplication, where both of the Lie

brackets are derivations of the commutative multiplication.

Example: Monomials in L ie2�2� � �x1, x2�, �x2, x1�, `x1, x2e, `x2, x1e.
A basis for L ie2�2� � ��x1, x2�, `x1, x2e�.

Monomials in P2�2� � �x1, x2�, �x2, x1�, `x1, x2e, `x2, x1e, x1x2, x2x1.

A basis for P2�2� � ��x1, x2�, `x1, x2e, x1x2�.
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Dimension formulas for L ie2�n� and P2�n�

Theorem 1.

dim�L ie2�n�� � nn�1, (2)

dim�P2�n�� � �n � 1�n�1. (3)

Remark:
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Dimension formulas for L ie2�n� and P2�n�

Theorem 1.

dim�L ie2�n�� � nn�1, (2)

dim�P2�n�� � �n � 1�n�1. (3)

Remark:

• B. Feigin conjectured that these spaces may be connected with M. Haiman’s work on

diagonal harmonics. As a result, Feigin gave conjectural formulas for the dimensions

of L ie2�n� and P2�n�.
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Dimension formulas for L ie2�n� and P2�n�

Theorem 1.

dim�L ie2�n�� � nn�1, (2)

dim�P2�n�� � �n � 1�n�1. (3)

Remark:

• B. Feigin conjectured that these spaces may be connected with M. Haiman’s work on

diagonal harmonics. As a result, Feigin gave conjectural formulas for the dimensions

of L ie2�n� and P2�n�.
• Dotsenko and Khoroshkin independently prove Theorem 1 using the theory of op-

erads. They also obtain character formulas for the representation of the symmetric

groups and SL2 in L ie2�n� and P2�n�.
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Dimension formulas for L ie2�n� and P2�n�

Theorem 1.

dim�L ie2�n�� � nn�1, (2)

dim�P2�n�� � �n � 1�n�1. (3)

Remark:

• B. Feigin conjectured that these spaces may be connected with M. Haiman’s work on

diagonal harmonics. As a result, Feigin gave conjectural formulas for the dimensions

of L ie2�n� and P2�n�.
• Dotsenko and Khoroshkin independently prove Theorem 1 using the theory of op-

erads. They also obtain character formulas for the representation of the symmetric

groups and SL2 in L ie2�n� and P2�n�.
• It turns out (2) and (3) are equivalent to each other. Therefore, it is enough to show

one of them. We will focus on (2).
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Two-colored rooted trees

Our chosen alphabet X � �x1 � x2 � � � � � xn� will form the vertex set of the

combinatorial objects we are going to define.
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Two-colored rooted trees

Our chosen alphabet X � �x1 � x2 � � � � � xn� will form the vertex set of the

combinatorial objects we are going to define.

A tree is a connected acyclic graph. A rooted tree is a tree with one special vertex,

which we call it the root of the tree.

Let Rn be the set of all rooted trees on X.
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Two-colored rooted trees

Our chosen alphabet X � �x1 � x2 � � � � � xn� will form the vertex set of the

combinatorial objects we are going to define.

A tree is a connected acyclic graph. A rooted tree is a tree with one special vertex,

which we call it the root of the tree.

Let Rn be the set of all rooted trees on X.

It is well known that the cardinality of Rn is SX SSX S�1 � nn�1.
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Two-colored rooted trees

Our chosen alphabet X � �x1 � x2 � � � � � xn� will form the vertex set of the

combinatorial objects we are going to define.

A tree is a connected acyclic graph. A rooted tree is a tree with one special vertex,

which we call it the root of the tree.

Let Rn be the set of all rooted trees on X.

It is well known that the cardinality of Rn is SX SSX S�1 � nn�1.

For any edge �i, j� in a rooted tree, if i is closer to the root than j, then we call i

the parent of j and j a child of i. Furthermore, if i is the parent of j, we call the edge�i, j� an increasing edge if i � j and a decreasing edge if i A j.
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Two-colored rooted trees

Our chosen alphabet X � �x1 � x2 � � � � � xn� will form the vertex set of the

combinatorial objects we are going to define.

A tree is a connected acyclic graph. A rooted tree is a tree with one special vertex,

which we call it the root of the tree.

Let Rn be the set of all rooted trees on X.

It is well known that the cardinality of Rn is SX SSX S�1 � nn�1.

For any edge �i, j� in a rooted tree, if i is closer to the root than j, then we call i

the parent of j and j a child of i. Furthermore, if i is the parent of j, we call the edge�i, j� an increasing edge if i � j and a decreasing edge if i A j.

We define a color map c � Given any rooted tree T >Rn, we color all of the increas-

ing edges by red and all of the decreasing edges by blue.

Let Gn �� c�Rn� be set of all two-colored rooted trees on X.
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Examples of two-colored rooted trees

x1

x1

x2

x3

x1

x3x2

x2

x3

x1 x2

x3

x1

x3

x2

x1

x1

x3

x2

x2

x3

x1

x3

x1

x2

x2

x3
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A basis for L ie2�n� constructed from Gn

For any two colored rooted tree G in Gn with root r, we define a monomial bG > Mn

recursively as follows:

(i) If G � r, let bG �� r.

(ii) If G x r, let c1 � � � ck be the vertices connected to r, and G1, . . . ,Gk be the

corresponding subtrees.

– If r � ck, i.e., there are red edges adjacent to r, choose the smallest ci such that�r, ci� is a red edge. Let bG �� �bG�Gi
, bGi

�.
– If r A ck, i.e., all the edges adjacent to r are blue, let bG �� `bGk

, bG�Gk

e.
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A basis for L ie2�n� constructed from Gn

For any two colored rooted tree G in Gn with root r, we define a monomial bG > Mn

recursively as follows:

(i) If G � r, let bG �� r.

(ii) If G x r, let c1 � � � ck be the vertices connected to r, and G1, . . . ,Gk be the

corresponding subtrees.

– If r � ck, i.e., there are red edges adjacent to r, choose the smallest ci such that�r, ci� is a red edge. Let bG �� �bG�Gi
, bGi

�.
– If r A ck, i.e., all the edges adjacent to r are blue, let bG �� `bGk

, bG�Gk

e.
We define Bn�X� to be the set of all monomials obtained from Gn �Bn�X� �� �bG S G > Gn�.
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A basis for L ie2�n� constructed from Gn

For any two colored rooted tree G in Gn with root r, we define a monomial bG > Mn

recursively as follows:

(i) If G � r, let bG �� r.

(ii) If G x r, let c1 � � � ck be the vertices connected to r, and G1, . . . ,Gk be the

corresponding subtrees.

– If r � ck, i.e., there are red edges adjacent to r, choose the smallest ci such that�r, ci� is a red edge. Let bG �� �bG�Gi
, bGi

�.
– If r A ck, i.e., all the edges adjacent to r are blue, let bG �� `bGk

, bG�Gk

e.
We define Bn�X� to be the set of all monomials obtained from Gn �Bn�X� �� �bG S G > Gn�.

Theorem 5. Bn�X� is a basis for L ie2�n�.
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Examples of the construction of Bn�X�

��x1, x3�, x2�

x1

x2

x3

x1

x3x2

x2

x3

x1 x2

x3

x1

x3

x2

x1

x1

x3

x2

x2

x3

x1

x3

x1

x2

x2

x3 x1 `�x1, x2�, x3e�x1, `x2, x3e� �`x1, x2e, x3� �x2, `x1, x3e�`�x1, x3�, x2e
``x1, x2e, x3e `x2, `x1, x3ee�x1, �x2, x3��

The 9 monomials above form a basis for L ie2�3�.
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Idea of the proof

i. We first show thatBn�X� spans L ie2�n� by giving an explicit algorithm to express

each monomial in L ie2�n� as linear combinations of elements in Bn�X�.
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Idea of the proof

i. We first show thatBn�X� spans L ie2�n� by giving an explicit algorithm to express

each monomial in L ie2�n� as linear combinations of elements in Bn�X�.
ii. We give two methods to prove the independence of Bn�X�. The first method is

purely algebraic.
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Idea of the proof

i. We first show thatBn�X� spans L ie2�n� by giving an explicit algorithm to express

each monomial in L ie2�n� as linear combinations of elements in Bn�X�.
ii. We give two methods to prove the independence of Bn�X�. The first method is

purely algebraic.

iii. The second method is using the idea of pairing: We define a complementary space

E il2�n� to L ie2�n� by using the combinatorial objects oriented two-colored graphs,

give a pairing between L ie2�n� and E il2�n�, and show that the pairing is perfect.
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More bases for L ie2�n� constructed from Gn

When we constructed Bn�X�, we used an ordering to decide which edge connected

to the root should be removed first. It turns out the ordering is not necessary.
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More bases for L ie2�n� constructed from Gn

When we constructed Bn�X�, we used an ordering to decide which edge connected

to the root should be removed first. It turns out the ordering is not necessary.

Definition 6. For any two-colored rooted tree G in Gn with root r, we run an algorithm

rand on G as follows:

(i) If G � r, output rand�G� �� r.

(ii) If G x r, let c1 � � � ck be the vertices connected to r, and G1, . . . ,Gk be the

corresponding subtrees. Randomly choose i from �1,2, . . . , k�.

– Output rand�G� �� �rand�G �Gi�, rand�Gi��, if ci is red.

– Output rand�G� �� `rand�Gi�, rand�G �Gi�e, if ci is blue.
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More bases for L ie2�n� constructed from Gn

When we constructed Bn�X�, we used an ordering to decide which edge connected

to the root should be removed first. It turns out the ordering is not necessary.

Definition 6. For any two-colored rooted tree G in Gn with root r, we run an algorithm

rand on G as follows:

(i) If G � r, output rand�G� �� r.

(ii) If G x r, let c1 � � � ck be the vertices connected to r, and G1, . . . ,Gk be the

corresponding subtrees. Randomly choose i from �1,2, . . . , k�.

– Output rand�G� �� �rand�G �Gi�, rand�Gi��, if ci is red.

– Output rand�G� �� `rand�Gi�, rand�G �Gi�e, if ci is blue.

Theorem 7. randn�X� �� �rand�G� S G > Gn� is a basis for L ie2�n�.
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Examples of randn�X�

��x1, x2�, x3�

x1

x2

x3

x1

x3x2

x2

x3

x1 x2

x3

x1

x3

x2

x1

x1

x3

x2

x2

x3

x1

x3

x1

x2

x2

x3 x1

`x2, `x1, x3ee��x1, x3�, x2��x1, �x2, x3�� ``x1, x2e, x3e `x1, `x2, x3ee
`�x1, x2�, x3e�x1, `x2, x3e� �`x1, x2e, x3� �x2, `x1, x3e�`�x1, x3�, x2e `x1, �x2, x3�e

For each two-colored rooted tree above, we pick one monomial under it. Then the 9

picked monomials together form a basis for L ie2�3�.
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PART III:

Further discussion

Summary: We give further combinatorial results on rooted trees, and then ask sev-

eral natural questions.
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L ie2�n, i�: submodules of L ie2�n�
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L ie2�n, i�: submodules of L ie2�n�

Definition 8. For any i � 0,1, . . . , n � 1, we define L ie2�n, i� to be the submodule

of L ie2�n� that is generated by all the monomials in L ie2�n� with exactly i ��, ��’s
(and n � 1 � i `�, �e’s).
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L ie2�n, i�: submodules of L ie2�n�

Definition 8. For any i � 0,1, . . . , n � 1, we define L ie2�n, i� to be the submodule

of L ie2�n� that is generated by all the monomials in L ie2�n� with exactly i ��, ��’s
(and n � 1 � i `�, �e’s).

Proposition 9. The setBn,i�X� �� �bG S G > Gn has i red/increasing edges�

or

Randn,i�X� �� �rand�G� S G > Gn has i red/increasing edges�

is a basis for L ie2�n, i�.
dim�L ie2�n, i�� � #�rooted trees on n vertices with i increasing edges�.
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L ie2�n, i�: submodules of L ie2�n�

Definition 8. For any i � 0,1, . . . , n � 1, we define L ie2�n, i� to be the submodule

of L ie2�n� that is generated by all the monomials in L ie2�n� with exactly i ��, ��’s
(and n � 1 � i `�, �e’s).

Proposition 9. The setBn,i�X� �� �bG S G > Gn has i red/increasing edges�

or

Randn,i�X� �� �rand�G� S G > Gn has i red/increasing edges�

is a basis for L ie2�n, i�.
dim�L ie2�n, i�� � #�rooted trees on n vertices with i increasing edges�.

Corollary 10.

dim�L ie�n�� � #�increasing rooted trees on n vertices� � �n � 1�!.
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Number of rooted trees with i increasing edges

Let

a�n, i� �� the number of rooted trees on n vertices with i increasing edges.
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Number of rooted trees with i increasing edges

Let

a�n, i� �� the number of rooted trees on n vertices with i increasing edges.

By the exponential generating function for the SL2-characters for L ie2�n� with SL2

action obtained by Dotsenko and Khoroshkin, we get the generating function for a�n, i�.
Corollary 11.

n�1Q
i�0

a�n, i�xi � n�1M
k�1

�kx � �n � k��. (12)

Hence, the number of rooted trees on n vertices with i increasing edges is given by

a�n, i� � Q
K � a i-subset of �n � 1�Mk>K k M

k�>�n�1��K

�n � k��. (13)
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Number of rooted trees with i increasing edges

Let

a�n, i� �� the number of rooted trees on n vertices with i increasing edges.

By the exponential generating function for the SL2-characters for L ie2�n� with SL2

action obtained by Dotsenko and Khoroshkin, we get the generating function for a�n, i�.
Corollary 11.

n�1Q
i�0

a�n, i�xi � n�1M
k�1

�kx � �n � k��. (12)

Hence, the number of rooted trees on n vertices with i increasing edges is given by

a�n, i� � Q
K � a i-subset of �n � 1�Mk>K k M

k�>�n�1��K

�n � k��. (13)

Question: Can one find a combinatorial proof for formulas (12) and (13)?
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Further generalization?

We can consider L ie2�n� to be a generalization of L ie�n�. Hence, another ques-

tion which might be interesting is:
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tion which might be interesting is:

Question:

Can we generalize L ie�n� further?
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Further generalization?

We can consider L ie2�n� to be a generalization of L ie�n�. Hence, another ques-

tion which might be interesting is:

Question:

Can we generalize L ie�n� further?

Is it possible to define L iek�n� for any k C 1 so that it has nice rank formulas like

those for L ie�n� and L ie2�n�?
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Further generalization?

We can consider L ie2�n� to be a generalization of L ie�n�. Hence, another ques-

tion which might be interesting is:

Question:

Can we generalize L ie�n� further?

Is it possible to define L iek�n� for any k C 1 so that it has nice rank formulas like

those for L ie�n� and L ie2�n�?

What are the right combinatorial objects for L iek�n�, if it can be defined?
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