

Combinatorial bases for multilinear parts of free algebras with two compatible brackets

by *Fu Liu*

University of California, Davis

Joint Meeting of the AMS-SMS, Shanghai, P.R.China

December 18th, 2008

Outline

- Introduction
- Statement and examples of the theorems
- Further discussion

PART I:

Introduction

Summary: We will briefly go over some related results on free algebras with one Lie bracket.

Lie algebra and Poisson algebra

Fix a commutative ring R with unit.

Lie algebra and Poisson algebra

Fix a commutative ring R with unit.

We recall a *Lie algebra* over R is an R -module V equipped with a bilinear binary operation $[\cdot, \cdot]$, called a *Lie bracket*, satisfying two properties: for any $x, y, z \in V$,

$$\text{antisymmetry} \quad [x, y] = -[y, x],$$

$$\text{Jacobi identity} \quad [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0.$$

Lie algebra and Poisson algebra

Fix a commutative ring R with unit.

We recall a *Lie algebra* over R is an R -module V equipped with a bilinear binary operation $[\cdot, \cdot]$, called a *Lie bracket*, satisfying two properties: for any $x, y, z \in V$,

$$\text{antisymmetry} \quad [x, y] = -[y, x],$$

$$\text{Jacobi identity} \quad [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0.$$

A *Poisson algebra* over R is an R -module V equipped with two bilinear binary operations: a Lie bracket $[\cdot, \cdot]$ and an associative commutative multiplication such that the Lie bracket is a *derivation* of the commutative multiplication: that is, for any $x, y, z \in V$, we have

$$[x, yz] = [x, y]z + y[x, z].$$

Multilinear parts of free algebras with one Lie bracket

Let $X = \{x_1 < x_2 < \dots < x_n\}$ be an ordered alphabet.

Multilinear parts of free algebras with one Lie bracket

Let $X = \{x_1 < x_2 < \dots < x_n\}$ be an ordered alphabet.

The *free Lie algebra* on X over R is the Lie algebra over R that is generated by all possible Lie bracketings of elements of X with no relations other than antisymmetries and Jacobi identities.

Let $\mathcal{L}ie(n)$ be the *multilinear part* of this free Lie algebra: i.e., the subspace consisting of all elements containing each x_i exactly once.

Multilinear parts of free algebras with one Lie bracket

Let $X = \{x_1 < x_2 < \dots < x_n\}$ be an ordered alphabet.

The *free Lie algebra* on X over R is the Lie algebra over R that is generated by all possible Lie bracketings of elements of X with no relations other than antisymmetries and Jacobi identities.

Let $\mathcal{L}ie(n)$ be the *multilinear part* of this free Lie algebra: i.e., the subspace consisting of all elements containing each x_i exactly once.

We define the free Poisson algebra on X similarly, and let $\mathcal{P}(n)$ be its multilinear part.

Multilinear parts of free algebras with one Lie bracket

Let $X = \{x_1 < x_2 < \dots < x_n\}$ be an ordered alphabet.

The *free Lie algebra* on X over R is the Lie algebra over R that is generated by all possible Lie bracketings of elements of X with no relations other than antisymmetries and Jacobi identities.

Let $\mathcal{L}ie(n)$ be the *multilinear part* of this free Lie algebra: i.e., the subspace consisting of all elements containing each x_i exactly once.

We define the free Poisson algebra on X similarly, and let $\mathcal{P}(n)$ be its multilinear part.

Example: Monomials in $\mathcal{L}ie(2)$: $[x_1, x_2], [x_2, x_1]$.

A basis for $\mathcal{L}ie(2)$: $\{[x_1, x_2]\}$.

Multilinear parts of free algebras with one Lie bracket

Let $X = \{x_1 < x_2 < \dots < x_n\}$ be an ordered alphabet.

The *free Lie algebra* on X over R is the Lie algebra over R that is generated by all possible Lie bracketings of elements of X with no relations other than antisymmetries and Jacobi identities.

Let $\mathcal{L}ie(n)$ be the *multilinear part* of this free Lie algebra: i.e., the subspace consisting of all elements containing each x_i exactly once.

We define the free Poisson algebra on X similarly, and let $\mathcal{P}(n)$ be its multilinear part.

Example: Monomials in $\mathcal{L}ie(2)$: $[x_1, x_2], [x_2, x_1]$.

A basis for $\mathcal{L}ie(2)$: $\{[x_1, x_2]\}$.

Monomials in $\mathcal{P}(2)$: $[x_1, x_2], [x_2, x_1], x_1x_2, x_2x_1$.

A basis for $\mathcal{P}(2)$: $\{[x_1, x_2], x_1x_2\}$.

Dimension formulas and bases for $\mathcal{L}ie(n)$ and $\mathcal{P}(n)$

Example: A basis for $\mathcal{L}ie(3) : \{[x_1, [x_2, x_3]], [x_2, [x_1, x_3]]\}.$

$[x_3, [x_1, x_2]] = -[x_1, [x_2, x_3]] + [x_2, [x_1, x_3]]$ by the Jacobi identity.

Dimension formulas and bases for $\mathcal{L}ie(n)$ and $\mathcal{P}(n)$

Example: A basis for $\mathcal{L}ie(3) : \{[x_1, [x_2, x_3]], [x_2, [x_1, x_3]]\}$.

$[x_3, [x_1, x_2]] = -[x_1, [x_2, x_3]] + [x_2, [x_1, x_3]]$ by the Jacobi identity.

A basis for $\mathcal{L}ie(n) :$

$$\{[x_{\sigma(1)}, [x_{\sigma(2)}, [x_{\sigma(3)}, [\cdots, [x_{\sigma(n-1)}, x_n]\cdots]]]] \mid \sigma \in S_{n-1}\}.$$

Dimension formulas and bases for $\mathcal{L}ie(n)$ and $\mathcal{P}(n)$

Example: A basis for $\mathcal{L}ie(3) : \{[x_1, [x_2, x_3]], [x_2, [x_1, x_3]]\}.$

$[x_3, [x_1, x_2]] = -[x_1, [x_2, x_3]] + [x_2, [x_1, x_3]]$ by the Jacobi identity.

A basis for $\mathcal{L}ie(n) :$

$$\{[x_{\sigma(1)}, [x_{\sigma(2)}, [x_{\sigma(3)}, [\dots, [x_{\sigma(n-1)}, x_n]\dots]]]] \mid \sigma \in S_{n-1}\}.$$

$\mathcal{L}ie(n)$ has dimension $(n - 1)!$.

Dimension formulas and bases for $\mathcal{L}ie(n)$ and $\mathcal{P}(n)$

Example: A basis for $\mathcal{L}ie(3) : \{[x_1, [x_2, x_3]], [x_2, [x_1, x_3]]\}$.

$[x_3, [x_1, x_2]] = -[x_1, [x_2, x_3]] + [x_2, [x_1, x_3]]$ by the Jacobi identity.

A basis for $\mathcal{L}ie(n) :$

$$\{[x_{\sigma(1)}, [x_{\sigma(2)}, [x_{\sigma(3)}, [\dots, [x_{\sigma(n-1)}, x_n]\dots]]]] \mid \sigma \in S_{n-1}\}.$$

$\mathcal{L}ie(n)$ has dimension $(n - 1)!$.

A basis for $\mathcal{P}(3) :$

$$\{[x_1, [x_2, x_3]], [x_2, [x_1, x_3]], x_1[x_2, x_3], [x_1, x_3]x_2, [x_1, x_2]x_3, x_1x_2x_3\}.$$

Dimension formulas and bases for $\mathcal{L}ie(n)$ and $\mathcal{P}(n)$

Example: A basis for $\mathcal{L}ie(3) : \{[x_1, [x_2, x_3]], [x_2, [x_1, x_3]]\}$.

$[x_3, [x_1, x_2]] = -[x_1, [x_2, x_3]] + [x_2, [x_1, x_3]]$ by the Jacobi identity.

A basis for $\mathcal{L}ie(n) :$

$$\{[x_{\sigma(1)}, [x_{\sigma(2)}, [x_{\sigma(3)}, [\dots, [x_{\sigma(n-1)}, x_n]\dots]]]] \mid \sigma \in S_{n-1}\}.$$

$\mathcal{L}ie(n)$ has dimension $(n - 1)!$.

A basis for $\mathcal{P}(3) :$

$$\{[x_1, [x_2, x_3]], [x_2, [x_1, x_3]], x_1[x_2, x_3], [x_1, x_3]x_2, [x_1, x_2]x_3, x_1x_2x_3\}.$$

Suppose $B(X)$ is a basis for $\mathcal{L}ie(n)$ on the alphabet X . Then the following is a basis for $\mathcal{P}(n) :$

$$\{b_1b_2\dots b_k \mid \cup_{i=1}^k X_i \text{ is a partition of } X \text{ with } \max(X_1) < \dots < \max(X_k), \text{ and } b_i \in B(X_i)\}$$

Dimension formulas and bases for $\mathcal{L}ie(n)$ and $\mathcal{P}(n)$

Example: A basis for $\mathcal{L}ie(3) : \{[x_1, [x_2, x_3]], [x_2, [x_1, x_3]]\}$.

$[x_3, [x_1, x_2]] = -[x_1, [x_2, x_3]] + [x_2, [x_1, x_3]]$ by the Jacobi identity.

A basis for $\mathcal{L}ie(n) :$

$$\{[x_{\sigma(1)}, [x_{\sigma(2)}, [x_{\sigma(3)}, [\dots, [x_{\sigma(n-1)}, x_n]\dots]]]] \mid \sigma \in S_{n-1}\}.$$

$\mathcal{L}ie(n)$ has dimension $(n - 1)!$.

A basis for $\mathcal{P}(3) :$

$$\{[x_1, [x_2, x_3]], [x_2, [x_1, x_3]], x_1[x_2, x_3], [x_1, x_3]x_2, [x_1, x_2]x_3, x_1x_2x_3\}.$$

Suppose $B(X)$ is a basis for $\mathcal{L}ie(n)$ on the alphabet X . Then the following is a basis for $\mathcal{P}(n) :$

$$\{b_1b_2\dots b_k \mid \cup_{i=1}^k X_i \text{ is a partition of } X \text{ with } \max(X_1) < \dots < \max(X_k), \text{ and } b_i \in B(X_i)\}$$

$\mathcal{P}(n)$ has dimension $n!$.

PART II:

Statement and examples of the theorems

Summary: In this part, we introduce free algebras with two compatible brackets. After defining the problem and giving a little background, we state our main theorems together with examples in the cases when $n = 3$.

Free algebras with two compatible Lie brackets

We consider a free algebra on X with two Lie brackets $[\cdot, \cdot]$ and $\langle \cdot, \cdot \rangle$, which are *compatible*: that is, any linear combination of them is a Lie bracket.

If we write out this condition explicitly, the compatibility gives one condition, which we call the *mixed Jacobi identity*, in addition to the antisymmetry and Jacobi identity for each of the two brackets. For any x, y, z ,

$$(S1) \quad [x, y] + [y, x] = 0,$$

$$(S2) \quad \langle x, y \rangle + \langle y, x \rangle = 0,$$

$$(J1) \quad [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0,$$

$$(J2) \quad \langle x, \langle y, z \rangle \rangle + \langle y, \langle z, x \rangle \rangle + \langle z, \langle x, y \rangle \rangle = 0,$$

$$(MJ) \quad [x, \langle y, z \rangle] + [y, \langle z, x \rangle] + [z, \langle x, y \rangle] + \langle x, [y, z] \rangle + \langle y, [z, x] \rangle + \langle z, [x, y] \rangle = 0.$$

Free algebras with two compatible Lie brackets (cont'd)

Let $\mathcal{L}ie_2(n)$ be the multilinear part of this free algebra.

Free algebras with two compatible Lie brackets (cont'd)

Let $\mathcal{L}ie_2(n)$ be the multilinear part of this free algebra.

Similarly, we let $\mathcal{P}_2(n)$ be the multilinear part of the free algebra with two compatible Lie brackets and one associative commutative multiplication, where both of the Lie brackets are derivations of the commutative multiplication.

Free algebras with two compatible Lie brackets (cont'd)

Let $\mathcal{L}ie_2(n)$ be the multilinear part of this free algebra.

Similarly, we let $\mathcal{P}_2(n)$ be the multilinear part of the free algebra with two compatible Lie brackets and one associative commutative multiplication, where both of the Lie brackets are derivations of the commutative multiplication.

Example: Monomials in $\mathcal{L}ie_2(2)$: $[x_1, x_2], [x_2, x_1], \langle x_1, x_2 \rangle, \langle x_2, x_1 \rangle$.

A basis for $\mathcal{L}ie_2(2)$: $\{[x_1, x_2], \langle x_1, x_2 \rangle\}$.

Free algebras with two compatible Lie brackets (cont'd)

Let $\mathcal{L}ie_2(n)$ be the multilinear part of this free algebra.

Similarly, we let $\mathcal{P}_2(n)$ be the multilinear part of the free algebra with two compatible Lie brackets and one associative commutative multiplication, where both of the Lie brackets are derivations of the commutative multiplication.

Example: Monomials in $\mathcal{L}ie_2(2)$: $[x_1, x_2], [x_2, x_1], \langle x_1, x_2 \rangle, \langle x_2, x_1 \rangle$.

A basis for $\mathcal{L}ie_2(2)$: $\{[x_1, x_2], \langle x_1, x_2 \rangle\}$.

Monomials in $\mathcal{P}_2(2)$: $[x_1, x_2], [x_2, x_1], \langle x_1, x_2 \rangle, \langle x_2, x_1 \rangle, x_1 x_2, x_2 x_1$.

A basis for $\mathcal{P}_2(2)$: $\{[x_1, x_2], \langle x_1, x_2 \rangle, x_1 x_2\}$.

Dimension formulas for $\mathcal{L}ie_2(n)$ and $\mathcal{P}_2(n)$ **Theorem 1.**

$$\dim(\mathcal{L}ie_2(n)) = n^{n-1}, \quad (2)$$

$$\dim(\mathcal{P}_2(n)) = (n+1)^{n-1}. \quad (3)$$

Remark:

Dimension formulas for $\mathcal{L}ie_2(n)$ and $\mathcal{P}_2(n)$ **Theorem 1.**

$$\dim(\mathcal{L}ie_2(n)) = n^{n-1}, \quad (2)$$

$$\dim(\mathcal{P}_2(n)) = (n+1)^{n-1}. \quad (3)$$

Remark:

- B. Feigin conjectured that these spaces may be connected with M. Haiman's work on diagonal harmonics. As a result, Feigin gave conjectural formulas for the dimensions of $\mathcal{L}ie_2(n)$ and $\mathcal{P}_2(n)$.

Dimension formulas for $\mathcal{L}ie_2(n)$ and $\mathcal{P}_2(n)$

Theorem 1.

$$\dim(\mathcal{L}ie_2(n)) = n^{n-1}, \quad (2)$$

$$\dim(\mathcal{P}_2(n)) = (n+1)^{n-1}. \quad (3)$$

Remark:

- B. Feigin conjectured that these spaces may be connected with M. Haiman's work on diagonal harmonics. As a result, Feigin gave conjectural formulas for the dimensions of $\mathcal{L}ie_2(n)$ and $\mathcal{P}_2(n)$.
- Dotsenko and Khoroshkin independently prove Theorem 1 using the theory of operads. They also obtain character formulas for the representation of the symmetric groups and SL_2 in $\mathcal{L}ie_2(n)$ and $\mathcal{P}_2(n)$.

Dimension formulas for $\mathcal{L}ie_2(n)$ and $\mathcal{P}_2(n)$

Theorem 1.

$$\dim(\mathcal{L}ie_2(n)) = n^{n-1}, \quad (2)$$

$$\dim(\mathcal{P}_2(n)) = (n+1)^{n-1}. \quad (3)$$

Remark:

- B. Feigin conjectured that these spaces may be connected with M. Haiman's work on diagonal harmonics. As a result, Feigin gave conjectural formulas for the dimensions of $\mathcal{L}ie_2(n)$ and $\mathcal{P}_2(n)$.
- Dotsenko and Khoroshkin independently prove Theorem 1 using the theory of operads. They also obtain character formulas for the representation of the symmetric groups and SL_2 in $\mathcal{L}ie_2(n)$ and $\mathcal{P}_2(n)$.
- It turns out (2) and (3) are equivalent to each other. Therefore, it is enough to show one of them. We will focus on (2).

Two-colored rooted trees

Our chosen alphabet $X = \{x_1 < x_2 < \dots < x_n\}$ will form the vertex set of the combinatorial objects we are going to define.

Two-colored rooted trees

Our chosen alphabet $X = \{x_1 < x_2 < \dots < x_n\}$ will form the vertex set of the combinatorial objects we are going to define.

A *tree* is a connected acyclic graph. A *rooted tree* is a tree with one special vertex, which we call it the *root* of the tree.

Let \mathcal{R}_n be the set of all rooted trees on X .

Two-colored rooted trees

Our chosen alphabet $X = \{x_1 < x_2 < \dots < x_n\}$ will form the vertex set of the combinatorial objects we are going to define.

A *tree* is a connected acyclic graph. A *rooted tree* is a tree with one special vertex, which we call it the *root* of the tree.

Let \mathcal{R}_n be the set of all rooted trees on X .

It is well known that the cardinality of \mathcal{R}_n is $|X|^{|\mathcal{X}|-1} = n^{n-1}$.

Two-colored rooted trees

Our chosen alphabet $X = \{x_1 < x_2 < \dots < x_n\}$ will form the vertex set of the combinatorial objects we are going to define.

A *tree* is a connected acyclic graph. A *rooted tree* is a tree with one special vertex, which we call it the *root* of the tree.

Let \mathcal{R}_n be the set of all rooted trees on X .

It is well known that the cardinality of \mathcal{R}_n is $|X|^{|X|-1} = n^{n-1}$.

For any edge $\{i, j\}$ in a rooted tree, if i is closer to the root than j , then we call i the *parent* of j and j a *child* of i . Furthermore, if i is the parent of j , we call the edge $\{i, j\}$ an *increasing edge* if $i < j$ and a *decreasing edge* if $i > j$.

Two-colored rooted trees

Our chosen alphabet $X = \{x_1 < x_2 < \dots < x_n\}$ will form the vertex set of the combinatorial objects we are going to define.

A *tree* is a connected acyclic graph. A *rooted tree* is a tree with one special vertex, which we call it the *root* of the tree.

Let \mathcal{R}_n be the set of all rooted trees on X .

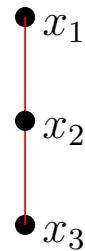
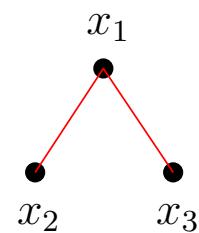
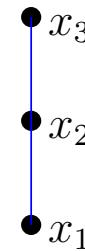
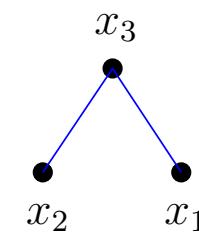
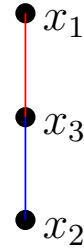
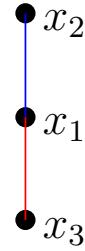
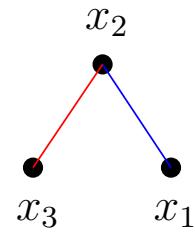
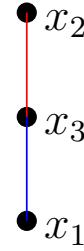
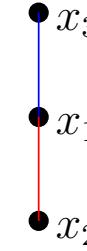
It is well known that the cardinality of \mathcal{R}_n is $|X|^{|\mathcal{X}|-1} = n^{n-1}$.

For any edge $\{i, j\}$ in a rooted tree, if i is closer to the root than j , then we call i the *parent* of j and j a *child* of i . Furthermore, if i is the parent of j , we call the edge $\{i, j\}$ an *increasing edge* if $i < j$ and a *decreasing edge* if $i > j$.

We define a color map c : Given any rooted tree $T \in \mathcal{R}_n$, we color all of the increasing edges by red and all of the decreasing edges by blue.

Let $\overline{\mathcal{G}}_n := c(\mathcal{R}_n)$ be set of all *two-colored rooted trees* on X .

Examples of two-colored rooted trees



A basis for $\mathcal{L}ie_2(n)$ constructed from $\bar{\mathcal{G}}_n$

For any two colored rooted tree G in $\bar{\mathcal{G}}_n$ with root r , we define a monomial $b_G \in M_n$ recursively as follows:

- (i) If $G = r$, let $b_G := r$.
- (ii) If $G \neq r$, let $c_1 < \dots < c_k$ be the vertices connected to r , and G_1, \dots, G_k be the corresponding subtrees.
 - If $r < c_k$, i.e., there are red edges adjacent to r , choose the smallest c_i such that $\{r, c_i\}$ is a red edge. Let $b_G := [b_{G \setminus G_i}, b_{G_i}]$.
 - If $r > c_k$, i.e., all the edges adjacent to r are blue, let $b_G := \langle b_{G_k}, b_{G \setminus G_k} \rangle$.

A basis for $\mathcal{L}ie_2(n)$ constructed from $\overline{\mathcal{G}}_n$

For any two colored rooted tree G in $\overline{\mathcal{G}}_n$ with root r , we define a monomial $b_G \in M_n$ recursively as follows:

- (i) If $G = r$, let $b_G := r$.
- (ii) If $G \neq r$, let $c_1 < \dots < c_k$ be the vertices connected to r , and G_1, \dots, G_k be the corresponding subtrees.
 - If $r < c_k$, i.e., there are red edges adjacent to r , choose the smallest c_i such that $\{r, c_i\}$ is a red edge. Let $b_G := [b_{G \setminus G_i}, b_{G_i}]$.
 - If $r > c_k$, i.e., all the edges adjacent to r are blue, let $b_G := \langle b_{G_k}, b_{G \setminus G_k} \rangle$.

We define $\mathcal{B}_n(X)$ to be the set of all monomials obtained from $\overline{\mathcal{G}}_n$:

$$\mathcal{B}_n(X) := \{b_G \mid G \in \overline{\mathcal{G}}_n\}.$$

A basis for $\mathcal{L}ie_2(n)$ constructed from $\overline{\mathcal{G}}_n$

For any two colored rooted tree G in $\overline{\mathcal{G}}_n$ with root r , we define a monomial $b_G \in M_n$ recursively as follows:

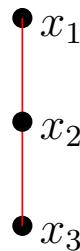
- (i) If $G = r$, let $b_G := r$.
- (ii) If $G \neq r$, let $c_1 < \dots < c_k$ be the vertices connected to r , and G_1, \dots, G_k be the corresponding subtrees.
 - If $r < c_k$, i.e., there are red edges adjacent to r , choose the smallest c_i such that $\{r, c_i\}$ is a red edge. Let $b_G := [b_{G \setminus G_i}, b_{G_i}]$.
 - If $r > c_k$, i.e., all the edges adjacent to r are blue, let $b_G := \langle b_{G_k}, b_{G \setminus G_k} \rangle$.

We define $\mathcal{B}_n(X)$ to be the set of all monomials obtained from $\overline{\mathcal{G}}_n$:

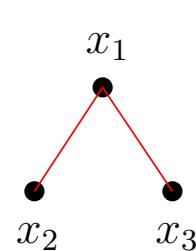
$$\mathcal{B}_n(X) := \{b_G \mid G \in \overline{\mathcal{G}}_n\}.$$

Theorem 5. $\mathcal{B}_n(X)$ is a basis for $\mathcal{L}ie_2(n)$.

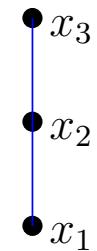
Examples of the construction of $\mathcal{B}_n(X)$



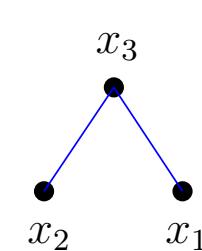
$$[x_1, [x_2, x_3]]$$



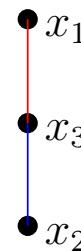
$$[[x_1, x_3], x_2]$$



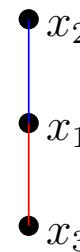
$$\langle \langle x_1, x_2 \rangle, x_3 \rangle$$



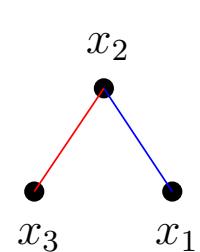
$$\langle x_2, \langle x_1, x_3 \rangle \rangle$$



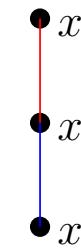
$$[x_1, \langle x_2, x_3 \rangle]$$



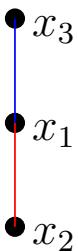
$$\langle [x_1, x_3], x_2 \rangle$$



$$[\langle x_1, x_2 \rangle, x_3], x_2]$$



$$[x_2, \langle x_1, x_3 \rangle]$$



$$\langle [x_1, x_2], x_3 \rangle$$

The 9 monomials above form a basis for $\mathcal{L}ie_2(3)$.

Idea of the proof

- i. We first show that $\mathcal{B}_n(X)$ spans $\mathcal{L}ie_2(n)$ by giving an explicit algorithm to express each monomial in $\mathcal{L}ie_2(n)$ as linear combinations of elements in $\mathcal{B}_n(X)$.

Idea of the proof

- i. We first show that $\mathcal{B}_n(X)$ spans $\mathcal{L}ie_2(n)$ by giving an explicit algorithm to express each monomial in $\mathcal{L}ie_2(n)$ as linear combinations of elements in $\mathcal{B}_n(X)$.
- ii. We give two methods to prove the independence of $\mathcal{B}_n(X)$. The first method is purely algebraic.

Idea of the proof

- i. We first show that $\mathcal{B}_n(X)$ spans $\mathcal{L}ie_2(n)$ by giving an explicit algorithm to express each monomial in $\mathcal{L}ie_2(n)$ as linear combinations of elements in $\mathcal{B}_n(X)$.
- ii. We give two methods to prove the independence of $\mathcal{B}_n(X)$. The first method is purely algebraic.
- iii. The second method is using the idea of pairing: We define a complementary space $\mathcal{E}il_2(n)$ to $\mathcal{L}ie_2(n)$ by using the combinatorial objects *oriented two-colored graphs*, give a pairing between $\mathcal{L}ie_2(n)$ and $\mathcal{E}il_2(n)$, and show that the pairing is perfect.

More bases for $\mathcal{L}ie_2(n)$ constructed from $\overline{\mathcal{G}}_n$

When we constructed $\mathcal{B}_n(X)$, we used an ordering to decide which edge connected to the root should be removed first. It turns out the ordering is not necessary.

More bases for $\mathcal{L}ie_2(n)$ constructed from $\bar{\mathcal{G}}_n$

When we constructed $\mathcal{B}_n(X)$, we used an ordering to decide which edge connected to the root should be removed first. It turns out the ordering is not necessary.

Definition 6. For any two-colored rooted tree G in $\bar{\mathcal{G}}_n$ with root r , we run an algorithm *rand* on G as follows:

- (i) If $G = r$, output $rand(G) := r$.
- (ii) If $G \neq r$, let $c_1 < \dots < c_k$ be the vertices connected to r , and G_1, \dots, G_k be the corresponding subtrees. Randomly choose i from $\{1, 2, \dots, k\}$.
 - Output $rand(G) := [rand(G \setminus G_i), rand(G_i)]$, if c_i is red.
 - Output $rand(G) := \langle rand(G_i), rand(G \setminus G_i) \rangle$, if c_i is blue.

More bases for $\mathcal{L}ie_2(n)$ constructed from $\overline{\mathcal{G}}_n$

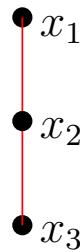
When we constructed $\mathcal{B}_n(X)$, we used an ordering to decide which edge connected to the root should be removed first. It turns out the ordering is not necessary.

Definition 6. For any two-colored rooted tree G in $\overline{\mathcal{G}}_n$ with root r , we run an algorithm $rand$ on G as follows:

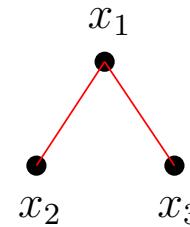
- (i) If $G = r$, output $rand(G) := r$.
- (ii) If $G \neq r$, let $c_1 < \dots < c_k$ be the vertices connected to r , and G_1, \dots, G_k be the corresponding subtrees. Randomly choose i from $\{1, 2, \dots, k\}$.
 - Output $rand(G) := [rand(G \setminus G_i), rand(G_i)]$, if c_i is red.
 - Output $rand(G) := \langle rand(G_i), rand(G \setminus G_i) \rangle$, if c_i is blue.

Theorem 7. $rand_n(X) := \{rand(G) \mid G \in \overline{\mathcal{G}}_n\}$ is a basis for $\mathcal{L}ie_2(n)$.

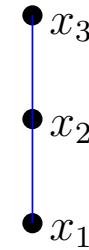
Examples of $rand_n(X)$



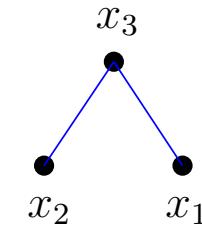
$$[x_1, [x_2, x_3]]$$



$$[[x_1, x_3], x_2]$$

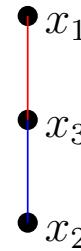


$$\langle \langle x_1, x_2 \rangle, x_3 \rangle$$

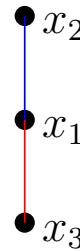


$$\langle x_2, \langle x_1, x_3 \rangle \rangle$$

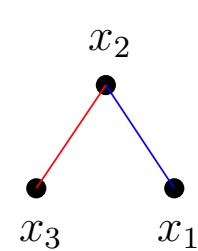
$$\langle [x_1, x_2], x_3 \rangle$$



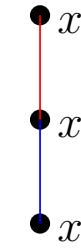
$$[x_1, \langle x_2, x_3 \rangle]$$



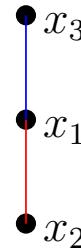
$$\langle [x_1, x_3], x_2 \rangle$$



$$\langle \langle x_1, x_2 \rangle, x_3 \rangle$$



$$[x_2, \langle x_1, x_3 \rangle]$$



$$\langle [x_1, x_2], x_3 \rangle$$

For each two-colored rooted tree above, we pick one monomial under it. Then the 9 picked monomials together form a basis for $\mathcal{L}ie_2(3)$.

PART III:

Further discussion

Summary: We give further combinatorial results on rooted trees, and then ask several natural questions.

$\mathcal{L}ie_2(n, i)$: **submodules of $\mathcal{L}ie_2(n)$**

$\mathcal{L}ie_2(n, i)$: submodules of $\mathcal{L}ie_2(n)$

Definition 8. For any $i = 0, 1, \dots, n - 1$, we define $\mathcal{L}ie_2(n, i)$ to be the submodule of $\mathcal{L}ie_2(n)$ that is generated by all the monomials in $\mathcal{L}ie_2(n)$ with exactly i $[\cdot, \cdot]$'s (and $n - 1 - i$ $\langle \cdot, \cdot \rangle$'s).

$\mathcal{L}ie_2(n, i)$: submodules of $\mathcal{L}ie_2(n)$

Definition 8. For any $i = 0, 1, \dots, n - 1$, we define $\mathcal{L}ie_2(n, i)$ to be the submodule of $\mathcal{L}ie_2(n)$ that is generated by all the monomials in $\mathcal{L}ie_2(n)$ with exactly i $[\cdot, \cdot]$'s (and $n - 1 - i$ $\langle \cdot, \cdot \rangle$'s).

Proposition 9. *The set*

$$\mathcal{B}_{n,i}(X) := \{b_G \mid G \in \overline{\mathcal{G}}_n \text{ has } i \text{ red/increasing edges}\}$$

or

$$\text{Rand}_{n,i}(X) := \{\text{rand}(G) \mid G \in \overline{\mathcal{G}}_n \text{ has } i \text{ red/increasing edges}\}$$

is a basis for $\mathcal{L}ie_2(n, i)$.

$$\dim(\mathcal{L}ie_2(n, i)) = \#\{\text{rooted trees on } n \text{ vertices with } i \text{ increasing edges}\}.$$

$\mathcal{L}ie_2(n, i)$: submodules of $\mathcal{L}ie_2(n)$

Definition 8. For any $i = 0, 1, \dots, n - 1$, we define $\mathcal{L}ie_2(n, i)$ to be the submodule of $\mathcal{L}ie_2(n)$ that is generated by all the monomials in $\mathcal{L}ie_2(n)$ with exactly i $[\cdot, \cdot]$'s (and $n - 1 - i$ $\langle \cdot, \cdot \rangle$'s).

Proposition 9. The set

$$\mathcal{B}_{n,i}(X) := \{b_G \mid G \in \overline{\mathcal{G}}_n \text{ has } i \text{ red/increasing edges}\}$$

or

$$Rand_{n,i}(X) := \{rand(G) \mid G \in \overline{\mathcal{G}}_n \text{ has } i \text{ red/increasing edges}\}$$

is a basis for $\mathcal{L}ie_2(n, i)$.

$$\dim(\mathcal{L}ie_2(n, i)) = \#\{\text{rooted trees on } n \text{ vertices with } i \text{ increasing edges}\}.$$

Corollary 10.

$$\dim(\mathcal{L}ie(n)) = \#\{\text{increasing rooted trees on } n \text{ vertices}\} = (n - 1)!.$$

Number of rooted trees with i increasing edges

Let

$a(n, i) :=$ the number of rooted trees on n vertices with i increasing edges.

Number of rooted trees with i increasing edges

Let

$a(n, i) :=$ the number of rooted trees on n vertices with i increasing edges.

By the exponential generating function for the SL_2 -characters for $\mathcal{L}ie_2(n)$ with SL_2 action obtained by Dotsenko and Khoroshkin, we get the generating function for $a(n, i)$.

Corollary 11.

$$\sum_{i=0}^{n-1} a(n, i) x^i = \prod_{k=1}^{n-1} (kx + (n - k)). \quad (12)$$

Hence, the number of rooted trees on n vertices with i increasing edges is given by

$$a(n, i) = \sum_{K: \text{ a } i\text{-subset of } [n-1]} \prod_{k \in K} k \prod_{k' \in [n-1] \setminus K} (n - k'). \quad (13)$$

Number of rooted trees with i increasing edges

Let

$a(n, i) :=$ the number of rooted trees on n vertices with i increasing edges.

By the exponential generating function for the SL_2 -characters for $\mathcal{L}ie_2(n)$ with SL_2 action obtained by Dotsenko and Khoroshkin, we get the generating function for $a(n, i)$.

Corollary 11.

$$\sum_{i=0}^{n-1} a(n, i)x^i = \prod_{k=1}^{n-1} (kx + (n - k)). \quad (12)$$

Hence, the number of rooted trees on n vertices with i increasing edges is given by

$$a(n, i) = \sum_{K: \text{ a } i\text{-subset of } [n-1]} \prod_{k \in K} k \prod_{k' \in [n-1] \setminus K} (n - k'). \quad (13)$$

Question: Can one find a combinatorial proof for formulas (12) and (13)?

Further generalization?

We can consider $\mathcal{L}ie_2(n)$ to be a generalization of $\mathcal{L}ie(n)$. Hence, another question which might be interesting is:

Further generalization?

We can consider $\mathcal{L}ie_2(n)$ to be a generalization of $\mathcal{L}ie(n)$. Hence, another question which might be interesting is:

Question:

Can we generalize $\mathcal{L}ie(n)$ further?

Further generalization?

We can consider $\mathcal{L}ie_2(n)$ to be a generalization of $\mathcal{L}ie(n)$. Hence, another question which might be interesting is:

Question:

Can we generalize $\mathcal{L}ie(n)$ further?

Is it possible to define $\mathcal{L}ie_k(n)$ for any $k \geq 1$ so that it has nice rank formulas like those for $\mathcal{L}ie(n)$ and $\mathcal{L}ie_2(n)$?

Further generalization?

We can consider $\mathcal{L}ie_2(n)$ to be a generalization of $\mathcal{L}ie(n)$. Hence, another question which might be interesting is:

Question:

Can we generalize $\mathcal{L}ie(n)$ further?

Is it possible to define $\mathcal{L}ie_k(n)$ for any $k \geq 1$ so that it has nice rank formulas like those for $\mathcal{L}ie(n)$ and $\mathcal{L}ie_2(n)$?

What are the right combinatorial objects for $\mathcal{L}ie_k(n)$, if it can be defined?