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PART I:

Introduction

Summary: We will briefly go over some related results on free algebras with one Lie

bracket.
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| Lie algebra and Poisson algebra I

Fix a commutative ring R with unit.
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| Lie algebra and Poisson algebra I

Fix a commutative ring K with unit.

We recall a Lie algebra over R is an R-module V' equipped with a bilinear binary

operation [-, -], called a Lie bracket, satisfying two properties: for any x,y, z € V,

antisymmetry [x,y] = -y, z],

Jacobi identity [z, [y, z]] + [y, [z, z]] + [z, [z,y]] = 0.
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| Lie algebra and Poisson algebra I

Fix a commutative ring & with unit.

We recall a Lie algebra over R is an R-module V' equipped with a bilinear binary

operation [-, -], called a Lie bracket, satisfying two properties: for any x,y, z € V,

antisymmetry [z, y]| = -y, z],

Jacobi identity [z, [y, z]] + [y, [z, x2]] + [z, [z,y]] = 0.

A Poisson algebra over R is an R-module V' equipped with two bilinear binary oper-
ations: a Lie bracket [-, -] and an associative commutative multiplication such that the
Lie bracket is a derivation of the commutative multiplication: that is, for any z, vy, z € V,

we have

[z,y2] = [z,y]z +y[z, 2].

Fu Liu
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| Multilinear parts of free algebras with one Lie bracket I

Let X = {x1 <Xy <o+ < xn} be an ordered alphabet.
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| Multilinear parts of free algebras with one Lie bracket I

Let X = {x; <29 <--- < x,} be an ordered alphabet.

The free Lie algebra on X over R is the Lie algebra over R that is generated by alll
possible Lie bracketings of elements of X with no relations other than antisymmetries

and Jacobi identities.

Let ﬁie(n) be the multilinear part of this free Lie algebra: i.e., the subspace con-

sisting of all elements containing each x; exactly once.
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| Multilinear parts of free algebras with one Lie bracket I

Let X = {x1 <Xy < e+ < xn} be an ordered alphabet.

The free Lie algebra on X over R is the Lie algebra over R that is generated by alll
possible Lie bracketings of elements of X with no relations other than antisymmetries

and Jacobi identities.

Let Oiﬂie(n) be the multilinear part of this free Lie algebra: i.e., the subspace con-

sisting of all elements containing each x; exactly once.

We define the free Poisson algebra on X similarly, and let &7(n.) be its multilinear

part.

Fu Liu
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| Multilinear parts of free algebras with one Lie bracket I

Let X = {x1 <Xy < e+ < xn} be an ordered alphabet.

The free Lie algebra on X over R is the Lie algebra over R that is generated by alll
possible Lie bracketings of elements of X with no relations other than antisymmetries

and Jacobi identities.

Let Oiﬂie(n) be the multilinear part of this free Lie algebra: i.e., the subspace con-

sisting of all elements containing each x; exactly once.

We define the free Poisson algebra on X similarly, and let &7(n.) be its multilinear

part.
Example: Monomials in Zie(2) : [z1, x2], [x2, 21].

A basis for Zie(2) : {[x1,x2]}.

Fu Liu
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| Multilinear parts of free algebras with one Lie bracket I

Let X = {x; <29 <--- < x,} be an ordered alphabet.

The free Lie algebra on X over R is the Lie algebra over R that is generated by alll
possible Lie bracketings of elements of X with no relations other than antisymmetries

and Jacobi identities.

Let ﬁie(n) be the multilinear part of this free Lie algebra: i.e., the subspace con-

sisting of all elements containing each x; exactly once.

We define the free Poisson algebra on X similarly, and let &7(n) be its multilinear

part.
Example: Monomials in Zie(2) : [z1, x2], [x2, 21].
A basis for Zie(2) : {[x1,x2]}.
Monomials in &2 (2) : [x1, x2], [0, 21], T122, T277.

A basis for Z(2) : {[x1, 2], T122}.
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Dimension formulas and bases for . Zie(n) and #(n)

Example: A basis for Zie(3) : {[z1, [r2, x3]], [x2, [21, x3]]}

(23, [21, 22]] = —[x1, 22, 23] + [22, [21, 23] ] by the Jacobi identity.
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Dimension formulas and bases for . Zie(n) and #(n)

Example: A basis for Zie(3) : {[z1, [r2, x3]], [x2, [21, x3]]}
(23, (1, 22]] = =[x1, [T2, 23]] + [22, [21, £3]] by the Jacobi identity.

A basis for Zie(n) :

{[$0(1)7 [$0(2)7 [$0(3)7 [7 [$a(n—1)7 xn]]”] | g € Sn—l}-
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Dimension formulas and bases for . Zie(n) and #(n)

Example: A basis for Zie(3) : {[x1, [x2, x3]], [22, [71, 23]]}
(23, [x1,22]] = =[x1, [T2, 23]] + [22, [21, £3]] by the Jacobi identity.
A basis for Zie(n) :

{lzo), [To@): [To@): [ [Tomo1), 0]+ ]]]] [ 0 € Sha )

Zie(n) has dimension (n — 1)!.
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Dimension formulas and bases for . Zie(n) and #(n)

Example: A basis for Zie(3) : {[z1, [r2, x3]], [x2, [21, x3]]}
(23, (1, 22]] = =[x1, [T2, 23]] + [22, [21, £3]] by the Jacobi identity.
A basis for Zie(n) :
{lzoq), [To@): [To@): [ [To(n-1), 0]+ ]]]] [ 0 € Sha )
Zie(n) has dimension (n —1)!.

A basis for #(3) :

{[5’717 [5132, 333]]7 [51327 [5131, 333]]75131[332,x3]7 [331, 333]332, [5131, 332]333, 33151325133}-
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Dimension formulas and bases for . Zie(n) and #(n)

Example: A basis for Zie(3) : {[z1, [r2, x3]], [x2, [21, x3]]}
(23, (1, 22]] = =[x1, [T2, 23]] + [22, [21, £3]] by the Jacobi identity.

A basis for Zie(n) :

(o), [202), [0y, [ [To(ue1), 2al 1] ] | 0 € Sna ).
Zie(n) has dimension (n —1)!.
A basis for #(3) :
{lz1, [z, x3]], [22, [21, 23] ], X122, 23], [21, T3] 20, 71, T2 |23, T1 223}

Suppose B(X) is a basis for -Zie(n) on the alphabet X. Then the following is a
basis for #(n) :

{b1by-+-by. | U;=1 X is a partition of X with max(X;) < -+ < max(X}), and b; € B(X;)}
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Dimension formulas and bases for . Zie(n) and #(n)

Example: A basis for Zie(3) : {[x1, [22, 23]], [22, [71, 23]]}.
(23, [x1,22]] = =[x1, [T2, 23]] + [22, [21, £3]] by the Jacobi identity.
A basis for Zie(n) :
{lzo() [%02): [To3), [+ [To(no1), @] 1]1] [ 0 € Spa )
Zie(n) has dimension (n —1)!.
A basis for #(3) :

{[5’717 [5132, 333]]7 [51327 [5131, 333]]75131[332,x3]7 [331, 333]332, [5131, 332]333, 33151325133}-

Suppose B(X) is a basis for -Zie(n) on the alphabet X. Then the following is a
basis for #(n) :

{b1by---by. | U;=1 X is a partition of X with max(X;) < -+ < max(X}), and b; € B(X;)}

Z(n) has dimension n!.
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PART II:

Statement and examples of the theorems

Summary: In this part, we introduce free algebras with two compatible brackets.
After defining the problem and giving a little background, we state our main theorems

together with examples in the cases when n = 3.
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| Free algebras with two compatible Lie brackets I

We consider a free algebra on X with two Lie brackets |[-,-] and (-, ), which are

compatible: that is, any linear combination of them is a Lie bracket.

If we write out this condition explicitly, the compatibility gives one condition, which
we call the mixed Jacobi identity, in addition to the antisymmetry and Jacoby identity for

each of the two brackets. For any x, v, 2,

(S1) [z, y]+[y,2] =0,

(S2) {2, y) +(y,z) = 0,

O [z, [y, z]] + v, [z, 2]] + [2, [z, 9]] = O,

2) (z,{y, 2)) + {y, (z,2)) + (2, (z,y)) = 0,

MI) [z, (y, 2)] + [y, (z, ) ] + [z, (2, 9) ] + (2, [y, 2]) + (y, [2, 2]) + (2, [2,9]) = 0.
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Free algebras with two compatible Lie brackets (cont'd)

Let £ ies(n) be the multilinear part of this free algebra.
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Free algebras with two compatible Lie brackets (cont'd)

Let Zies(n) be the multilinear part of this free algebra.

Similarly, we let 332(71) be the multilinear part of the free algebra with two compat-
ible Lie brackets and one associative commutative multiplication, where both of the Lie

brackets are derivations of the commutative multiplication.
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Free algebras with two compatible Lie brackets (cont'd)

Let Zies(n) be the multilinear part of this free algebra.

Similarly, we let 3”2(71) be the multilinear part of the free algebra with two compat-
ible Lie brackets and one associative commutative multiplication, where both of the Lie

brackets are derivations of the commutative multiplication.
Example: Monomials in Zies(2) : [x1, 2], [x2, 1], (71, T2), (T2, 1).

A basis for Zies(2) = {21, x2], (z1, 72) }.
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Free algebras with two compatible Lie brackets (cont'd)

Let Zies(n) be the multilinear part of this free algebra.

Similarly, we let 332(71) be the multilinear part of the free algebra with two compat-
ible Lie brackets and one associative commutative multiplication, where both of the Lie

brackets are derivations of the commutative multiplication.
Example: Monomials in Zies(2) : [x1, 22], [x2, 1], (71, 2), (X2, x1).
A basis for ZLieq(2) : {1, x2], (z1, 22) }.
Monomials in 5(2) : [x1, x|, [x2, x1], {21, x2), (X2, 1), 122, To1.

A basis for P5(2) : {[x1,x2], (1, 22), x122}.

Fu Liu
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Dimension formulas for . Zies(n) and Hy(n)

Theorem 1.

dim(ZLies(n)) =n"1, 2)
dim(2,(n)) = (n+1)" % (3)

Remark:

Page 10



Combinatorial bases for .Zies(n)

Dimension formulas for . Zies(n) and Hy(n)

Theorem 1.

dim(ZLies(n)) =n" 1, (2)
dim(2,(n)) = (n+1)" % (3)

Remark:

e B. Feigin conjectured that these spaces may be connected with M. Haiman’s work on

diagonal harmonics. As a result, Feigin gave conjectural formulas for the dimensions

of ZLies(n) and Hy(n).

Fu Liu
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Dimension formulas for . Zies(n) and Hy(n)

Theorem 1.

dim(ZLies(n)) =n" 1, (2)
dim(2,(n)) = (n+1)" % (3)

Remark:

e B. Feigin conjectured that these spaces may be connected with M. Haiman’s work on

diagonal harmonics. As a result, Feigin gave conjectural formulas for the dimensions

of ZLies(n) and Hy(n).

e Dotsenko and Khoroshkin independently prove Theorem 1 using the theory of op-
erads. They also obtain character formulas for the representation of the symmetric
groups and S'Ls in Ziey(n) and Po(n).

Fu Liu
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Dimension formulas for . Zies(n) and Hy(n)

Theorem 1.

dim(.ZLies(n)) = n" 1, 2)
dim(2,(n)) = (n+1)" 1. (3)

Remark:

e B. Feigin conjectured that these spaces may be connected with M. Haiman’s work on

diagonal harmonics. As a result, Feigin gave conjectural formulas for the dimensions

of Lies(n) and FPy(n).

e Dotsenko and Khoroshkin independently prove Theorem 1 using the theory of op-
erads. They also obtain character formulas for the representation of the symmetric
groups and S'Ls in Ziey(n) and Po(n).

e |t turns out (2) and (3) are equivalent to each other. Therefore, it is enough to show

one of them. We will focus on (2).

Fu Liu
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| Two-colored rooted trees |

Our chosen alphabet X = {x; < x93 < --- < x,} will form the vertex set of the

combinatorial objects we are going to define.
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| Two-colored rooted trees |

Our chosen alphabet X = {:1:1 < T9g < -+ < :zzn} will form the vertex set of the

combinatorial objects we are going to define.

A tree is a connected acyclic graph. A rooted tree is a tree with one special vertex,

which we call it the root of the tree.

Let R,, be the set of all rooted trees on X.
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| Two-colored rooted trees |

Our chosen alphabet X = {xl < T9 < -+ < xn} will form the vertex set of the

combinatorial objects we are going to define.

A tree is a connected acyclic graph. A rooted tree is a tree with one special vertex,

which we call it the root of the tree.
Let R,, be the set of all rooted trees on X.

It is well known that the cardinality of R, is | X|XI-1 = nn-1,
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| Two-colored rooted trees |

Our chosen alphabet X = {xl < T9 < -+ < xn} will form the vertex set of the

combinatorial objects we are going to define.

A tree is a connected acyclic graph. A rooted tree is a tree with one special vertex,

which we call it the root of the tree.

Let R,, be the set of all rooted trees on X.

It is well known that the cardinality of R, is | X|X1-1 = nn-1,

For any edge {7, 7} in a rooted tree, if i is closer to the root than j, then we call i
the parent of J and j a child of 7. Furthermore, if ¢ is the parent of 7, we call the edge

{i,j} anincreasing edge if 7 < j and a decreasing edge if i > j.
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| Two-colored rooted trees |

Our chosen alphabet X = {xl < T9 < -+ < xn} will form the vertex set of the

combinatorial objects we are going to define.

A tree is a connected acyclic graph. A rooted tree is a tree with one special vertex,

which we call it the root of the tree.

Let R,, be the set of all rooted trees on X.

It is well known that the cardinality of R, is | X|X1-1 = nn-1,

For any edge {7, 7} in a rooted tree, if i is closer to the root than j, then we call i
the parent of J and j a child of 7. Furthermore, if ¢ is the parent of 7, we call the edge

{i,j} anincreasing edge if 7 < j and a decreasing edge if i > j.

We define a color map c : Given any rooted tree 7' € R,,, we color all of the increas-

ing edges by red and all of the decreasing edges by blue.

Let G, := c(R,) be set of all two-colored rooted trees on X.

Fu Liu
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| Examples of two-colored rooted trees I

1 T XT3 T3

T3 X9 X3 Ty ) X1
T i) Ts i) T3
T3 1 /\ I3 L1
L2 I3 I3 I T X9
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‘ A basis for Zies(n) constructed from G, |

For any two colored rooted tree (7 in En with root 7, we define a monomial bg € M,

recursively as follows:
)G =7 letbg :=1.
(i) If G # 1, let ¢; < --- < ¢}, be the vertices connected to 7, and (51, . .., G} be the

corresponding subtrees.

— Ifr < ¢, i.e., there are red edges adjacent to 7, choose the smallest ¢; such that

{r,c;} is ared edge. Let bg := [baq,, ba, |-

— If r > ¢y, i.e., all the edges adjacent to " are blue, let b := (bg, , baa, )-

Fu Liu
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‘ A basis for Zies(n) constructed from G, |

For any two colored rooted tree (7 in En with root 7, we define a monomial bg € M,

recursively as follows:
)G =r,letbg :=r.

(i) f G # 7, let c; < --- < ¢ be the vertices connected to r, and G1, ..., G;. be the

corresponding subtrees.

— If r < ¢, I.e., there are red edges adjacent to 7, choose the smallest ¢; such that

{r,c;} is ared edge. Let bg := [baq,, ba, |-

— If 7 > ¢y, i.e., all the edges adjacent to 7 are blue, let bg = (bg, , bac, )-

We define 13,,(X) to be the set of all monomials obtained from G, :

Bn(X) = {bG | G € an}
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‘ A basis for Zies(n) constructed from G, |

For any two colored rooted tree (5 in an with root 7, we define a monomial b € M,,

recursively as follows:
NG =7 letbg :==1.

(i) If G # 1, let ¢; < --- < ¢}, be the vertices connected to 7, and (51, ..., G} be the

corresponding subtrees.

— Ifr < ¢, i.e., there are red edges adjacent to 7, choose the smallest ¢; such that
{r,c;} is ared edge. Let bg := [baq., ba, |-

— If r > ¢y, i.e., all the edges adjacent to r are blue, let bg := (bg, , boa, )-

We define 13,,(X) to be the set of all monomials obtained from G, :

Bn(X) = {bG | G € an}

Theorem 5. B, (X)) is a basis for Zies(n).
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Fu Liu

Examples of the construction of  5,,(X)
1 T I3 T3
T3 T I3 I T2 Iy

(21, [T9, 23]] [[71, 23], 22] ({71, T2), T3)

L1 L2 To

AN

) XT3 I3 1

X3 X1

(21, (2, 23)] (71, 23], 02)  [(71,72), 23]

The 9 monomials above form a basis for Zies(3).

(22, (71, 73)]

(22, (1, 73))

i) I3
X3 X1
X1 )

([z1,72], 73)
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| |dea of the proof I

i. We first show that BB,,( X ) spans -Zies(n) by giving an explicit algorithm to express

each monomial in Zie5(n) as linear combinations of elements in B, (X).
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| |dea of the proof I

i. We first show that B,,(X') spans -Zies(n) by giving an explicit algorithm to express

each monomial in -Z’ies(n) as linear combinations of elements in B, (X ).

ii. We give two methods to prove the independence of Bn(X). The first method is

purely algebraic.
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| |dea of the proof I

i. We first show that B,,(X') spans -Zies(n) by giving an explicit algorithm to express

each monomial in -Z’ies(n) as linear combinations of elements in B, (X ).

ii. We give two methods to prove the independence of B,,(X ). The first method is

purely algebraic.

iii. The second method is using the idea of pairing: We define a complementary space
&ila(n) to ZLies(n) by using the combinatorial objects oriented two-colored graphs,

give a pairing between -Zies(n) and &’ils(n), and show that the pairing is perfect.
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‘ More bases for Zies(n) constructed from G, |

When we constructed 5, ( X ), we used an ordering to decide which edge connected

to the root should be removed first. It turns out the ordering is not necessary.
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‘ More bases for Zies(n) constructed from G, |

When we constructed 3, ( X ), we used an ordering to decide which edge connected

to the root should be removed first. It turns out the ordering is not necessary.

Definition 6. For any two-colored rooted tree (G in ?n with root r, we run an algorithm

rand on (G as follows:
() If G = r, output rand(G) :=r.

(i) f G # 7, let c; < --- < ¢ be the vertices connected to r, and G1, . .., G;. be the

corresponding subtrees. Randomly choose 7 from {1,2,...,k}.
— Output rand(G) = [rand(G \ G;),rand(G};)], if ¢; is red.
— Output rand(G) := (rand(G;),rand(G \ G;)), if ¢; is blue.

Fu Liu
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‘ More bases for Zies(n) constructed from G, |

When we constructed Bn(X ), we used an ordering to decide which edge connected

to the root should be removed first. It turns out the ordering is not necessary.

Definition 6. For any two-colored rooted tree (G in an with root 7, we run an algorithm

rand on G as follows:
(i) If G = r, output rand(G) :=r.

(i) If G £ 1, let ¢; < --- < ¢}, be the vertices connected to 7, and (51, . .., G} be the

corresponding subtrees. Randomly choose i from {1,2, ..., k}.
— output rand(G) := [rand(G \ G;), rand(G};)], if ¢; is red.
— Output rand(G) := (rand(G;), rand(G \ G;)), if ¢; is blue.

Theorem 7. rand, (X) = {rand(G) |G € G, } is a basis for Lies(n).

Fu Liu
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1 . 73 ”
- A B A
- Ty 3 1 To @1
(21, [22, 23] ] [[z1, 23] 22]  ({z1,22),23) (w2, (21, 23))
[[z1,22], 23] (21, (22, 23))
1 o . s 3
” " /\ ” 7
To T3 T3 T1 T To
(21, (za, x3)] ([@1, @3] m2)  [{wn,@a), 23] [wo, (w1, 23)] ([, 22], 23)

(71,2, 73])

For each two-colored rooted tree above, we pick one monomial under it. Then the 9

picked monomials together form a basis for £ ies(3).
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PART III:

Further discussion

Summary: We give further combinatorial results on rooted trees, and then ask sev-

eral natural questions.
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‘ Zies(n,i): submodules of Zies(n) I
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‘ Zies(n,i): submodules of Zies(n) I

Definition 8. Foranyi=0,1,...,n - 1, we define Zie5(n, 1) to be the submodule

of Lies(n) that is generated by all the monomials in -Zies(n) with exactly @ [-,-|'s
(@andn—1-7i(-,-)s).
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‘ Zies(n,i): submodules of Zies(n) I

Definition 8. Foranyi =0,1,...,n — 1, we define Zie5(n, i) to be the submodule

of Zies(n) that is generated by all the monomials in -Zies(n) with exactly @ [-,-|'s
(@andn—1-1(:,-)s).

Proposition 9. The set
B,.i(X) = {bc | G € G, has i redfincreasing edges }

or
Rand, ;(X) := {rand(G) | G € G,, has i redlincreasing edges }

is a basis for Zies(n,1).

dim(Ziey(n, 1)) = #{rooted trees on n vertices with 7 increasing edges } .
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‘ Zies(n,i): submodules of Zies(n) I

Definition 8. Foranyi =0,1,...,n - 1, we define Zie5(n, 1) to be the submodule

of Zies(n) that is generated by all the monomials in -Zies(n) with exactly @ [+, -|'s
(@andn—1-1(:,-)s).

Proposition 9. The set
B,.i(X) = {bc | G € G, has i redfincreasing edges }

or
Rand,, ;(X) = {rand(G) | G € G, has i red/increasing edges }

is a basis for Zies(n,1).

dim(ZLies(n,i)) = #{rooted trees on n vertices with i increasing edges } .

Corollary 10.

dim(Zie(n)) = #{increasing rooted trees on n vertices} = (n — 1)!.

Fu Liu
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‘ Number of rooted trees with ¢ increasing edges I

Let

a(n,) := the number of rooted trees on n vertices with 7 increasing edges.
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‘ Number of rooted trees with ¢ increasing edges I

Let
a(n,) := the number of rooted trees on n vertices with 7 increasing edges.

By the exponential generating function for the S Ly-characters for f@'eg(n) with S Lo

action obtained by Dotsenko and Khoroshkin, we get the generating function for a(n, z)

Corollary 11.
n—1 n—1
a(n,i)x’ = [J(kx + (n-k)). (12)
=0 k=1

Hence, the number of rooted trees on n vertices with 7 increasing edges is given by

a(n,i) = > [T ] "n-FK). (13)

K:ai-subset of [n — 1] kel Ke[n-1]NK

Fu Liu
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‘ Number of rooted trees with ¢ increasing edges I

Let
a(n,7) := the number of rooted trees on n vertices with 7 increasing edges.

By the exponential generating function for the S Lo-characters for f@'eg(n) with S Lo

action obtained by Dotsenko and Khoroshkin, we get the generating function for a(n, 7).

Corollary 11.
n—1 n—1
a(n,i)x’ = [[(kx + (n-k)). (12)
i=0 k=1

Hence, the number of rooted trees on n vertices with 7 increasing edges is given by

a(n,i) = > [T ] n-FK). (13)

K:ai-subset of [n — 1] kel Ke[n-1]\K

Question: Can one find a combinatorial proof for formulas (12) and (13)?
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| Further generalization? I

We can consider Zies(n) to be a generalization of -Z’ie(n). Hence, another ques-

tion which might be interesting is:
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We can consider Zies(n) to be a generalization of -Z’ie(n). Hence, another ques-

tion which might be interesting is:
Question:

Can we generalize .Zie(n) further?
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| Further generalization? I

We can consider Zies(n) to be a generalization of -Z’ie(n). Hence, another ques-

tion which might be interesting is:

Question:
Can we generalize .Zie(n) further?

Is it possible to define -Ziex(n) for any k > 1 so that it has nice rank formulas like
those for Zie(n) and ZLies(n)?
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| Further generalization? I

We can consider Zies(n) to be a generalization of -Z’ie(n). Hence, another ques-

tion which might be interesting is:

Question:
Can we generalize .Zie(n) further?

Is it possible to define -Ziex(n) for any k > 1 so that it has nice rank formulas like
those for Zie(n) and ZLies(n)?

What are the right combinatorial objects for -Zie;(n), if it can be defined?
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