

Pure-cycle Hurwitz factorizations and multi-noded rooted trees

Fu Liu

University of California, Davis

CMS winter meeting, Vancouver, British Columbia

December 4, 2010

This is joint work with Rosena R.X. Du.

PART I:

Definitions and Backgrounds

Hurwitz's problem

Definition 1. Given integers d and r , and r partitions $\lambda^1, \dots, \lambda^r \vdash d$, a *Hurwitz factorization* of type $(d, r, (\lambda^1, \dots, \lambda^r))$ is an r -tuple $(\sigma_1, \dots, \sigma_r)$ satisfying the following conditions:

- (i) $\sigma_i \in \mathfrak{S}_d$ has cycle type (or is in the conjugacy class) λ^i , for every i ;
- (ii) $\sigma_1 \cdots \sigma_r = 1$;
- (iii) $M := \langle \sigma_1, \dots, \sigma_r \rangle$ is a transitive subgroup of \mathfrak{S}_d .

Hurwitz's problem

Definition 1. Given integers d and r , and r partitions $\lambda^1, \dots, \lambda^r \vdash d$, a *Hurwitz factorization* of type $(d, r, (\lambda^1, \dots, \lambda^r))$ is an r -tuple $(\sigma_1, \dots, \sigma_r)$ satisfying the following conditions:

- (i) $\sigma_i \in \mathfrak{S}_d$ has cycle type (or is in the conjugacy class) λ^i , for every i ;
- (ii) $\sigma_1 \cdots \sigma_r = 1$;
- (iii) $M := \langle \sigma_1, \dots, \sigma_r \rangle$ is a transitive subgroup of \mathfrak{S}_d .

Definition 2. The *Hurwitz number* $h(d, r, (\lambda^1, \dots, \lambda^r))$ is the number of Hurwitz factorizations of type $(d, r, (\lambda^1, \dots, \lambda^r))$ divided by $d!$.

Hurwitz's problem

Definition 1. Given integers d and r , and r partitions $\lambda^1, \dots, \lambda^r \vdash d$, a *Hurwitz factorization* of type $(d, r, (\lambda^1, \dots, \lambda^r))$ is an r -tuple $(\sigma_1, \dots, \sigma_r)$ satisfying the following conditions:

- (i) $\sigma_i \in \mathfrak{S}_d$ has cycle type (or is in the conjugacy class) λ^i , for every i ;
- (ii) $\sigma_1 \cdots \sigma_r = 1$;
- (iii) $M := \langle \sigma_1, \dots, \sigma_r \rangle$ is a transitive subgroup of \mathfrak{S}_d .

Definition 2. The *Hurwitz number* $h(d, r, (\lambda^1, \dots, \lambda^r))$ is the number of Hurwitz factorizations of type $(d, r, (\lambda^1, \dots, \lambda^r))$ divided by $d!$.

Question: What is the Hurwitz number $h(d, r, (\lambda^1, \dots, \lambda^r))$?

This question originally arises from geometry: Hurwitz number counts the number of degree- d covers of the projective line with r branch points where the monodromy over the i th branch point has cycle type λ^i .

The pure-cycle case

A number of people (Hurwitz, Goulden, Jackson, Vakil ...) have studied Hurwitz numbers. However, they often restricted their attention to the case where all but one or two σ_i 's are transpositions.

The pure-cycle case

A number of people (Hurwitz, Goulden, Jackson, Vakil ...) have studied Hurwitz numbers. However, they often restricted their attention to the case where all but one or two σ_i 's are transpositions.

We consider instead the *pure-cycle* case. This means each λ^i has the form $(e_i, 1, \dots, 1)$, for some $e_i \geq 2$, or equivalently, each σ_i is an e_i cycle. In this case, we use the notation $h(d, r, (e_1, \dots, e_r))$ for the Hurwitz number.

We also focus on the *genus-0* case, which simply means that

$$2d - 2 = \sum_{i=1}^r (e_i - 1).$$

The pure-cycle case

A number of people (Hurwitz, Goulden, Jackson, Vakil ...) have studied Hurwitz numbers. However, they often restricted their attention to the case where all but one or two σ_i 's are transpositions.

We consider instead the *pure-cycle* case. This means each λ^i has the form $(e_i, 1, \dots, 1)$, for some $e_i \geq 2$, or equivalently, each σ_i is an e_i cycle. In this case, we use the notation $h(d, r, (e_1, \dots, e_r))$ for the Hurwitz number.

We also focus on the *genus-0* case, which simply means that

$$2d - 2 = \sum_{i=1}^r (e_i - 1).$$

Example 3. Let $d = 5, r = 4, (e_1, e_2, e_3, e_4) = (2, 2, 3, 5)$. One can check that

$$((2\ 3), (4\ 5), (1\ 3\ 5), (5\ 4\ 3\ 2\ 1))$$

is a genus-0 pure-cycle Hurwitz factorization.

$$(\text{Genus-0: } 2d - 2 = 8 = \sum_{i=1}^4 (e_i - 1) = 1 + 1 + 2 + 4.)$$

Previous results on the pure-cycle case

Lemma 4 (L-Osserman). *In the genus-0 pure-cycle case, when $r = 3$,*

$$h(d, 3, (e_1, e_2, e_3)) = 1.$$

Previous results on the pure-cycle case

Lemma 4 (L-Osserman). *In the genus-0 pure-cycle case, when $r = 3$,*

$$h(d, 3, (e_1, e_2, e_3)) = 1.$$

Theorem 5 (L-Osserman). *In the genus-0 pure-cycle case, when $r = 4$,*

$$h(d, 4, (e_1, e_2, e_3, e_4)) = \min\{e_i(d + 1 - e_i)\}$$

Hurwitz factorizations with a d -cycle

We study a special case of genus-0 pure-cycle Hurwitz factorizations: when one of the e_i is d . W.L.O.G, we assume $e_r = d$.

Then the “genus-0” condition becomes:

$$2d - 2 = \sum_{i=1}^r (e_i - 1) \Rightarrow \sum_{i=1}^{r-1} (e_i - 1) = d - 1.$$

Since σ_r is a d -cycle, $\langle \sigma_1, \dots, \sigma_r \rangle$ is automatically transitive in \mathfrak{S}_d .

Moreover,

$$\sigma_1 \dots \sigma_r = 1 \Leftrightarrow \sigma_1 \dots \sigma_{r-1} = \sigma_r^{-1}.$$

Factorizations of a d -cycle

Definition 6. Assume $d, r \geq 1, e_1, \dots, e_{r-1} \geq 2$ are integers satisfying $\sum_{i=1}^{r-1} (e_i - 1) = d - 1$. Fix a d -cycle $\tau \in \mathfrak{S}_d$. We say $(\sigma_1, \dots, \sigma_{r-1})$ is a *factorization of τ of type (e_1, \dots, e_{r-1})* if the followings are satisfied:

- i. For each i , σ_i is an e_i -cycle in \mathfrak{S}_d .
- ii. $\sigma_1 \cdots \sigma_{r-1} = \tau$.

Factorizations of a d -cycle

Definition 6. Assume $d, r \geq 1, e_1, \dots, e_{r-1} \geq 2$ are integers satisfying $\sum_{i=1}^{r-1} (e_i - 1) = d - 1$. Fix a d -cycle $\tau \in \mathfrak{S}_d$. We say $(\sigma_1, \dots, \sigma_{r-1})$ is a *factorization of τ of type (e_1, \dots, e_{r-1})* if the followings are satisfied:

- i. For each i , σ_i is an e_i -cycle in \mathfrak{S}_d .
- ii. $\sigma_1 \cdots \sigma_{r-1} = \tau$.

Example 7. We have $(2\ 3)(4\ 5)(1\ 3\ 5) = (1\ 2\ 3\ 4\ 5)$.

Hence, $((2\ 3), (4\ 5), (1\ 3\ 5))$ is a factorization of τ of type $(2, 2, 3)$.

Factorizations of a d -cycle

Definition 6. Assume $d, r \geq 1, e_1, \dots, e_{r-1} \geq 2$ are integers satisfying $\sum_{i=1}^{r-1} (e_i - 1) = d - 1$. Fix a d -cycle $\tau \in \mathfrak{S}_d$. We say $(\sigma_1, \dots, \sigma_{r-1})$ is a *factorization of τ of type (e_1, \dots, e_{r-1})* if the followings are satisfied:

- i. For each i , σ_i is an e_i -cycle in \mathfrak{S}_d .
- ii. $\sigma_1 \cdots \sigma_{r-1} = \tau$.

Example 7. We have $(2\ 3)(4\ 5)(1\ 3\ 5) = (1\ 2\ 3\ 4\ 5)$.

Hence, $((2\ 3), (4\ 5), (1\ 3\ 5))$ is a factorization of τ of type $(2, 2, 3)$.

Definition 8. The *factorization number* $\text{fac}(d, r, (e_1, \dots, e_{r-1}))$ is the number of factorizations of a fixed d -cycle τ of type (e_1, \dots, e_{r-1}) .

Factorizations of a d -cycle

Definition 6. Assume $d, r \geq 1, e_1, \dots, e_{r-1} \geq 2$ are integers satisfying $\sum_{i=1}^{r-1} (e_i - 1) = d - 1$. Fix a d -cycle $\tau \in \mathfrak{S}_d$. We say $(\sigma_1, \dots, \sigma_{r-1})$ is a *factorization of τ of type (e_1, \dots, e_{r-1})* if the followings are satisfied:

- i. For each i , σ_i is an e_i -cycle in \mathfrak{S}_d .
- ii. $\sigma_1 \cdots \sigma_{r-1} = \tau$.

Example 7. We have $(2\ 3)(4\ 5)(1\ 3\ 5) = (1\ 2\ 3\ 4\ 5)$.

Hence, $((2\ 3), (4\ 5), (1\ 3\ 5))$ is a factorization of τ of type $(2, 2, 3)$.

Definition 8. The *factorization number* $\text{fac}(d, r, (e_1, \dots, e_{r-1}))$ is the number of factorizations of a fixed d -cycle τ of type (e_1, \dots, e_{r-1}) .

It is clear that

$$h(d, r; (e_1, \dots, e_{r-1}, e_r = d)) = \frac{1}{d} \text{fac}(d, r, (e_1, \dots, e_{r-1}))$$

The Formula

Goulden and Jackson considered more general factorizations of a d -cycle, where they allow σ_i to be any cycle type, that is, σ_i does not have to be a cycle. They gave a formula for the factorization number in this situation. Specializing their formula to the pure-cycle case gives the following formula.

Theorem 9. Suppose $\sum_{i=1}^{r-1} (e_i - 1) = d - 1$. Then

$$\text{fac}(d, r, (e_1, \dots, e_{r-1})) = d^{r-2}$$

Hence,

$$h(d, r, (e_1, \dots, e_{r-1}, d)) = d^{r-3}$$

The Formula

Goulden and Jackson considered more general factorizations of a d -cycle, where they allow σ_i to be any cycle type, that is, σ_i does not have to be a cycle. They gave a formula for the factorization number in this situation. Specializing their formula to the pure-cycle case gives the following formula.

Theorem 9. Suppose $\sum_{i=1}^{r-1} (e_i - 1) = d - 1$. Then

$$\text{fac}(d, r, (e_1, \dots, e_{r-1})) = d^{r-2}$$

Hence,

$$h(d, r, (e_1, \dots, e_{r-1}, d)) = d^{r-3}$$

Their proof involves calculation of generating functions.

The Formula

Goulden and Jackson considered more general factorizations of a d -cycle, where they allow σ_i to be any cycle type, that is, σ_i does not have to be a cycle. They gave a formula for the factorization number in this situation. Specializing their formula to the pure-cycle case gives the following formula.

Theorem 9. Suppose $\sum_{i=1}^{r-1} (e_i - 1) = d - 1$. Then

$$\text{fac}(d, r, (e_1, \dots, e_{r-1})) = d^{r-2}$$

Hence,

$$h(d, r, (e_1, \dots, e_{r-1}, d)) = d^{r-3}$$

Their proof involves calculation of generating functions.

An equivalent *symmetrized* version of Theorem 9 was proved by Springer and Irving separately: e.g., when $(e_1, e_2, e_3) = (2, 2, 3)$, we only allow factorizations where the first and second cycles have length 2 and the third cycle has length 3. They included all factorizations with one 3-cycle and two 2-cycles.

Question: Can we give a “de-symmetrized” direct bijective proof for Theorem 9?
What are the right combinatorial objects to use?

Question: Can we give a “de-symmetrized” direct bijective proof for Theorem 9?
What are the right combinatorial objects to use?

We construct a class of combinatorial objects that are counted by d^{r-2} , and then describe a bijection between factorizations and these objects.

PART II:

Multi-noded Rooted Trees

Definition of Multi-noded Rooted Trees

Definition 10. Suppose f_0, f_1, \dots, f_n are positive integers and $S = \{s_1, \dots, s_n\}$. We say G is a *multi-noded rooted tree* on $S \cup \{0\}$ *of vertex data* (f_0, f_1, \dots, f_n) if we have the followings:

- (i) The vertex set of G is $S \cup \{0\}$.
- (ii) For each vertex s_i , it includes f_i ordered nodes (by convention, $s_0 := 0$).
- (iii) Considering only vertices and edges, G is a rooted tree with root 0, but in addition each edge is connected to a particular node of the parent vertex.

We denote by $\mathcal{MR}_S(f_0, f_1, \dots, f_n)$ the set of multi-noded rooted trees.

Definition of Multi-noded Rooted Trees

Definition 10. Suppose f_0, f_1, \dots, f_n are positive integers and $S = \{s_1, \dots, s_n\}$. We say G is a *multi-noded rooted tree* on $S \cup \{0\}$ *of vertex data* (f_0, f_1, \dots, f_n) if we have the followings:

- (i) The vertex set of G is $S \cup \{0\}$.
- (ii) For each vertex s_i , it includes f_i ordered nodes (by convention, $s_0 := 0$).
- (iii) Considering only vertices and edges, G is a rooted tree with root 0, but in addition each edge is connected to a particular node of the parent vertex.

We denote by $\mathcal{MR}_S(f_0, f_1, \dots, f_n)$ the set of multi-noded rooted trees.

Example 11. A multi-noded rooted tree of vertex data $(1, 1, 2, 1, 2, 2, 3, 3, 1, 4)$:

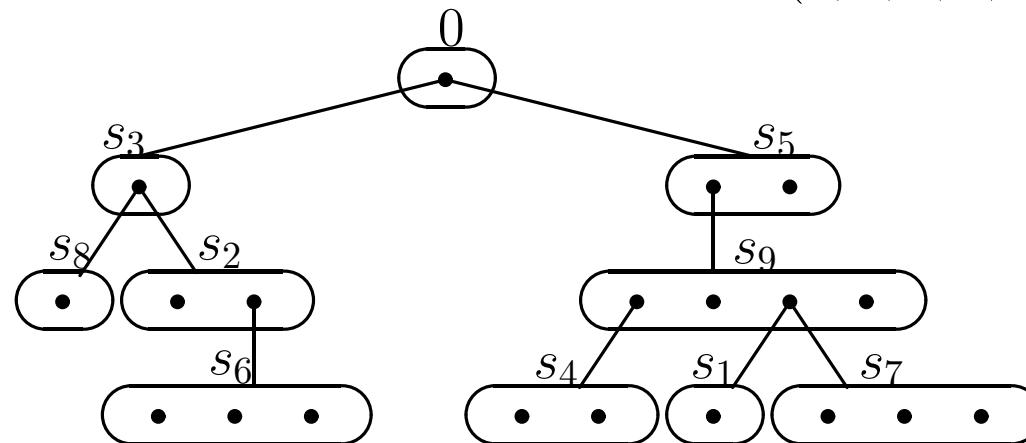
Definition of Multi-noded Rooted Trees

Definition 10. Suppose f_0, f_1, \dots, f_n are positive integers and $S = \{s_1, \dots, s_n\}$. We say G is a *multi-noded rooted tree* on $S \cup \{0\}$ *of vertex data* (f_0, f_1, \dots, f_n) if we have the followings:

- (i) The vertex set of G is $S \cup \{0\}$.
- (ii) For each vertex s_i , it includes f_i ordered nodes (by convention, $s_0 := 0$).
- (iii) Considering only vertices and edges, G is a rooted tree with root 0, but in addition each edge is connected to a particular node of the parent vertex.

We denote by $\mathcal{MR}_S(f_0, f_1, \dots, f_n)$ the set of multi-noded rooted trees.

Example 11. A multi-noded rooted tree of vertex data $(1, 1, 2, 1, 2, 2, 3, 3, 1, 4)$:



Counting Multi-noded Rooted Trees

Theorem 12. $|\mathcal{MR}_S(f_0, f_1, \dots, f_n)| = f_0 (\sum_{i=0}^n f_i)^{n-1}$.

Counting Multi-noded Rooted Trees

Theorem 12. $|\mathcal{MR}_S(f_0, f_1, \dots, f_n)| = f_0 (\sum_{i=0}^n f_i)^{n-1}$.

Corollary 13. Suppose $\sum_{j=1}^{r-1} (e_j - 1) = d - 1$. Then

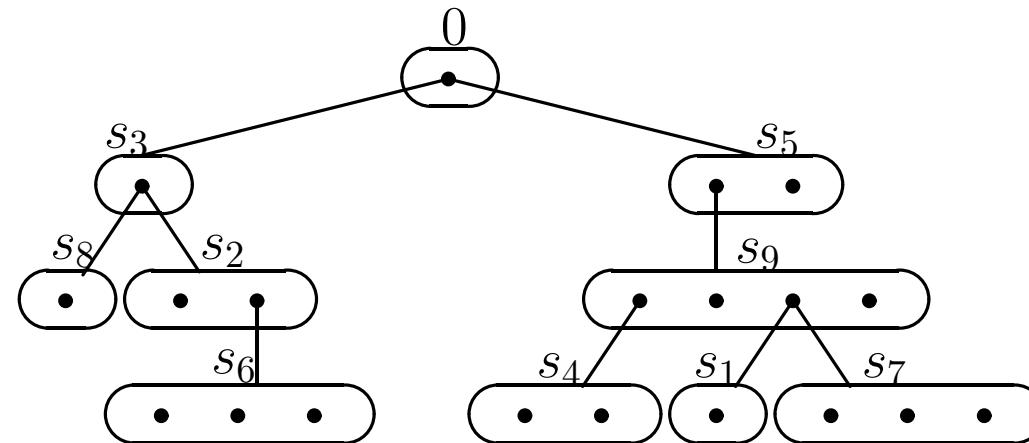
$$|\mathcal{MR}_S(1, e_1 - 1, \dots, e_{r-1} - 1)| = d^{r-2}.$$

Counting Multi-noded Rooted Trees

Theorem 12. $|\mathcal{MR}_S(f_0, f_1, \dots, f_n)| = f_0 (\sum_{i=0}^n f_i)^{n-1}$.

Corollary 13. Suppose $\sum_{j=1}^{r-1} (e_j - 1) = d - 1$. Then

$$|\mathcal{MR}_S(1, e_1 - 1, \dots, e_{r-1} - 1)| = d^{r-2}.$$

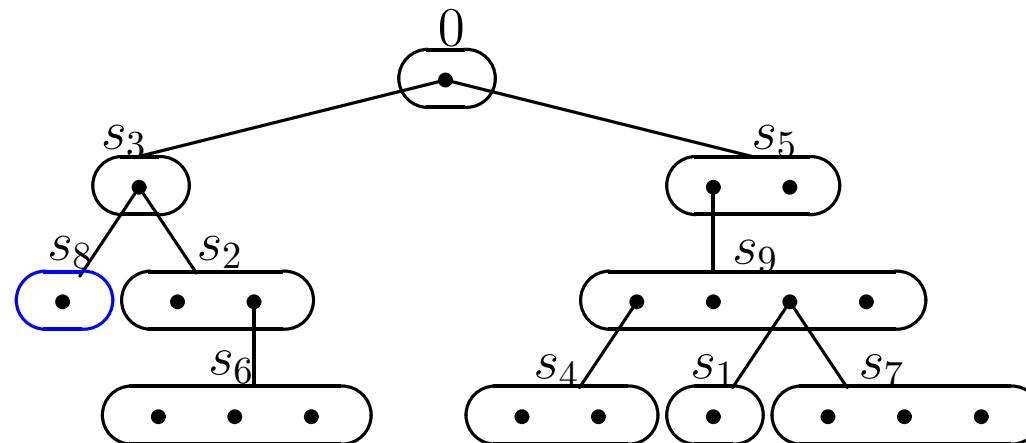


Counting Multi-noded Rooted Trees

Theorem 12. $|\mathcal{MR}_S(f_0, f_1, \dots, f_n)| = f_0 (\sum_{i=0}^n f_i)^{n-1}$.

Corollary 13. Suppose $\sum_{j=1}^{r-1} (e_j - 1) = d - 1$. Then

$$|\mathcal{MR}_S(1, e_1 - 1, \dots, e_{r-1} - 1)| = d^{r-2}.$$



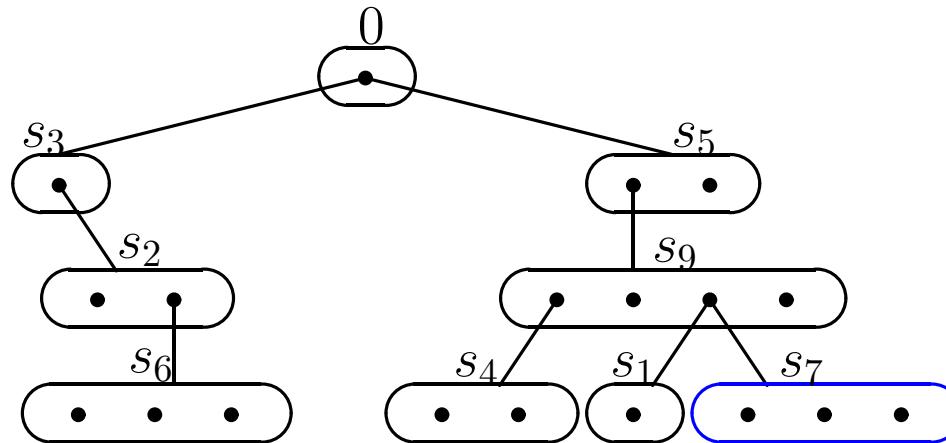
$$\begin{pmatrix} s_3 \\ 1 \end{pmatrix}.$$

Counting Multi-noded Rooted Trees

Theorem 12. $|\mathcal{MR}_S(f_0, f_1, \dots, f_n)| = f_0 (\sum_{i=0}^n f_i)^{n-1}$.

Corollary 13. Suppose $\sum_{j=1}^{r-1} (e_j - 1) = d - 1$. Then

$$|\mathcal{MR}_S(1, e_1 - 1, \dots, e_{r-1} - 1)| = d^{r-2}.$$



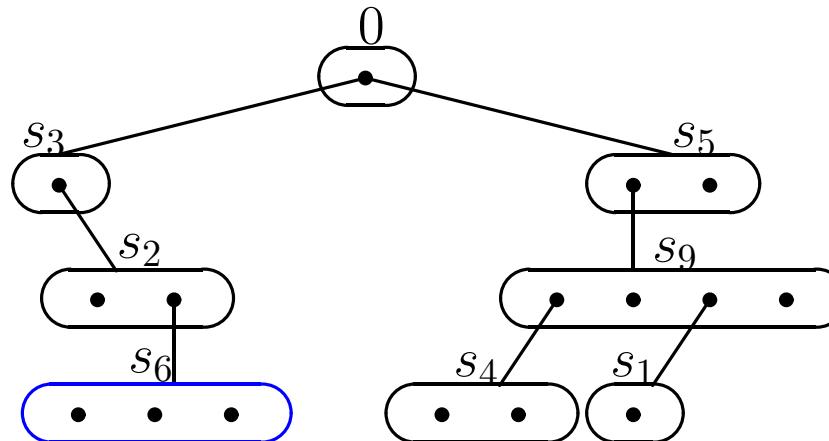
$$\begin{pmatrix} s_3 & s_9 \\ 1 & 3 \end{pmatrix}.$$

Counting Multi-noded Rooted Trees

Theorem 12. $|\mathcal{MR}_S(f_0, f_1, \dots, f_n)| = f_0 (\sum_{i=0}^n f_i)^{n-1}$.

Corollary 13. Suppose $\sum_{j=1}^{r-1} (e_j - 1) = d - 1$. Then

$$|\mathcal{MR}_S(1, e_1 - 1, \dots, e_{r-1} - 1)| = d^{r-2}.$$



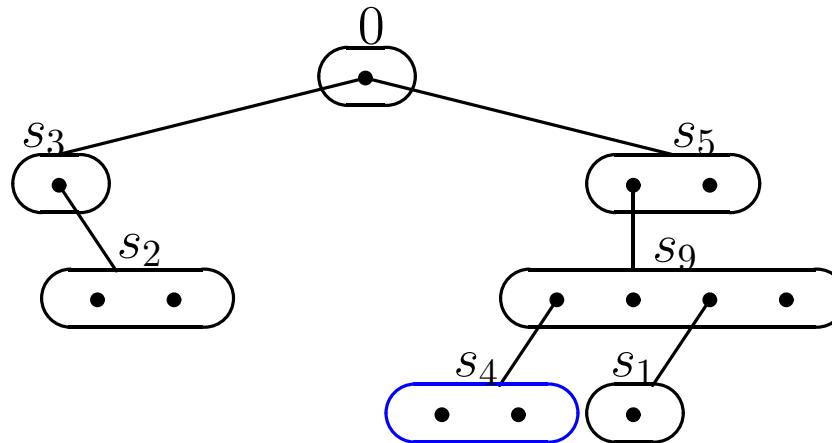
$$\begin{pmatrix} s_3 & s_9 & s_2 \\ 1 & 3 & 2 \end{pmatrix}.$$

Counting Multi-noded Rooted Trees

Theorem 12. $|\mathcal{MR}_S(f_0, f_1, \dots, f_n)| = f_0 (\sum_{i=0}^n f_i)^{n-1}$.

Corollary 13. Suppose $\sum_{j=1}^{r-1} (e_j - 1) = d - 1$. Then

$$|\mathcal{MR}_S(1, e_1 - 1, \dots, e_{r-1} - 1)| = d^{r-2}.$$



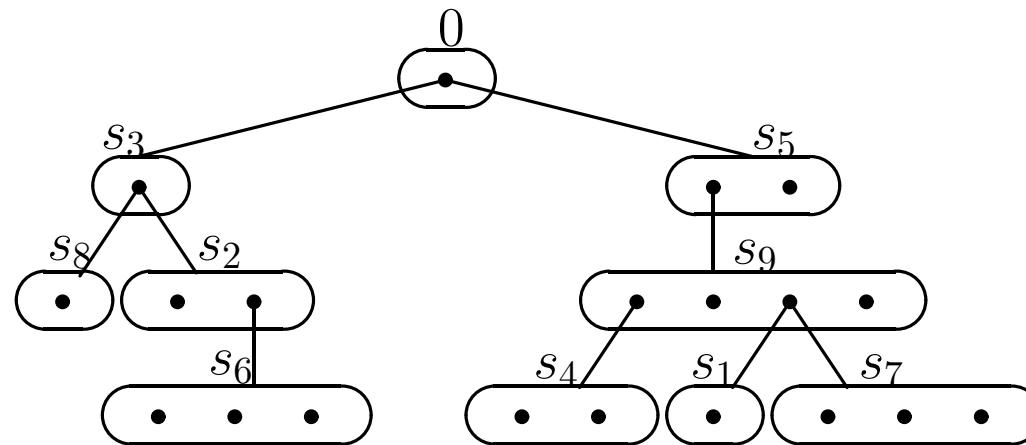
$$\begin{pmatrix} s_3 & s_9 & s_2 & s_9 \\ 1 & 3 & 2 & 1 \end{pmatrix}.$$

Counting Multi-noded Rooted Trees

Theorem 12. $|\mathcal{MR}_S(f_0, f_1, \dots, f_n)| = f_0 (\sum_{i=0}^n f_i)^{n-1}$.

Corollary 13. Suppose $\sum_{j=1}^{r-1} (e_j - 1) = d - 1$. Then

$$|\mathcal{MR}_S(1, e_1 - 1, \dots, e_{r-1} - 1)| = d^{r-2}.$$



$$\begin{pmatrix} s_3 & s_9 & s_2 & s_9 & s_3 & 0 & s_9 & s_5 & 0 \\ 1 & 3 & 2 & 1 & 1 & 1 & 3 & 1 & 1 \end{pmatrix}.$$

PART III:

**Bijection between Factorizations and
Multi-noded Rooted Trees**

Factorization Graphs

Factorization Graphs

A factorization of $\tau = (1\ 2\ \cdots\ 20)$ of type $(2, 3, 2, 3, 3, 4, 4, 2, 5)$:

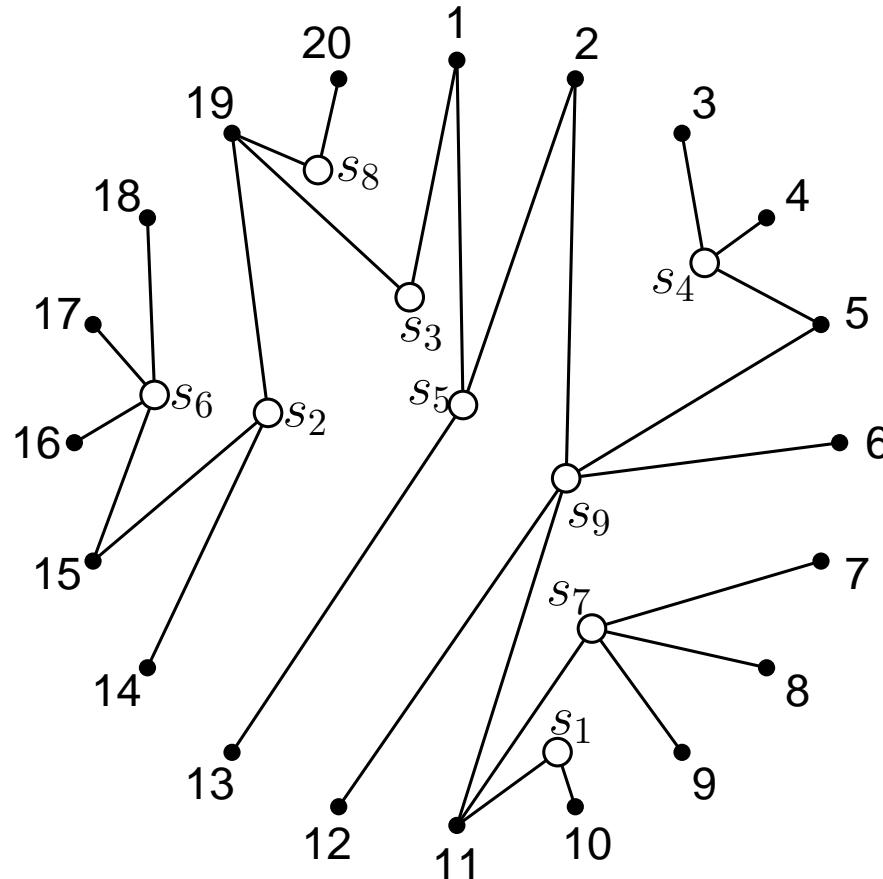
$$(10\ 11)(14\ 15\ 19)(1\ 19)(3\ 4\ 5)(1\ 2\ 13)(15\ 16\ 17\ 18)(7\ 8\ 9\ 11)(19\ 20)(2\ 5\ 6\ 11\ 12)$$

Factorization Graphs

A factorization of $\tau = (1\ 2\ \cdots\ 20)$ of type $(2, 3, 2, 3, 3, 4, 4, 2, 5)$:

$$(10\ 11)(14\ 15\ 19)(1\ 19)(3\ 4\ 5)(1\ 2\ 13)(15\ 16\ 17\ 18)(7\ 8\ 9\ 11)(19\ 20)(2\ 5\ 6\ 11\ 12)$$

The **factorization graph** associated to this factorization is:

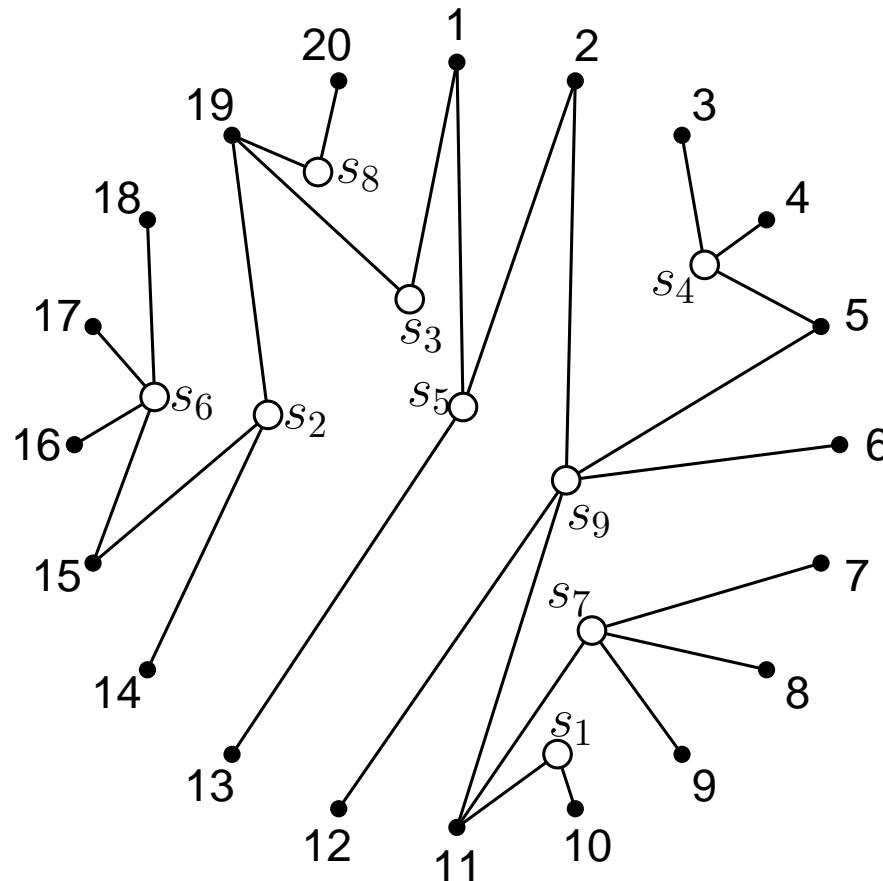


Factorization Graphs

A factorization of $\tau = (1\ 2\ \cdots\ 20)$ of type $(2, 3, 2, 3, 3, 4, 4, 2, 5)$:

$$(10\ 11)(14\ 15\ 19)(1\ 19)(3\ 4\ 5)(1\ 2\ 13)(15\ 16\ 17\ 18)(7\ 8\ 9\ 11)(19\ 20)(2\ 5\ 6\ 11\ 12)$$

The **factorization graph** associated to this factorization is:



Facts:

1. G is a bipartite graph on $S \cup [d]$.
2. Any vertex s_i has degree e_i .

Characterization of factorization graphs

Proposition 14. Suppose $\sum_{j=1}^{r-1} (e_j - 1) = d - 1$, and G is a bipartite graph on $S \cup [d]$ such that vertex s_i has degree e_i .

Then G is a factorization graph associated to a factorization of τ of type (e_1, \dots, e_{r-1}) if and only if G satisfies the following conditions:

i. G is a tree.

ii. For each $[d]$ -vertex ν of G , suppose $\{s_{j_1} < s_{j_2} < \dots < s_{j_t}\}$ are the vertices adjacent to ν in G . We get t subtrees after removing ν and all its incident edges.

Then

(a) The $[d]$ -vertices of the t subtrees partition $[d] \setminus \{\nu\}$ into contiguous pieces.

(b) If we order the pieces in counterclockwise order on τ starting from ν , then the m -th piece is exactly the subtree that contains vertex s_{j_m} for any $1 \leq m \leq t$.

Factorization Graphs to Labeled Multi-noded Rooted Trees

A factorization of $\tau = (1\ 2\ \cdots\ 20)$:

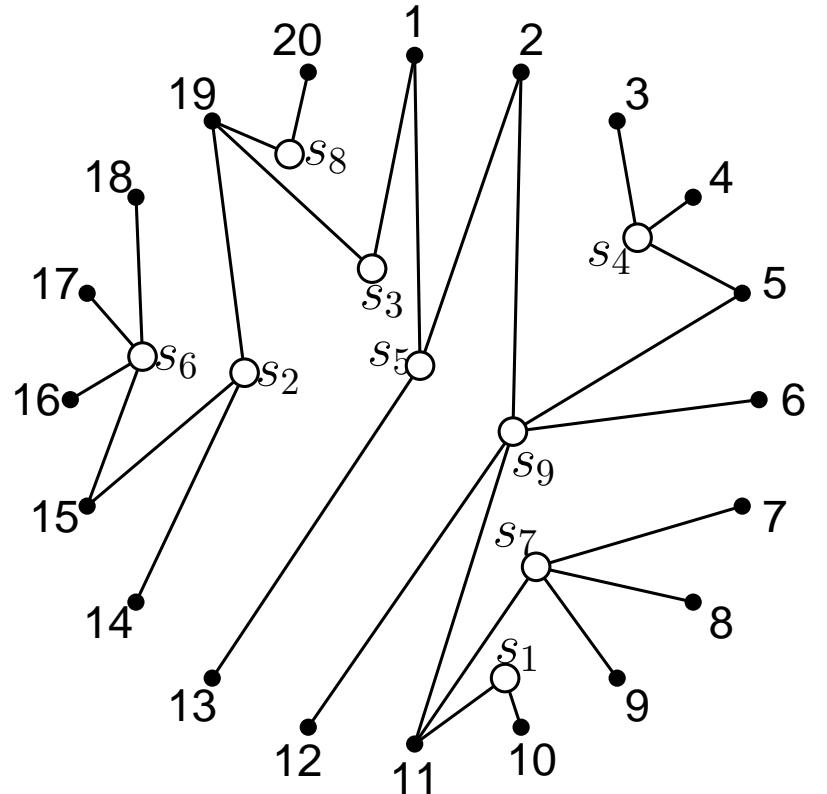
$$(10\ 11)(14\ 15\ 19)(1\ 19)(3\ 4\ 5)(1\ 2\ 13)(15\ 16\ 17\ 18)(7\ 8\ 9\ 11)(19\ 20)(2\ 5\ 6\ 11\ 12)$$

Factorization Graphs to Labeled Multi-noded Rooted Trees

A factorization of $\tau = (1\ 2\ \cdots\ 20)$:

$$(10\ 11)(14\ 15\ 19)(1\ 19)(3\ 4\ 5)(1\ 2\ 13)(15\ 16\ 17\ 18)(7\ 8\ 9\ 11)(19\ 20)(2\ 5\ 6\ 11\ 12)$$

The [factorization graph](#) associated to a factorization of type $(2, 3, 2, 3, 3, 4, 4, 2, 5)$

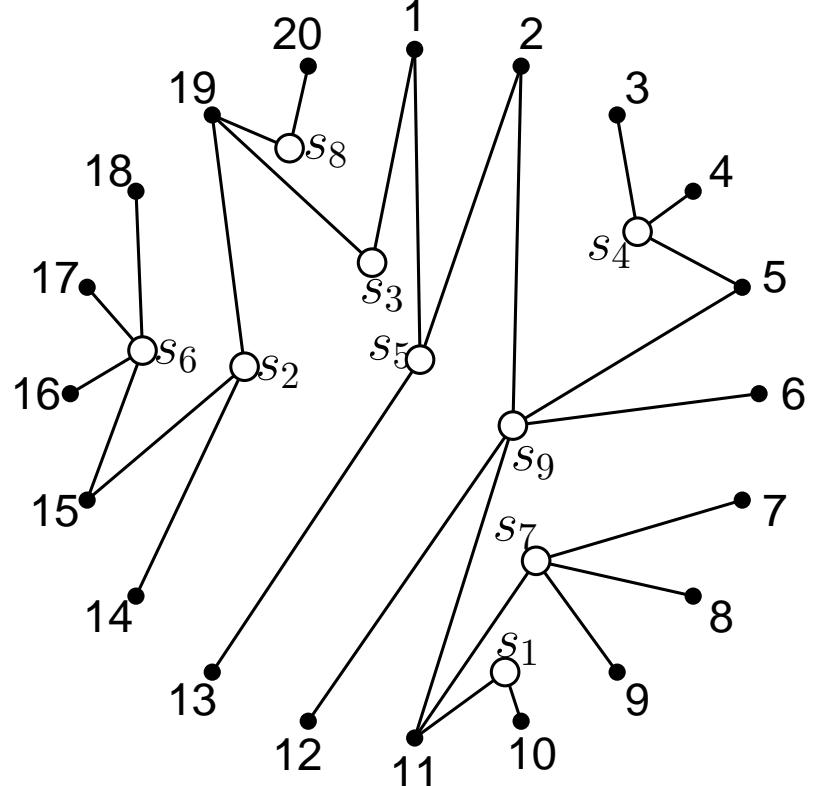


Factorization Graphs to Labeled Multi-noded Rooted Trees

A factorization of $\tau = (1\ 2\ \cdots\ 20)$:

$$(10\ 11)(14\ 15\ 19)(1\ 19)(3\ 4\ 5)(1\ 2\ 13)(15\ 16\ 17\ 18)(7\ 8\ 9\ 11)(19\ 20)(2\ 5\ 6\ 11\ 12)$$

The **factorization graph** associated to a factorization of type $(2, 3, 2, 3, 3, 4, 4, 2, 5)$



A **labelled multi-noded rooted tree**
of vertex data $(1, 1, 2, 1, 2, 2, 3, 3, 1, 4)$

