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PART I:

Definitions and Backgrounds
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Hurwitz’s problem

Definition 1. Given integers d and r, and r partitions λ1, . . . , λr ⊢ d, a Hurwitz factor-

ization of type (d, r, (λ1, . . . , λr)) is an r-tuple (σ1, . . . , σr) satisfying the following

conditions:

(i) σi ∈ Sd has cycle type (or is in the conjugacy class) λi, for every i;

(ii) σ1 · · ·σr = 1;

(iii) M := 〈σ1, . . . , σr〉 is a transitive subgroup of Sd.
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ization of type (d, r, (λ1, . . . , λr)) is an r-tuple (σ1, . . . , σr) satisfying the following

conditions:

(i) σi ∈ Sd has cycle type (or is in the conjugacy class) λi, for every i;

(ii) σ1 · · ·σr = 1;

(iii) M := 〈σ1, . . . , σr〉 is a transitive subgroup of Sd.

Definition 2. The Hurwitz number h(d, r, (λ1, . . . , λr)) is the number of Hurwitz fac-

torizations of type (d, r, (λ1, . . . , λr)) divided by d!.
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Hurwitz’s problem

Definition 1. Given integers d and r, and r partitions λ1, . . . , λr ⊢ d, a Hurwitz factor-

ization of type (d, r, (λ1, . . . , λr)) is an r-tuple (σ1, . . . , σr) satisfying the following

conditions:

(i) σi ∈ Sd has cycle type (or is in the conjugacy class) λi, for every i;

(ii) σ1 · · ·σr = 1;

(iii) M := 〈σ1, . . . , σr〉 is a transitive subgroup of Sd.

Definition 2. The Hurwitz number h(d, r, (λ1, . . . , λr)) is the number of Hurwitz fac-

torizations of type (d, r, (λ1, . . . , λr)) divided by d!.

Question: What is the Hurwitz number h(d, r, (λ1, . . . , λr))?

This question originally arises from geometry: Hurwitz number counts the number of

degree-d covers of the projective line with r branch points where the monodromy over

the ith branch point has cycle type λi.
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The pure-cycle case

A number of people (Hurwitz, Goulden, Jackson, Vakil ...) have studied Hurwitz

numbers. However, they often restricted their attention to the case where all but one or

two σi’s are transpositions.
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The pure-cycle case

A number of people (Hurwitz, Goulden, Jackson, Vakil ...) have studied Hurwitz

numbers. However, they often restricted their attention to the case where all but one or

two σi’s are transpositions.

We consider instead the pure-cycle case. This means each λi has the form (ei, 1,

. . . , 1), for some ei ≥ 2, or equivalently, each σi is an ei cycle. In this case, we use

the notation h(d, r, (e1, . . . , er)) for the Hurwitz number.

We also focus on the genus-0 case, which simply means that

2d− 2 =
r

∑

i=1

(ei − 1).
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The pure-cycle case

A number of people (Hurwitz, Goulden, Jackson, Vakil ...) have studied Hurwitz

numbers. However, they often restricted their attention to the case where all but one or

two σi’s are transpositions.

We consider instead the pure-cycle case. This means each λi has the form (ei, 1,

. . . , 1), for some ei ≥ 2, or equivalently, each σi is an ei cycle. In this case, we use

the notation h(d, r, (e1, . . . , er)) for the Hurwitz number.

We also focus on the genus-0 case, which simply means that

2d− 2 =
r

∑

i=1

(ei − 1).

Example 3. Let d = 5, r = 4, (e1, e2, e3, e4) = (2, 2, 3, 5). One can check that

((2 3), (4 5), (1 3 5), (5 4 3 2 1))

is a genus-0 pure-cycle Hurwitz factorization.

(Genus-0: 2d− 2 = 8 =
∑

4

i=1
(ei − 1) = 1 + 1 + 2 + 4.)
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Previous results on the pure-cycle case

Lemma 4 (L-Osserman). In the genus-0 pure-cycle case, when r = 3,

h(d, 3, (e1, e2, e3)) = 1.
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Previous results on the pure-cycle case

Lemma 4 (L-Osserman). In the genus-0 pure-cycle case, when r = 3,

h(d, 3, (e1, e2, e3)) = 1.

Theorem 5 (L-Osserman). In the genus-0 pure-cycle case, when r = 4,

h(d, 4, (e1, e2, e3, e4)) = min{ei(d+ 1− ei)}
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Hurwitz factorizations with a d-cycle

We study a special case of genus-0 pure-cycle Hurwitz factorizations: when one of

the ei is d. W.L.O.G, we assume er = d.

Then the “genus-0” condition becomes:

2d− 2 =

r
∑

i=1

(ei − 1) ⇒

r−1
∑

i=1

(ei − 1) = d− 1.

Since σr is a d-cycle, 〈σ1, . . . , σr〉 is automatically transitive in Sd.

Moreover,

σ1 . . . σr = 1 ⇔ σ1 . . . σr−1 = σ−1

r .
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Factorizations of a d-cycle

Definition 6. Assume d, r ≥ 1, e1, . . . , er−1 ≥ 2 are integers satisfying
∑r−1

i=1
(ei −

1) = d − 1. Fix a d-cycle τ ∈ Sd, We say (σ1, . . . , σr−1) is a factorization of τ of

type (e1, . . . , er−1) if the followings are satisfied:

i. For each i, σi is an ei-cycle in Sd.

ii. σ1 · · ·σr−1 = τ.
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Factorizations of a d-cycle

Definition 6. Assume d, r ≥ 1, e1, . . . , er−1 ≥ 2 are integers satisfying
∑r−1

i=1
(ei −

1) = d − 1. Fix a d-cycle τ ∈ Sd, We say (σ1, . . . , σr−1) is a factorization of τ of

type (e1, . . . , er−1) if the followings are satisfied:

i. For each i, σi is an ei-cycle in Sd.

ii. σ1 · · ·σr−1 = τ.

Example 7. We have (2 3)(4 5)(1 3 5) = (1 2 3 4 5).

Hence, ((2 3), (4 5), (1 3 5)) is a factorization of τ of type (2, 2, 3).
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Factorizations of a d-cycle
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i. For each i, σi is an ei-cycle in Sd.

ii. σ1 · · ·σr−1 = τ.

Example 7. We have (2 3)(4 5)(1 3 5) = (1 2 3 4 5).

Hence, ((2 3), (4 5), (1 3 5)) is a factorization of τ of type (2, 2, 3).

Definition 8. The factorization number fac(d, r, (e1, . . . , er−1)) is the number of fac-

torizations of a fixed d-cycle τ of type (e1, . . . , er−1).
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Factorizations of a d-cycle

Definition 6. Assume d, r ≥ 1, e1, . . . , er−1 ≥ 2 are integers satisfying
∑r−1

i=1
(ei −

1) = d − 1. Fix a d-cycle τ ∈ Sd, We say (σ1, . . . , σr−1) is a factorization of τ of

type (e1, . . . , er−1) if the followings are satisfied:

i. For each i, σi is an ei-cycle in Sd.

ii. σ1 · · ·σr−1 = τ.

Example 7. We have (2 3)(4 5)(1 3 5) = (1 2 3 4 5).

Hence, ((2 3), (4 5), (1 3 5)) is a factorization of τ of type (2, 2, 3).

Definition 8. The factorization number fac(d, r, (e1, . . . , er−1)) is the number of fac-

torizations of a fixed d-cycle τ of type (e1, . . . , er−1).

It is clear that

h(d, r; (e1, . . . , er−1, er = d)) =
1

d
fac(d, r, (e1, . . . , er−1))

7



Pure-cycle Hurwitz factorizations and multi-noded rooted trees Fu Liu

The Formula

Goulden and Jackson considered more general factorizations of a d-cycle, where

they allow σi to be any cycle type, that is, σi does not have to be a cycle. They gave

a formula for the factorization number in this situation. Specializing their formula to the

pure-cycle case gives the following formula.

Theorem 9. Suppose
∑r−1

i=1
(ei − 1) = d− 1. Then

fac(d, r, (e1, . . . , er−1)) = dr−2

Hence,
h(d, r, (e1, . . . , er−1, d)) = dr−3
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The Formula

Goulden and Jackson considered more general factorizations of a d-cycle, where

they allow σi to be any cycle type, that is, σi does not have to be a cycle. They gave

a formula for the factorization number in this situation. Specializing their formula to the

pure-cycle case gives the following formula.

Theorem 9. Suppose
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i=1
(ei − 1) = d− 1. Then

fac(d, r, (e1, . . . , er−1)) = dr−2

Hence,
h(d, r, (e1, . . . , er−1, d)) = dr−3

Their proof involves calculation of generating functions.
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The Formula

Goulden and Jackson considered more general factorizations of a d-cycle, where

they allow σi to be any cycle type, that is, σi does not have to be a cycle. They gave

a formula for the factorization number in this situation. Specializing their formula to the

pure-cycle case gives the following formula.

Theorem 9. Suppose
∑r−1

i=1
(ei − 1) = d− 1. Then

fac(d, r, (e1, . . . , er−1)) = dr−2

Hence,
h(d, r, (e1, . . . , er−1, d)) = dr−3

Their proof involves calculation of generating functions.

An equivalent symmetrized version of Theorem 9 was proved by Springer and Irving

separately: e.g., when (e1, e2, e3) = (2, 2, 3), we only allow factorizations where the

first and second cycles have length 2 and the third cycle has length 3. They included

all factorizations with one 3-cycle and two 2-cycles.
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Question: Can we give a “de-symmetrized” direct bijective proof for Theorem 9?

What are the right combinatorial objects to use?
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Question: Can we give a “de-symmetrized” direct bijective proof for Theorem 9?

What are the right combinatorial objects to use?

We construct a class of combinatorial objects that are counted by dr−2, and then

describe a bijection between factorizations and these objects.
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PART II:

Multi-noded Rooted Trees
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Definition of Multi-noded Rooted Trees

Definition 10. Suppose f0, f1, . . . , fn are positive integers and S = {s1, . . . , sn}.

We say G is a multi-noded rooted tree on S ∪ {0} of vertex data (f0, f1, . . . , fn) if

we have the followings:

(i) The vertex set of G is S ∪ {0}.

(ii) For each vertex si, it includes fi ordered nodes (by convention, s0 := 0).

(iii) Considering only vertices and edges, G is a rooted tree with root 0, but in addition

each edge is connected to a particular node of the parent vertex.

We denote by MRS(f0, f1, . . . , fn) the set of multi-noded rooted trees.
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Definition of Multi-noded Rooted Trees

Definition 10. Suppose f0, f1, . . . , fn are positive integers and S = {s1, . . . , sn}.

We say G is a multi-noded rooted tree on S ∪ {0} of vertex data (f0, f1, . . . , fn) if

we have the followings:

(i) The vertex set of G is S ∪ {0}.

(ii) For each vertex si, it includes fi ordered nodes (by convention, s0 := 0).

(iii) Considering only vertices and edges, G is a rooted tree with root 0, but in addition

each edge is connected to a particular node of the parent vertex.

We denote by MRS(f0, f1, . . . , fn) the set of multi-noded rooted trees.

Example 11. A multi-noded rooted tree of vertex data (1, 1, 2, 1, 2, 2, 3, 3, 1, 4):
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Definition of Multi-noded Rooted Trees

Definition 10. Suppose f0, f1, . . . , fn are positive integers and S = {s1, . . . , sn}.

We say G is a multi-noded rooted tree on S ∪ {0} of vertex data (f0, f1, . . . , fn) if

we have the followings:

(i) The vertex set of G is S ∪ {0}.

(ii) For each vertex si, it includes fi ordered nodes (by convention, s0 := 0).

(iii) Considering only vertices and edges, G is a rooted tree with root 0, but in addition

each edge is connected to a particular node of the parent vertex.

We denote by MRS(f0, f1, . . . , fn) the set of multi-noded rooted trees.

Example 11. A multi-noded rooted tree of vertex data (1, 1, 2, 1, 2, 2, 3, 3, 1, 4):
0

s3

s8 s2

s6

s5

s9

s4 s1 s7
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Counting Multi-noded Rooted Trees

Theorem 12. |MRS(f0, f1, . . . , fn)| = f0 (
∑n

i=0
fi)

n−1
.
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Counting Multi-noded Rooted Trees

Theorem 12. |MRS(f0, f1, . . . , fn)| = f0 (
∑n

i=0
fi)

n−1
.

Corollary 13. Suppose
∑r−1

j=1
(ej − 1) = d− 1. Then

|MRS(1, e1 − 1, . . . , er−1 − 1)| = dr−2.
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Counting Multi-noded Rooted Trees

Theorem 12. |MRS(f0, f1, . . . , fn)| = f0 (
∑n

i=0
fi)

n−1
.

Corollary 13. Suppose
∑r−1

j=1
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|MRS(1, e1 − 1, . . . , er−1 − 1)| = dr−2.

0

s3

s8 s2

s6

s5

s9

s4 s1 s7





s3

1



 .
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Counting Multi-noded Rooted Trees

Theorem 12. |MRS(f0, f1, . . . , fn)| = f0 (
∑n

i=0
fi)

n−1
.

Corollary 13. Suppose
∑r−1

j=1
(ej − 1) = d− 1. Then

|MRS(1, e1 − 1, . . . , er−1 − 1)| = dr−2.

0

s3

s2

s6

s5

s9

s4 s1 s7





s3 s9

1 3



 .
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Counting Multi-noded Rooted Trees

Theorem 12. |MRS(f0, f1, . . . , fn)| = f0 (
∑n

i=0
fi)

n−1
.

Corollary 13. Suppose
∑r−1

j=1
(ej − 1) = d− 1. Then

|MRS(1, e1 − 1, . . . , er−1 − 1)| = dr−2.

0

s3

s2

s6

s5

s9

s4 s1





s3 s9 s2

1 3 2



 .
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Counting Multi-noded Rooted Trees

Theorem 12. |MRS(f0, f1, . . . , fn)| = f0 (
∑n

i=0
fi)

n−1
.

Corollary 13. Suppose
∑r−1

j=1
(ej − 1) = d− 1. Then

|MRS(1, e1 − 1, . . . , er−1 − 1)| = dr−2.

0

s3

s2

s5

s9

s4 s1





s3 s9 s2 s9

1 3 2 1



 .
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Counting Multi-noded Rooted Trees

Theorem 12. |MRS(f0, f1, . . . , fn)| = f0 (
∑n

i=0
fi)

n−1
.

Corollary 13. Suppose
∑r−1

j=1
(ej − 1) = d− 1. Then

|MRS(1, e1 − 1, . . . , er−1 − 1)| = dr−2.

0

s3

s8 s2

s6

s5

s9

s4 s1 s7





s3 s9 s2 s9 s3 0 s9 s5 0

1 3 2 1 1 1 3 1 1



 .
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PART III:

Bijection between Factorizations and

Multi-noded Rooted Trees
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Factorization Graphs
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Factorization Graphs

A factorization of τ = (1 2 · · · 20) of type (2, 3, 2, 3, 3, 4, 4, 2, 5):

(10 11)(14 15 19)(1 19)(3 4 5)(1 2 13)(15 16 17 18)(7 8 9 11)(19 20)(2 5 6 11 12)
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Factorization Graphs

A factorization of τ = (1 2 · · · 20) of type (2, 3, 2, 3, 3, 4, 4, 2, 5):

(10 11)(14 15 19)(1 19)(3 4 5)(1 2 13)(15 16 17 18)(7 8 9 11)(19 20)(2 5 6 11 12)

The factorization graph associated to this factorization is:
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s3
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b 6

b 5

b 4

b
3

b
2b

1
b

20

b
19

b18

b17

b16

b
15

b

14
b

13 b

12
b

11

b

10

b

9

b

8

b
7
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Factorization Graphs

A factorization of τ = (1 2 · · · 20) of type (2, 3, 2, 3, 3, 4, 4, 2, 5):

(10 11)(14 15 19)(1 19)(3 4 5)(1 2 13)(15 16 17 18)(7 8 9 11)(19 20)(2 5 6 11 12)

The factorization graph associated to this factorization is:

s1

s2

s3
s4

s5s6

s7

s8

s9

b 6

b 5

b 4

b
3

b
2b

1
b

20

b
19

b18

b17

b16

b
15

b

14
b

13 b

12
b

11

b

10

b

9

b

8

b
7

Facts:

1. G is a bipartite graph

on S ∪ [d].

2. Any vertex si has

degree ei.
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Characterization of factorization graphs

Proposition 14. Suppose
∑r−1

j=1
(ej − 1) = d − 1, and G is a bipartite graph on

S ∪ [d] such that vertex si has degree ei.

Then G is a factorization graph associated to a factorization of τ of type (e1, . . . ,

er−1) if and only if G satisfies the following conditions:

i. G is a tree.

ii. For each [d]-vertex ν of G, suppose {sj1 < sj2 < · · · < sjt} are the vertices

adjacent to ν in G. We get t subtrees after removing ν and all its incident edges.

Then

(a) The [d]-vertices of the t subtrees partition [d] \ {ν} into contiguous pieces.

(b) If we order the pieces in counterclockwise order on τ starting from ν, then the

m-th piece is exactly the subtree that contains vertex sjm for any 1 ≤ m ≤ t.
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Factorization Graphs to Labeled Multi-noded Rooted Trees

A factorization of τ = (1 2 · · · 20):

(10 11)(14 15 19)(1 19)(3 4 5)(1 2 13)(15 16 17 18)(7 8 9 11)(19 20)(2 5 6 11 12)
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Factorization Graphs to Labeled Multi-noded Rooted Trees

A factorization of τ = (1 2 · · · 20):

(10 11)(14 15 19)(1 19)(3 4 5)(1 2 13)(15 16 17 18)(7 8 9 11)(19 20)(2 5 6 11 12)

The factorization graph associated to a

factorization of type (2, 3, 2, 3, 3, 4, 4, 2, 5)
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Factorization Graphs to Labeled Multi-noded Rooted Trees

A factorization of τ = (1 2 · · · 20):

(10 11)(14 15 19)(1 19)(3 4 5)(1 2 13)(15 16 17 18)(7 8 9 11)(19 20)(2 5 6 11 12)

The factorization graph associated to a

factorization of type (2, 3, 2, 3, 3, 4, 4, 2, 5)
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s4

s5s6
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b 5

b 4
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A labelled multi-noded rooted tree

of vertex data (1, 1, 2, 1, 2, 2, 3, 3, 1, 4)

0
1
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14 15
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16 17 18
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3 4
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