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PART I:

‘ Definitions and Backgrounds |
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| Hurwitz’'s problem I

Definition 1. Given integers d and 7, and 7 partitions \!, ..., A" F d, a Hurwitz factor-
ization of type (d,r, (A,...,\")) is an r-tuple (071, ..., 0,) satisfying the following
conditions:

(i) o; € G, has cycle type (or is in the conjugacy class) )\i, for every 1;
(i) o1 0, = 1

(iiy M := (o1, ...,0,) is a transitive subgroup of &,.
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Definition 2. The Hurwitz number h(d, r, (A, ..., A")) is the number of Hurwitz fac-

torizations of type (d, 7, (A1, ..., A")) divided by d!.
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| Hurwitz’'s problem I

Definition 1. Given integers d and 7, and 7 partitions \!, ..., A" F d, a Hurwitz factor-
ization of type (d,r, (A,...,\")) is an r-tuple (071, ..., 0,) satisfying the following
conditions:

(i) o; € G, has cycle type (or is in the conjugacy class) )\i, for every 1;
(i) o1 0, = 1
(iiy M := (o1, ...,0,) is a transitive subgroup of &,.

Definition 2. The Hurwitz number A(d, r, (A!, ..., \")) is the number of Hurwitz fac-

torizations of type (d, 7, (A1, ..., A")) divided by d!.
Question: What is the Hurwitz number i(d, r, (A', ..., \"))?

This question originally arises from geometry: Hurwitz number counts the number of
degree-d covers of the projective line with r branch points where the monodromy over

the ¢th branch point has cycle type M.

Fu Liu
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| The pure-cycle case I

A number of people (Hurwitz, Goulden, Jackson, Vakil ...) have studied Hurwitz

numbers. However, they often restricted their attention to the case where all but one or

two g;’s are transpositions.
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| The pure-cycle case I

A number of people (Hurwitz, Goulden, Jackson, Vakil ...) have studied Hurwitz

numbers. However, they often restricted their attention to the case where all but one or

two g;’s are transpositions.

We consider instead the pure-cycle case. This means each A\' has the form (ez-, 1,
.., 1), for some e; > 2, or equivalently, each o; is an e; cycle. In this case, we use

the notation h(d, r, (e1, . .., €, )) for the Hurwitz number.

We also focus on the genus-0 case, which simply means that

r

2d —2=>) (e —1).

1=1

Fu Liu
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| The pure-cycle case I

A number of people (Hurwitz, Goulden, Jackson, Vakil ...) have studied Hurwitz

numbers. However, they often restricted their attention to the case where all but one or

two o;’s are transpositions.

We consider instead the pure-cycle case. This means each A\' has the form (ez-, 1,
. 1), for some e; > 2, or equivalently, each o; is an e; cycle. In this case, we use

the notation h(d, r, (e1, ..., e,)) for the Hurwitz number.

We also focus on the genus-0 case, which simply means that

r

2d —2 =) (e —1).

i=1
Example 3. Letd = 5,1 =4, (e1, €2, €3,¢4) = (2,2, 3,5). One can check that

((23),(45),(135),(b4321))

is a genus-0 pure-cycle Hurwitz factorization.
(Genus-0: 2d — 2 =8 = Zle(ei —1)=1+1+2+4)
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| Previous results on the pure-cycle case I

Lemma 4 (L-Osserman). In the genus-0 pure-cycle case, when r = 3,

h(d737 (61762763)) = 1.
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| Previous results on the pure-cycle case I

Lemma 4 (L-Osserman). In the genus-0 pure-cycle case, when r = 3,

h(d, 3, (61, €9, 63)) = 1.
Theorem 5 (L-Osserman). In the genus-0 pure-cycle case, when rr = 4,

h(d,4, (e, e, e3,e4)) = min{e;(d+ 1 —¢;)}
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‘ Hurwitz factorizations with a  d-cycle I

We study a special case of genus-0 pure-cycle Hurwitz factorizations: when one of

the ¢; is d. W.L.O.G, we assume ¢,, = d.

Then the “genus-0” condition becomes:

r r—1
2d—2=>) (e;—1) = (e, —1)=d—1.
i=1 i=1
Since o, is a d-cycle, (01, .. ., 0,) is automatically transitive in &,.

Moreover,

o1...0,=1 & 01...0T_1:07T1.
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‘Factorizations ofa d-cycle I

Definition 6. Assume d,r > 1,€1,...,e,_1 > 2 are integers satisfying Zz;ll(ei —

1) =d— 1. Fixad-cycle T € &4, We say (01, ...,0,_1) is a factorization of 7 of

type (€1, ..., e._1) if the followings are satisfied:
i. For each 7, 0; is an ¢;-cycle in G,.

. o1:---0p0_1 =T.
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‘Factorizations ofa d-cycle I

Definition 6. Assume d,r > 1,eq,...,e,_1 > 2 are integers satisfying Z;:ll(ei —
1) =d—1. Fixad-cycle T € &4, We say (01, ...,0,_1) is a factorization of 7 of
type (€1, ..., e._1) if the followings are satisfied:

i. For each 7, o; is an e;-cycle in G.

. o1---0,_1 = T.
Example 7. We have (23)(45)(135) =(12345).
Hence, ((23),(45),(135)) is a factorization of T of type (2, 2, 3).
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‘Factorizations ofa d-cycle I

Definition 6. Assume d,r > 1,eq,...,e,_1 > 2 are integers satisfying Z;:ll(ei —
1) =d—1. Fixad-cycle T € &4, We say (01, ...,0,_1) is a factorization of 7 of
type (€1, ..., e._1) if the followings are satisfied:

i. For each 7, o; is an e;-cycle in G.
. o1+ 0p_1 = T.
Example 7. We have (23)(45)(135) =(12345).
Hence, ((23),(45),(135)) is a factorization of T of type (2, 2, 3).

Definition 8. The factorization number fac(d, r, (e1, . .., €-_1)) is the number of fac-

torizations of a fixed d-cycle 7 of type (e1,...,¢e._1).
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‘Factorizations ofa d-cycle I

Definition 6. Assume d,r > 1,eq,...,e,_1 > 2 are integers satisfying Z;:ll(ei —
1) =d—1. Fixad-cycle T € &4, We say (01, ...,0,_1) is a factorization of 7 of
type (€1, ..., e._1) if the followings are satisfied:

i. For each 7, o; is an e;-cycle in G.

. o1---0,_1 = T.
Example 7. We have (23)(45)(135) =(12345).
Hence, ((23),(45),(135)) is a factorization of T of type (2, 2, 3).

Definition 8. The factorization number fac(d, r, (e1, . .., €-_1)) is the number of fac-

torizations of a fixed d-cycle 7 of type (e1,...,¢e._1).

It is clear that

1
h(d7 r, (617 ceey Ep1,6p = d)) — g f&C(d, T, (617 Tt 67“_1))

Fu Liu
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| The Formula |

Goulden and Jackson considered more general factorizations of a d-cycle, where

they allow o; to be any cycle type, that is, o; does not have to be a cycle. They gave
a formula for the factorization number in this situation. Specializing their formula to the

pure-cycle case gives the following formula.

Theorem 9. Suppose > (e; — 1) = d — 1. Then
fac(d,r, (e1,...,e,_1)) = d"*

Hence,

h(d, T, (61, cee sy €p1, d)) — dr—s
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they allow o; to be any cycle type, that is, o; does not have to be a cycle. They gave
a formula for the factorization number in this situation. Specializing their formula to the

pure-cycle case gives the following formula.

Theorem 9. Suppose > (e; — 1) = d — 1. Then
fac(d,r, (e1,...,e,_1)) = d"*

Hence,

h(d, T, (61, cee sy €p1, d)) — dr—s

Their proof involves calculation of generating functions.
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| The Formula |

Goulden and Jackson considered more general factorizations of a d-cycle, where

they allow o; to be any cycle type, that is, o; does not have to be a cycle. They gave
a formula for the factorization number in this situation. Specializing their formula to the

pure-cycle case gives the following formula.

Theorem 9. Suppose > (e; — 1) = d — 1. Then
fac(d,r, (e1,...,e,_1)) = d"*

Hence,
h(d, T, (61, cee sy €p1, d)) — dr—s

Their proof involves calculation of generating functions.

An equivalent symmetrized version of Theorem 9 was proved by Springer and Irving
separately: e.g., when (eq, €9, e3) = (2,2, 3), we only allow factorizations where the
first and second cycles have length 2 and the third cycle has length 3. They included

all factorizations with one 3-cycle and two 2-cycles.
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Question: Can we give a “de-symmetrized” direct bijective proof for Theorem 9?

What are the right combinatorial objects to use?
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Question: Can we give a “de-symmetrized” direct bijective proof for Theorem 9?

What are the right combinatorial objects to use?

We construct a class of combinatorial objects that are counted by d" 2, and then

describe a bijection between factorizations and these objects.
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PART II:

‘ Multi-noded Rooted Trees |

10
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| Definition of Multi-noded Rooted Trees |

Definition 10. Suppose fo, f1, ..., [, are positive integers and S = {s1,..., S, }.
We say G is a multi-noded rooted tree on S U {0} of vertex data (fo, f1, ..., fn) if

we have the followings:

(i) The vertex setof G is S U {0}.

(i) For each vertex s;, it includes f; ordered nodes (by convention, sq := 0).
(iii) Considering only vertices and edges, (5 is a rooted tree with root 0, but in addition

each edge is connected to a particular node of the parent vertex.

We denote by M Rg( fo, f1,-- -, fn) the set of multi-noded rooted trees.

Fu Liu
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Fu Liu
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| Counting Multi-noded Rooted Trees I

Theorem 12. |MRs(fo. f1, -+ fa)l = fo OO0y fi)"

12
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| Counting Multi-noded Rooted Trees I

Theorem 12. |[MRs(fo, fi,. . fo)l = fo 20y fi)'
Corollary 13. Suppose Z;;i(ej —1)=d— 1. Then

IMRs(1l,e; —1,...,e,_1 — )| =d" .

12
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| Counting Multi-noded Rooted Trees I
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| Counting Multi-noded Rooted Trees I

Theorem 12. |[MRs(fo, fi,. - fo)l = fo 20y fi)'
Corollary 13. Suppose Z;;i(ej — 1) =d — 1. Then

IMRs(l,eq —1,...,6,_1 — 1)| =d"%
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| Counting Multi-noded Rooted Trees I

Theorem 12. |[MRs(fo, fi,. - fo)l = fo 20y fi)'
Corollary 13. Suppose Z;;i(ej — 1) =d — 1. Then

IMRs(l,eq —1,...,6,_1 — 1)| =d"%
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| Counting Multi-noded Rooted Trees I

Theorem 12. |[MRs(fo, fi,. - fo)l = fo 20y fi)'
Corollary 13. Suppose Z;:(ej — 1) =d — 1. Then

IMRs(l,eq —1,...,6,_1 — 1)| =d"%

S3 Sg S9 S9g S3 0 s9 s; 0

1 3 2 1 1 1 3 11
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PART III:

Bijection between Factorizations and

Multi-noded Rooted Trees

13



Pure-cycle Hurwitz factorizations and multi-noded rooted trees

| Factorization Graphs I

Fu Liu
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| Factorization Graphs I

A factorization of 7 = (1 2 --- 20) of type (2, 3,2,3,3,4,4,2,5):

(1011)(141519)(119)(345)(1213)(1516 1718)(789 11)(1920)(256 11 12)

Fu Liu
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| Factorization Graphs I

A factorization of 7 = (1 2 --- 20) of type (2, 3,2,3,3,4,4,2,5):

(1011)(141519)(119)(345)(1213)(1516 1718)(789 11)(1920)(256 11 12)

The factorization graph associated to this factorization is:
1
20 2

Fu Liu
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| Factorization Graphs I

A factorization of 7 = (1 2 --- 20) of type (2, 3,2,3,3,4,4,2,5):
(1011)(141519)(119)(345)(1213)(15161718)(78911)(1920)(256 11 12)
The factorization graph associated to this factorization is:
20 1 2 Facts:
1. (G is a bipartite graph
on S U [d].

2. Any vertex s; has

degree ¢;.

14
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| Characterization of factorization graphs I

Proposition 14. Suppose Z;;%(ej — 1) = d — 1, and G is a bipartite graph on

S U |d] such that vertex s; has degree ¢;.

Then G is a factorization graph associated to a factorization of 7 of type (e, . . .,

er_l) if and only if & satisfies the following conditions:

i. (7 is atree.

ii. For each |d|-vertex v of G, suppose {s;, < s, < --- < sj,} are the vertices

adjacent to v in G. We get t subtrees after removing v and all its incident edges.

Then

(a) The |d]-vertices of the t subtrees partition [d] \ {~} into contiguous pieces.

(b) If we order the pieces in counterclockwise order on 7 starting from v, then the

m-th piece is exactly the subtree that contains vertex s; forany 1 < m < ¢.

15
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| Factorization Graphs to Labeled Multi-noded Rooted Trees I

A factorization of 7 = (12 - -+ 20):

(1011)(141519)(119)(345)(1213)(1516 17 18)(78911)(1920)(256 11 12)

16
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| Factorization Graphs to Labeled Multi-noded Rooted Trees I

A factorization of 7 = (12 - -+ 20):

(1011)(141519)(119)(345)(1213)(1516 17 18)(78911)(1920)(256 11 12)

The factorization graph associated to a
factorization of type (2, 3, 2,3, 3,4,4,2,5)

20 1 2
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| Factorization Graphs to Labeled Multi-noded Rooted Trees I

A factorization of 7 = (12 - -+ 20):

(1011)(141519)(119)(345)(1213)(1516 17 18)(78911)(1920)(256 11 12)

The factorization graph associated to a
factorization of type (2, 3, 2,3, 3,4,4,2,5)

A labelled multi-noded rooted tree
of vertex data (1,1,2,1,2,2,3,3,1,4)

20 1 2
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