
Math 108, Fall 2013.

Some challenging logical puzzles

This is a collection of well-known puzzles related to mathematical logic and information. To
solve these problems, you will need to use such devices as the law of excluded middle (every
statement is either true or false), proof by contradiction (when you try to prove something, you
may assume its converse, in addition to stated assumptions, and deduce a contradiction) and
mathematical induction (you can prove that natural numbers have property P by checking that
the number 1 has this property, and that if n has property P, then n + 1 must have it as well).
We will learn these principles in the course.

1. A politician comes to a press conference, reads the following list of statements, then leaves.

#1. I have never taken a bribe.
#2. Exactly two statements on this list are false.
#3. Exactly three statements on this list are false.

Using the law of excluded middle, determine which statements are true. Then devise a similar
list of 10 statements with a similar unique solution.

2. A certain island contains two tribes: Liars (every statement they utter is false) and Truth-
tellers (every statement they utter is true).

The classic puzzle finds you traveling on the island, and arriving at a fork in the road. The
two roads you can take are labeled A and B, and exactly one of them leads to your destination.
There is a native coming down the road, and you may ask him a single yes-no question that will
determine which road is correct. What do you ask?

Recent immigration has created a third tribe, Normals (their statements can be true or
false). A crime is committed and three suspects A, B, and C are brought in for questioning. It
is known that exactly one of them committed the crime.

(a) It becomes known that one of the three is Normal, one Liar, one Truthteller. Determine
which is which on the basis of the following three statements they give:

A: I am a Normal.
B: The above A’s statement is correct.
C: I am not a Normal.

(b) In a different situation, further evidence surfaces that a Truthteller is the criminal, and that
there is exactly one Truthteller among the three suspects. This time the statements are:

A: I am innocent.
B: The above A’s statement is correct.
C: B is not a Normal.
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Who is the criminal?

The author of these puzzle is the famous logician Raymond Smullyan. If you enjoy solving
such problems, check out some of his books, such as What Is the Name of This Book?: The
Riddle of Dracula and Other Logical Puzzles.)

3. This is the famous unexpected hanging paradox . A prisoner is sentenced to be hanged. “The
hanging will take place at noon,” adds the judge, “on one of the seven days, Monday through
Sunday, of next week. But you will not know which day it is until you are so informed on the
day of the hanging.” This is how the prisoner reasons: “They can’t hang me on Sunday, since
in this case I will be able to predict this on Saturday afternoon. If they hang me on Saturday,
I’ll be able to predict this on Friday afternoon, so Saturday is ruled out too. So is Friday, by
the same logic. So are Thursday, Wednesday, Tuesday and, finally, Monday. They can’t hang
me at all!” Yet the execution squad arrives on Thursday and catches the prisoner completely
by surprise, vindicating the judge’s word. Explain.

This story has generated hundreds of scientific papers, mostly in the field of philosophy. If
interested, read a review in American Mathematical Monthly 105 (1998), 41–51.

4. A Zen master devises the following test as the final exam for his 50 disciples. In the evening,
before they retire to their cells, he tells them each of their foreheads will be painted either black
or white during the night. During the meditation on any of the following days, they will be
able to see the others’ foreheads, but not their own. There are no reflecting surfaces in the
monastery, and the disciples have to observe a vow of silence during the exam. If a disciple is
able to logically deduce the color of his forehead during a particular day, he passes the exam
and can leave the monastery that night.

The master decides to paint all foreheads white. Next morning, at the beginning of medita-
tion, the master also divulges the following apparently useless piece of information: “There is
at least one forehead painted white.” Or is it really useless? What if only one forehead were
painted white? Or only two? How long will the exam go on?

Next year, the master has just two disciples, and as a final exam he tells one of them (in
secret) “your number is 13,” and the other “your number is 14.” This time, if a disciple is able
to deduce the other’s number during a particular day, he passes the exam and can leave the
monastery that night. The vow of silence is still in effect. Next morning, during the meditation,
the master says: “I’ve given you two consecutive integers, each at least 1.” How long will the
exam go on this time?

5. A band of n pirates has just robbed a ship on an open sea. The loot consists of 10 valuable
gold plates. The pirates are ranked P1, P2, . . . , Pn in increasing rank. This is how they divide
the spoils (the individual plates are indivisible). The highest ranked pirate proposes a division,
which is then voted on by all n of them. If at least n/2 approve, the division is accepted and
the story ends. Otherwise, Pn is thrown overboard, and the procedure is repeated with n − 1
pirates. This is how each pirate ranks his preferences, in decreasing order: getting one or more
plates (the more the better), seeing the spectacle of somebody being thrown overboard, getting
nothing, being thrown overboard.

If n = 2, P2 clearly takes all 10 plates, as his vote alone assures the plan is approved. If
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n = 3, P3 has to give P1 a plate, hence assuring his vote (P1 knows he gets nothing if P3 is
thrown overboard), so the split is (1,0,9) in this case. Determine the split for every n ≥ 4.

6. This is the famous prisoners and the light bulb puzzle. The version here is an adaptation
from the Car Talk radio show, and is a popular job interview problem.

A warden meets with n new prisoners when they arrive. He tells them:

“You may meet today and plan a strategy. But after today, you will be in isolated
cells and will have no communication with one another. In the prison is a switch
room, which contains a light switch, which can turn the single light bulb in the room
on or off. I am not telling you its present position. After today, from time to time
whenever I feel so inclined, I will select one prisoner at random and escort him to
the switch room. This prisoner may, but is not obligated to, reverse the position of
the switch. Then he’ll be led back to his cell. No one else will enter the switch room
until I lead the next prisoner there, and he’ll be instructed to do the same thing. I’m
going to choose prisoners at random. However, this is not a probability problem —
I’m only assuring you that, given enough time, every one of you will eventually visit
the switch room arbitrarily many times. At any time anyone of you may declare to
me, ‘We have all visited the switch room.’ If it is true, then you will all be set free.
If it is false, and somebody has not yet visited the switch room, you will be fed to
the alligators.”

What is the strategy the prisoners devise?

7. The Zen master has n disciples, who are painted on their foreheads positive numbers
a1, . . . , an. The master also publicly announces the numbers s1 < · · · < sk, for some k ≤ n, and
tells the disciples that an si is the true sum of their numbers. For simplicity, you may assume
that ai ∈ N. Whenever the first disciple knows his number (or, equivalently, the true sum), the
exam is over. What will happen? What may happen if k > n?

8. Indiana Jones arrives at the ancient temple of the Sphinx. He hears a disembodied voice
say: “You see in from of you 4 vases, each of which either contains a key or a deadly poisonous
snake. The keys, if any, in the vases are needed for the admission into the temple.” “How can
I figure out which vases contain the keys,” nervously asks Indiana, with bad guys at his heels
and his well-known aversion to snakes. “You can ask me any number of yes-no questions, but I
am permitted to lie to you at most once,” answers the voice. Help Indiana get into the temple
with the fewest number of questions. Then generalize to an arbitrary number n of vases.

9. Somebody has picked n integers 0 ≤ a1 < a2 < · · · < an. These are unknown to you. The
information you get are all

(
n
2

)
sums of these numbers (in, say, increasing order, so you are not

told which two numbers produce which sum). Can you determine the unknown numbers?

This problem demonstrates the value of selecting the proper tool. It is a very difficult
problem to solve by brute force.

10. Another famous problem which has a nice solution when interpreted properly is the following.
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You have n lamps and each lamp has a switch. There also are several connections between pairs
of lamps. These connections are completely known to you, work the same in both directions,
and have the following effect. If you flip a switch on a lamp, you change its state (from on to off
or vice versa) and also the state of all lamps connected to it. Initially, all lamps are turned off.
Prove that, regardless of the connectivity structure, you can find a sequence of flips that turns
all the lights on.

Note that it is important that all the lights are initially off. Several versions of this puzzle
exist (and were even sold) as a game, in which you are given a connectivity structure and a
configuration of lamp states (some on and some off), and you need to figure out how to turn all
of them on.
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Solutions.

1. Statement #3 must be incorrect, since its correctness implies it’s incorrect. Now, there could
be 0, 1, 2, or 3 incorrect statements, but we know 0 is impossible and so is 3 (which would imply
correctness of statement #3). If one statement is incorrect, both #1 and #3 are incorrect, a
contradiction again. The only possibility left is that two statements are incorrect, #1 and #3,
while #2 is correct.

For the list of 10 statements, you can use the same first statement together these 9 statements:

#i. Exactly i − 1 statements on this list are false. Here, i = 2, . . . , 8, defining 7
statements.
#9. Exactly 9 statements on this list are false.
#10. Exactly 10 statements on this list are false.

The logic then is as follows. As before, statement #10 must be false. Further, there must be
at least 8 incorrect statements, as at most one of last 9 is correct. One possibility, 10 incorrect
statements, is contradictory as before, since it would imply correctness of the statement #10.
If 8 statements are incorrect, all 9 statements #2,. . . , #10 are incorrect, a contradiction. So, 9
incorrect statements is the only possibility, with statement #9 the only correct one.

Note that the law of excluded middle, that is, that every statement can only be either true or
false is a very important assumption here. It’s of course very easy to make a list of statements
for which this law does not hold, such as this single statement

#1. Statement #1 is false.

This statement is self–contradictory, or pure nonsense in layman’s terms.

2. The most commonly given answer to the first question is this: If the member of the tribe
you do not belong to were asked “Is A the correct road?” what would be the answer? Then the
answer a Truthteller gives is no exactly when A is the correct road , and the same is true for a
Liar.

For a solution that does not need a reference to the other tribe, consider the following two
statements:

A: A is the correct road.
T: The native is a Truthteller.

The question you ask him is: “Is A the correct road if and only if you are a Truthteller?” (In
shorthand: “Is A ⇔ T true?”) If T is correct then he will answer yes if A is true and no
otherwise. If T is false, then A ⇔ T is is false if and only if A is true, in which case the Liar
will answer yes. Therefore a yes answer is always given if and only if A is true.

(a) If C is not telling the truth, he is a Normal, and so A is a Liar and B a Truthteller, which
is impossible. Therefore, C is telling the truth. Then he can only be a Truthteller. If A is a
Normal, then B is a Liar, which means that A’s statement is incorrect and so A is not a Normal,
a contradiction. Therefore, A is not a Normal, thus he is a Liar, and so B is Normal and his
statement is incorrect.
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(b) Immediately, A cannot be a Truthteller, because if he is, his statement is incorrect, a
contradiction. It follows that C cannot be lying, since otherwise B would have to be a Normal,
and A would have to be the only Truthteller. Therefore C is telling the truth, and B could either
be a Truthteller or a Liar. If B is a Liar, then A is guilty, so a Truthteller, a contradiction. So,
B is a Truthteller and the criminal, while A and C are Normals.

5. Here is my take on the resolution of this paradox; bear in mind that the confusion is based
mostly on the meaning of words and is hard to resolve. The judge has issued a statement whose
validity leads to a contradiction. Anything at all can be deduced assuming its validity, including
no hanging. The conclusion is that it is a logically incorrect statement. The extreme version
would be:

#1 You will be hanged tomorrow. #2 You do not have enough information to know
whether you will be hanged tomorrow.

Assuming both #1 and #2 leads to an immediate contradiction. So the either #1 or #2 must
be false and you have been given no information whatsoever. Imagine that the judge flips a coin
and says (without looking at the outcome):

#1 The outcome is Tails. #2 You do not know whether the outcome is Tails.

Of course you are given no information (and this time you cannot be given any), but there is a
50% chance that the judge’s word is “validated” after he looks at the outcome.

4. To answer the first question, assume that i foreheads were painted white, 1 ≤ i ≤ 50. If
i = 1, then the one painted white would conclude the color of his forehead during the first day
and leave, the second day all others would conclude their colors (since they know that the white
would not be able to deduce his color unless they were all black) and then leave. If i = 2,
then on the second day both whites would conclude their colors and leave, etc. The induction
hypothesis then is that on the i’th day all whites will deduce their color and leave, and then
the same will happen with blacks the next day. We have checked that this is true for i = 1. To
see the i → i + 1 implication, look at the situation at the dawn of (i + 1)’st day. Nobody has
left. Therefore, all white disciples deduce that the number of whites is at least i + 1, but they
see i whites, therefore they deduce their color. Next day, all blacks conclude that the number
of whites was at most i + 1, hence they deduce their color as well. It follows by induction that
all disciples leave on the evening of day 50. The fact that the information is useless for others
may be useful to you!

The second question is answered similarly. Assume that the integers are i, i+1. If i = 1, then
the 2–disciple can leave the first night, and the 1–disciple leaves the next night. The hypothesis
now is: the (i + 1)–disciple leaves after the i’th day, and the i–disciple the following night. To
do the i → i + 1 step, consider the situation on the day (i + 1). Neither of them has left, so
the (i + 1)–disciple knows that his number is not i− 1! Therefore he leaves that night, so next
morning the i–disciple knows that his number has to be i rather than i + 2. The 14–disciple
leaves after day 13, the following day the 13–disciple leaves.

5. The solution proceeds by adding the highest ranked pirate to the group and inductively using
the result for the smaller number of pirates.
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After we have figured out the n = 3 case, let us assume that P4 enters the scene. He can
assure the vote of P2 by giving him one plate (if P2 votes against him, he gets nothing), and
that (together with his vote) is enough: the split is (0, 1, 0, 9). Then P5 must offer two gold
plates, one each to P1 and P3. And so on up to P20 who will give one plate to each of the even
numbered pirates P2, . . . , P20.

What next? P21 can still prevent being thrown overboard by giving away all the plates to
odd pirates P1, . . . , P19. Then P22 must bribe 10 of the 11 even pirates who get nothing under
the previous scheme and still saves himself. However, P23 is in an impossible position, because
he cannot assure the votes of 11 pirates. So he goes overboard. Now P24 knows he can be sure
of the vote of P23, no matter what he proposes, so he can just save himself by assuring the vote
of himself, P23, and 10 bribed colleagues (among odd pirates P1, . . . , P21). P25 is then lost, as
he cannot count on either P24 or P23 and he can get at most 11 votes. So is P26, because the
vote of P25 plus his plus 10 other votes is still insufficient. Same fate awaits P27. However, P28

can count on himself, P25, P26, P27 and 10 others, just enough.

And so on. The pirates who can save themselves are those numbered 20 + 2n, for n =
0, 1, 2, . . . , while others get thrown overboard. The division of plates alternates between even
pirates (n odd) and odd ones (n even).

6. This solution is adapted from the Car Talk site. The prisoners all meet, and the leader of
the prisoners says, “Okay, guys, here’s our strategy. I am the only one of us who can count past
two, and I’ll be the one responsible for telling the warden we’ve all been in the switch room
when the time comes.”

He then proceeds to give instructions to the other inmates. Each of the n − 1 prisoners is
told, “When you go into the switch room, I want you to turn the light off. If it is already off,
then leave it there, and walk out.” All the prisoners nod. “Each of you turns the light off twice,
and only twice. So if you go in there and the light is already off, that doesn’t count. I want
each of you to actually turn it off two times. You got that?”

One of prisoners asks, “Who’s going to be turning the light on?”

“Good question,” says the leader. “I am the only one with the authority to turn the light
on.”

Why does this work?

Each time the leader is taken into the switch room, finds the light off, he knows that at least
one prisoner has been in there. After 2n − 3 dark revisits, he knows that everybody has been
there. If one prisoner, say Bob, has not been there, then the light will not have been turned off
more than 2(n − 2) times. On the other hand, the light will be eventually turned off 2(n − 1)
times, and only one of these (namely, the first prisoner switching the light off) can fail to cause
a dark revisit by the leader.

7. Write down all possible vectors, that is, n-tuples of numbers, with the displayed sums. There
are finitely many of them. If nobody leaves on the first day, a few will be crossed off (namely,
those that have any of their coordinates ≥ sk−1). In other words, you can cross off any vectors x
which have a coordinate xi such that no other vector y still in play has yj = xj for j 6= i. At the
next step, you repeat this procedure with a smaller set of vectors and the question is whether
it is possible to get stuck, that is, to arrive at an ambiguous set of vectors S, with the property
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that every x ∈ S, and every i, has a y ∈ S, y 6= x, such that yj = xj for j 6= i. The following
lemma excludes this possibility.

Lemma. Take an ambiguous set S of n–vectors and the set A of all coordinate sums of vectors
in S. Then A has at least n + 1 elements.

Proof. We prove this by induction. The statement is clearly true for n = 1, as S must contain
at least 2 numbers to be ambiguous. Now take a vector x with the lowest coordinate of all
members in S. Without loss of generality we can assume this is the first coordinate x1. The
set S′, consisting of all (n − 1)–vectors y′ with (x1, y

′) ∈ S is ambiguous. Therefore, by the
induction hypothesis, the resulting set of sums A′ must contain at least n elements. Let y′0 ∈ S′

have the largest such sum. By ambiguity, there is a y1 > x1 so that (y1, y
′
0) ∈ S. Now we are

done, because the sum of (y1, y
′
0) is clearly strictly larger that the sum of any (x0, y

′) for any
y′ ∈ S′, and so A contains at least n + 1 numbers.

If k > n, this analysis breaks down. This is easily seen when n = 1, but if this is too trivial,
consider a n = 2 case, and the sums 1, 2, 3. Then possible ordered pairs are (0, 3), (0, 2), (0, 1),
(1, 2), (1, 1). The first step eliminates (0, 3) (there’s no other 3 – this means that both (0, 3)
and (3, 0) get eliminated). But now no number occurs uniquely and we are stuck. For example,
if the numbers painted on students’ foreheads are 1 and 2, there’s no way to end the exam.

8. With n vases, the number of questions is at least the smallest k for which (k + 1)2n ≤ 2k,
i.e., 2k−n ≥ k + 1. Why? The amount of different states between which one can distinguish by
k binary questions is at most 2k. But, the number of states with k question is the number of
possible contents of vases (2n) times the number of possible locations of a lie (k + 1).

Here is how one devises the questions. Fix an integer q, to be determined later. First ask q
questions on the contents of the first q vases.

The (q + 1)–st question is: “Have you lied so far?” If the answer is no, this is a correct
answer (otherwise it would be the second lie), and you are faced with the same problem with
n− q vases, k− q− 1 questions. If the answer is yes, it is not necessarily correct, but you know
that all the answers from now on are correct. So you have to identify a possible lie among the
first q answers and the contents of n− q vases, which means that 2k−q−1 ≥ (q + 1)2n−q, that is,
2k−n−1 ≥ (q + 1).

The rest is proved by induction. We only have to show that there is a choice of q such that
2k−n−1 ≥ k − q and 2k−n−1 ≥ (q + 1). These two inequalities can be satisfied if k − 2k−n−1 ≤
2k−n−1 − 1, exactly the inequality we have.

So, seven questions suffice in the case of 4 vases. (Note that q = 3 in this case.)

9. Assume that there exist numbers 0 ≤ b1 < · · · < bn with the same pairwise sums. The trick is
to consider p(z) = za1 + · · ·+ zan and q(z) = zb1 + · · ·+ zbn . Then p(z)2− q(z)2 = p(z2)− q(z2),
as the cross terms cancel. Moreover, as p(1) − q(1) = 0, there exist an integer k ≥ 1 and a
polynomial r with degree between 0 and n− 1 so that p(z)− q(z) = (z − 1)kr(z) and r(1) 6= 0.
This way we get

(z − 1)kr(z)(p(z) + q(z)) = (z2 − 1)kr(z2)

and then
r(z)(p(z) + q(z)) = (z + 1)kr(z2).
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Plug in z = 1 and cancel r(1) to get 2n = 2k, n = 2k−1 so n is a power of 2! The numbers can
be reconstructed whenever n is not a power of 2.

Now for n = 2, the numbers obviously cannot be reconstructed, e.g., 1, 2 and 0, 3. Neither
can they when n = 4, e.g., 0, 3, 5, 6 and 1, 2, 4, 7. In general, given a’s and b′s for n = 2k,
construct 2k+1 numbers a′ and b′ as follows: a′i = ai for i ≤ 2k and a′i = 2k + bi−2k for i > 2k,
and b′i = bi for i ≤ 2k and b′i = 2k + ai−2k for i > 2k.

The claim is that the pairwise sums are the same, so we need to check that every a′i + a′j
equals to a pairwise sums of (b′)’s. This is true by induction hypothesis when i and j are either
both larger or both smaller than 2n. If exactly one of i and j is larger than 2n the claim is
trivially true.

The conclusion therefore is that the number can be reconstructed exactly n is not a power
of 2.

10. Let G be the connectivity graph, with self-loops at every vertex, reflecting the fact that the
switch affects its lamp. Think of the on/off states of the lamps as n-dimensional vectors over
the field Z2 with two elements, with the off state represented by 0. For each lamp r, write vr for
the vector which has a 1 in position s if the switch of lamp r affects lamp s. (In graph theory
terminology, vr’s are row or column vectors of the adjacency matrix of G. This matrix has 1’s
on its main diagonal!) The achievable states from all 0’s form a vector subspace, specifically the
span of the vr. (To see this, note that it does not matter in which order you flip the switches
you decide to flip and the resulting state is exactly a linear combination of the corresponding
vr.) If the all 1’s vector is not in this subspace, then there is some vector w which is orthogonal
to all the vr, but not to the all 1’s vector. Let H be the induced subgraph of G whose vertices
are the rooms which have ones in the corresponding coordinates of w (and edges still given by
the connections).

We will now erase the self-loops in H and see what can we say about degrees of vertices of
H. First, for each r ∈ H, 〈w, vr〉 equals one plus the degree of r in H, but this inner product
is 0 by the above construction, so all degrees are odd. Furthermore, the non-zero inner product
of w with the all ones vector of course gives the number of vertices in H, so this number is also
odd. This is impossible, as the sum of degrees in every graph is twice the number of edges, thus
even.
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