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Twenty problems in probability

This section is a selection of famous probability puzzles, job interview questions (most high-
tech companies ask their applicants math questions) and math competition problems. Some
problems are easy, some are very hard, but each is interesting in some way. Almost all problems
I have heard from other people or found elsewhere. I am acknowledging the source, or a partial
source, in square brackets, but it is not necessarily the original source.

You should be reminded that all random choices (unless otherwise specified) are such that
all possibilities are equally likely, and different choices within the same context are by default
independent. Recall also that an even bet on the amount x on an event means a correct guess
wins you x, while an incorrect guess means loss of the same amount.

1. [P. Winkler] One hundred people line up to board an airplane. Each has a boarding pass with
assigned seat. However, the first person to board has lost his boarding pass and takes a random
seat. After that, each person takes the assigned seat if it is unoccupied, and one of unoccupied
seats at random otherwise. What is the probability that the last person to board gets to sit in
his assigned seat?

2. [D. Knuth] Mr. Smith works on the 13th floor of a 15 floor building. The only elevator
moves continuously through floors 1, 2, . . . , 15, 14, . . . , 2, 1, 2, . . . , except that it stops on a floor
on which the button has been pressed. Assume that time spent loading and unloading passengers
is very small compared to the travelling time.

Mr. Smith complains that at 5pm, when he wants to go home, the elevator almost always
goes up when it stops on his floor. What is the explanation?

Now assume that the building has n elevators, which move independently. Compute the
proportion of time the first elevator on Mr. Smith’s floor moves up.

3. [D. Barsky] NCAA basketball pool . There are 64 teams who play single elimination tourna-
ment, hence 6 rounds, and you have to predict all the winners in all 63 games. Your score is
then computed as follows: 32 points for correctly predicting the final winner, 16 points for each
correct finalist, and so on, down to 1 point for every correctly predicted winner for the first
round. (The maximum number of points you can get is thus 192.) Knowing nothing about any
team, you flip fair coins to decide every one of your 63 bets. Compute the expected number of
points.

4. [E. Berlekamp] Betting on the World Series. You are a broker; your job is to accommodate
your client’s wishes without placing any of your personal capital at risk. Your client wishes to
place an even $1,000 bet on the outcome of the World Series, which is a baseball contest decided
in favor of whichever of two teams first wins 4 games. That is, the client deposits his $1,000
with you in advance of the series. At the end of the series he must receive from you either $2,000
if his team wins, or nothing if his team loses. No market exists for bets on the entire world
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series. However, you can place even bets, in any amount, on each game individually. What is
your strategy for placing bets on the individual games in order to achieve the cumulative result
demanded by your client?

5. From New York Times, Science Times, D5, April 10, 2001:

“Three players enter a room and a red or blue hat is placed on each person’s head.
The color of each hat is determined by [an independent] coin toss. No communication
of any sort is allowed, except for an initial strategy session before the game begins.
Once they have had a chance to look at the other hats [but not their own], the
players must simultaneously guess the color of their own hats or pass. The puzzle
is to find a group strategy that maximizes the probability that at least one person
guesses correctly and no-one guesses incorrectly.”

The naive strategy would be for the group to agree that one person should guess and the
others pass. This would have probability 1/2 of success. Find a strategy with a greater chance
for success. (The solution is given in the article.)

For a different problem, allow every one of n people to place an even bet on the color of his
hat. The bet can either be on red or on blue and the amount of each bet is arbitrary. The group
wins if their combined wins are strictly greater than their losses. Find, with proof, a strategy
with maximal winning probability.

6. [L. Snell] Somebody chooses two nonnegative integers X and Y and secretly writes them on
two sheets of paper. The distrubution of (X,Y ) is unknown to you, but you do know that X
and Y are different with probability 1. You choose one of the sheets at random, and observe
the number on it. Call this random number W and the other number, still unknown to you, Z.
Your task is to guess whether W is bigger than Z or not. You have access to a random number
generator, i.e., you can generate independent uniform (on [0, 1]) random variables at will, so
your strategy could be random.

Exhibit a stategy for which the probability of being correct is 1/2 + ε, for some ε > 0. This
ε may depend on the distribution of (X,Y ), but your strategy of course can not.

7. A person’s birthday occurs on a day i with probability pi, where i = 1, . . . , n. (Of course,
p1 + · · · + pn = 1.) Assume independent assignment of birthdays among different people. In
a room with k people, let Pk = Pk(p1, . . . , pn) be the probability that no two persons share a
birthday. Show that this probability is maximized when all birthdays are equally likely: pi = 1/n
for all i.

8. [Putnam Exam] Two real numbers X and Y are chosen at random in the interval (0, 1).
Compute the probability that the closest integer to X/Y is even. Express the answer in the
form r + sπ, where r and s are rational numbers.
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9. [L. Snell] Start with n strings, which of course have 2n ends. Then randomly pair the ends
and tie together each pair. (Therefore you join each of the n randomly chosen pairs.) Let L be
the number of resulting loops. Compute E(L).

10. [Putnam Exam] Assume C and D are chosen at random from {1, . . . , n}. Let pn be the
probability that C + D is a perfect square. Compute limn→∞(

√
n · pn). Express the result in

the form (a
√

b + c)/d, where a, b, c, d are integers.

11. [D. Griffeath] Let α ∈ [0, 1] be an arbitrary number, rational or irrational. The only
randomizing device is an unfair coin, with probability p ∈ (0, 1) of heads. Design a game
between Alice and Bob so that Alice’s winning probability is exactly α. The game of course has
to end in a finite number of tosses with probability 1.

12. [Putnam Exam] Let (X1, . . . ,Xn) be a random vector from the set {(x1, . . . , xn) : 0 < x1 <
· · · < xn < 1}. Also let f be a continuous function on [0, 1]. Set X0 = 0. Let R be the Riemann
sum

R =

n−1
∑

i=0

f(Xi+1)(Xi+1 − Xi).

Show that ER =
∫ 1
0 f(t)P (t) dt, where P (t) is a polynomial of degree n, independent of f , with

0 ≤ P (t) ≤ 1 for t ∈ [0, 1].

13. [R. Stanley] You have n > 1 numbers 0, 1, . . . , n − 1 arranged on a circle. A random walker
starts at 0 and at each step moves at random to one of its two nearest neighbors. For each i,
compute the probability pi that, when the walker is at i for the first time, all other points have
been previously visited, i.e., that i is the last new point. For example, p0 = 0.

14. [R. Stanley] Choose X1, . . . ,Xn from [0, 1]. Let pn be the probability that Xi + Xi+1 ≤ 1

for all i = 1, . . . , n − 1. Prove that limn→∞ p
1/n
n exists and compute it.

15. [Putnam Exam] Each of the triples (ri, si, ti), i = 1, . . . , n, is a randomly chosen permutation
of (1, 2, 3). Compute the three sums

∑n
i=1 ri,

∑n
i=1 si, and

∑n
i=1 ti, and label them (not

necessarily in order) A,B,C so that A ≤ B ≤ C. Let an be the probability that A = B = C
and let bn be the probability that B = A + 1 and C = B + 1. Show that for every n ≥ 1, either
4an ≤ bn or 4an+1 ≤ bn+1.

16. [Putnam Exam] Four points are chosen on the unit sphere. What is the probability that the
origin lies inside the tetrahedron determined by the four points?

17. [Putnam Exam] An m×n checkerboard is colored randomly: each square is randomly painted
white or black. We say that two squares, p and q, are in the same connected monochromatic
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component (or component , in short) if there is a sequence of squares, all of the same color,
starting at p and ending at q, in which successive squares in the sequence share a common
side. Show that the expected number of components is greater than mn/8 and smaller than
(m + 2)(n + 2)/6.

18. Choose, at random, three points on the circle x2 + y2 = 1. Interpret them as cuts that
divide the circle into three arcs. Compute the expected length of the arc that contains the point
(1, 0).

Remark . Here is a “solution.” Let L1, L2, L3 be the lengths of the three arcs. Then L1 + L2 +
L2 = 2π and by symmetry E(L1) = E(L2) = E(L3), so the answer is E(L1) = 2π/3. Explain
why this is wrong.

19. You are in possession of n pairs of socks (hence a total of 2n socks) ranging in shades of
grey, labeled from 1 (white) to n (black). Take the socks blindly from a drawer and pair them
at random. What is the probability that they are paired so that the colors of any pair differ by
at most 1? You have to give an explicit formula, which may include factorials.

20. [P. Winkler] Choose two random numbers from [0, 1] and let them be the endpoints of a
random interval. Repeat this n times. What is the porbability that there is an interval which
intersects all others.

Solutions

1. Look at the situation when the k’th passenger enters. Neither of the previous passengers
showed any preference for the k’th seat vs. the seat of the first passenger. This in particular is
true when k = n. But the n’th passenger can only occupy his seat or the first passenger’s seat.
Therefore the probability is 1/2.

2. In the one-elevator case, we can reasonably assume that the elevator is equally likely to be
at any point between floor 1 and floor 15 at any point in time. We can also assume that the
probability that the elevator is exactly on the 13th floor when Smith arrives is negligible. This
gives the probability 2/14 = 1/7 ≈ 0.1429 that it is above floor 13 (which is when it will go
down when it goes by this floor) when Smith wants to go home.

Let’s have n elevators now. Call the unbiased portion the part of the elevators route up from
floor 9 to the top and then down to floor 13. Any elevator at a random spot of the unbiased
portion is equally likely to go up or down when it goes by the 13th floor. Moreover, if there is at
least one elevator in the unbiased portion, all elevators out of it do not matter. However, if no
elevator is in the unbiased portion, then the first one to reach the 13th floor goes up. Therefore
the probability that the first elevator to stop at 13th floor goes down equals 1

2(1 − (10/14)n).
(For n = 2 it equals approximately 0.2449.)
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3. If you have n round and 2n teams, the answer is 1
2(2n − 1), so 31.5 when n = 6.

This is another evidence of how useful linearity of expectation is. Fix a game g and let Ig be
the indicator of the event that you collect points on this game, i.e., correctly predict its winner.
If s = s(g) is this game’s round, then your winnings on this game are 2s−1 · Ig. However, EIg

is the probability that you have correctly predicted the winner of this game in this, and all
previous rounds, that is 2−s. So your expected winnings on this game are 2s−1 · 2−s = 1

2 . This
is independent of g, so your answer is one half of the total number of games.

4. Let’s assume that the money unit is $1,000, call your team A and your client’s team B. Call
each sequence of games terminal if the series may end with it. To each terminal sequence at
which A wins, say AAABA, attach value 2, and to each terminal sequence at which B wins,
say BBAAABB, attach 0. These are of course the payoffs we need to make. Each non-terminal
sequence, say AABA, will have a value which is the average of the two sequences to which it
may be extended by the next game, AABAA and AABAB in this case. This recursively defines
the values of all possible sequences. It is important to note that the value of the empty sequence
(before games start) is 1, as the average on the sequences of length 7, and then at each shorter
level, is 1. Now simply bet, on A, your value minus the lower value of your two successors at
each sequence.

Note that you can extend, with 2’s or respectively 0’s, to length 7 all sequences in which A
or respectively B wins. The value is the amount you have provided you use the above betting
strategy. Also note that you do not need to split a penny because the values of sequences of
length 1 have at most 25 in the denominator (and we know that the value is an integer for the
sequence of length 0).

5. For the first question, here is the strategy. If you see same colors, guess the color you do
not see. If you see different colors, pass. The probability of a win is then 3/4. (Maximizing the
probability in this context is a difficult problem for a large number of people.)

For the second question, call the two colors + and −, label people 1, . . . , n and put them in
this order on a line, from left to right. Every possible strategy can be described as n functions
Fi, i = 1, . . . , n, Fi : {+,−}n−1 → R, which could be interpreted as i’s bet on + provided i sees
the configuration of signs in given order. (The negative values of F are of course bets on −.)
For example, the payoff at configuration +−− (for n = 3) then is F1(−−)−F2(+−)−F3(+−).
There are 2n configuration, hence these many payoffs. We need to make as many of these positive
as possible. On the other hand, to specify a strategy we need to specify n · 2n−1 numbers. This
makes it look like all payoffs can be made positive, but this is not so. Denote by x a generic
n–configuration and xi the (n− 1)–configuration obtained by removing the i’th coordinate from
x. Then the expected payoff is

1

2n

∑

x

Fi(x
i) = 0,

as every Fi(y) appears in the sum twice, with different signs. As a consequence, at most 2n − 1
payoffs can be made positive. To show that this is indeed possible, we will give an explicit
strategy. The i’th person looks only to his left. If he sees no + hats, he bets 2i−1 (on his hat



6

being a +). Otherwise, he places no bet, i.e., bets 0. Under this strategy, the first person always
places a bet of 1, and if there is a single +, the group wins. Indeed, if the leftmost + is at
position i + 1, 0 ≤ i ≤ n − 1, the group wins

−1 − 2 − · · · − 2i−1 + 2i = 1.

Needless to say, this is balanced by the huge negative balance of bets −(2n −1) in the case there
are only − hats. The probability of success therefore is 1 − 1/2n.

6. Let G be an exponential random variable with expectation 1 (or any other random variable
with density which is positive everywhere on nonnegative x-axis), which you can obtain as
− log U , where U is uniform on [0, 1]. The strategy is to guess that W > Z if W > G and that
W < Z if W < G. In this case

P (correct guess)

= P (W > Z,W > G) + P (W < Z,W < G)

= (1/2)[P (X > Y,X > G) + P (Y > X,Y > G) + P (X < Y,X < G) + P (Y < X,Y < G)]

= (1/2)[P (X > Y ) + P (X > Y, Y < G < X) + P (X < Y ) + P (X < Y,X < G < Y )]

= 1/2 + (1/2)P (G between X and Y ) > 1/2.

7. We have
Pk = k!

∑

1≤i1<···<ik≤k

pi1 . . . pik .

(The sum is known as the k’th symmetric polynomial in p1, . . . , pn.) This is obtained selecting
some k different birthdays and then deciding which of them belongs to which person.

For i < j, write
Pn = Apipj + B(pi + pj) + C,

where A, B , and C do not depend on either pi or pj . Let p′i = p′j = (pi + pj)/2. Then (as it
easy to verify by squaring out), p′ip

′
j ≥ pipj, with strict inequality unless pi = pj. Of course,

p′i + p′j = pi + pj. Now if you replace pi and pj by p′i and p′j, then p′ip
′
j ≥ pipj.

Now assume that Pn is maximized while not all pi are equal, say pi 6= pj . We can then also
assume that Pn is nonzero (when it is zero it is obviously not maximal) and therefore that some
n of p’s are nonzero. Then A 6= 0 (even though pi or pj might be zero). Now replace pi and pj

by p′i and p′j; The sum of p’s is still 1, while Pn has strictly increased. This contradiction shows
that pi = pj for all i and j.

7. Let N be the closest integer to X/Y . Then N = 0 if X < 2Y . Moreover, for n > 0, N = 2n
if 2X/(4n+1) < Y < 2X/(4n− 1). Hence the required probability is 1/4+ (1/3− 1/5)+ (1/7−
1/9) + · · · = 5/4 − π/4, as π/4 = 1 − 1/3 + 1/5 − 1/7 + . . .

8. Let en = EL. Then e1 = 1. Furthermore, solve the problem with n − 1 strings. When you
add another string, take one of its ends. You either tie this end to the new string’s other end
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(with probability 1/(2n− 1)) which isolates it from the other strings, or you tie it to some other
end (with probability (2n − 2)/(2n − 1)), in which case you reduce the number of strings by 1.
Therefore

en =
1

2n − 1
(en−1 + 1) +

2n − 2

2n − 1
en−1 =

1

2n − 1
+ en−1.

So

en = 1 +
1

3
+

1

5
+ · · · + 1

2n − 1
.

9. The number of pairs (c, d) with sum m2 is m2−1 for m2 ≤ n, and 2n−m2+1 for n < m2 ≤ 2n.
Therefore

pn =
1

n2





b√nc
∑

1

(m2 − 1) +

b
√

2nc
∑

b√nc+1

(2n − m2 + 1)



 .

Now we use
∑k

1 m2 = k3/3 + O(k2). Also removing the integer parts gives an error of O(n) in
the sums. So we get:

pn =
1

3
n−1/2 + 2(

√
2 − 1)n−1/2 − 1

3
(2
√

2n−1/2 − n−1/2) + O(n−1).

Therefore

lim
n→∞

pn

√
n =

4(
√

2 − 1)

3
.

10. Assume first that α = 0.5. Toss the coin twice: if the two tosses are the same repeat, oth-
erwise stop. Whne you finally stop, the Heads-Tails and Tails-Heads have the same probability.
We can thus assume, from now on, that p = 1/2. Toss the fair coin until it comes up heads, and
let N be the number of tosses required.

Next, write α = 0.α1α2, . . . in the binary form. Declare that Alice wins if αN = 1. This
happens with probability

P (N = 1) · α1 + P (N = 2) · α2 + P (N = 3) · α3 + · · · =
1

2
· α1 +

1

22
· α2 +

1

23
· α3 + · · · = α,

by definition of binary expansion.

11. The set of outcomes has volume 1/n!. This is obtained by iterated integration. Then we
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need to compute

E[(Xi+1 − Xi)f(Xi)]

=

∫ 1

0
dxi+1

∫ xi+1

0
dxi (xi+1 − xi)f(xi+1)

·
(∫ xi

0
dxi−1 . . .

∫ x2

0
dx1

)

·
(

∫ 1

xi+1

dxi+2 . . .

∫ 1

xn−1

dxn

)

=

∫ 1

0
dxi+1

∫ xi+1

0
dxi (xi+1 − xi)f(xi+1) ·

xi−1
i

(i − 1)!
· (1 − xi+1)

n−i−1

(n − i − 1)!

=

∫ 1

0
f(xi+1) ·

xi+1
i+1

(i + 1)!
· (1 − xi+1)

n−i−1

(n − i − 1)!
dxi+1 =

∫ 1

0
f(t)Pi(t) dt,

where Pi is a polynomial of degree n. It now follows that

ER =

∫ 1

0
f(t)P (t) dt,

where

P (t) = n!

n
∑

i=0

Pi(t) = nt(1 − t)n−1 +

(

n

2

)

t2(1 − t)n−2 + · · · + tn

= (t + 1 − t)n − (1 − t)n = 1 − (1 − t)n.

12. For this to happen, the random walker must visit both neighbors of i before he visits i.
Therefore, when he is first adjacent to i, he must hit the other neighbor before hitting i. This
is a necessary and sufficient condition. Therefore, pi are the same for all i 6= 0. It follows that
pi = 1/(n − 1) for all i 6= 0.

13. The question gives a hint — n’th root test for convergence of power series. So we consider

f(x) =

∞
∑

n=0

pnxn.

Hopefully we can compute f explicitly. Now,

pn =

∫ 1

0
dx1

∫ 1−x1

0
dx2 . . .

∫ 1−xn−1

0
dxn.

The form of iterated integrals suggests a slight generalization pn(y), which differs from pn in
that the upper bound in the first integral is 1 − y instead of 1. Then p0(y) = 1, and

pn(y) =

∫ 1−y

0
pn−1(t) dt .
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Moreover, pn = pn(0). This way, we can compute p0 = 1, p1 = 1, p2 = 1/2, p3 = 1/6.
Furthermore, let

f(x, y) =

∞
∑

n=0

pn(y)xn.

Then,

f(x, y) = 1 +

∞
∑

n=1

xn

∫ 1−y

0
pn−1(t) dt

= 1 + x

∫ 1−y

0

∞
∑

n=1

xn−1pn−1(t) dt

= 1 + x

∫ 1−y

0
f(x, t) dt.

Then f(x, 1) = 1, fy(x, y) = −xf(x, 1 − y), fy(x, 0) = −x, and

fyy = xfy(x, 1 − y) = −x2f(x, y).

Therefore
f(x, y) = A(x) sin(xy) + B(x) cos(xy).

From fy(x, 0) = −x we get A(x) = −1. Then, from f(x, 1) = 1, we get B(x) = (1+sin x)/ cos x.
This gives

f(x, y) =
sin(x(1 − y)) + cos(xy)

cos x

and finally

f(x) = f(x, 0) =
1 + sin x

cos x
.

This is finite and an analytic function of complex x ∈ C for |x| < π/2 and therefore the lim sup
in question is 2/π.

In fact, the limit exists, as one can get from asymptotics for Taylor coefficients of tan and
sec. An even better method is the standard trick of separating the nearest singularity,

f(x) =
−2

x − π/2
+ g(x).

(Note that f is analytic at −π/2.) Here g(x) is analytic for |x| < 3π/2 and the rational function
has explicitly, and easily, computable Taylor coefficients. So

pn = qn + rn,

where

qn =
4

π

(

2

π

)n

, lim sup |rn|1/n <
2

π
.

To finish the proof, write

p1/n
n ≥ q1/n

n

(

1 − |rn|
qn

)1/n

= q1/n
n (1 + o(1)),
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as |rn|/qn goes to 0 exponentially fast.

14. Label B′ = B − A, B′ = C − A. Then an = P ((B′, C ′) = (0, 0)), bn = P ((B′, C ′) = (1, 1)),
and let also cn = P ((B′, C ′) = (2, 2)), dn = P ((B′, C ′) = (0, 3)).

Start with n permutations, and add another one. One can check that the (0, 0) state can
be only obtained from (1, 1), while the (1, 1) state can be only obtained from (0, 0), (2, 2), and
(0, 3). In fact,

an+1 =
1

6
bn,

bn+1 = an +
1

3
bn +

1

6
cn +

1

3
dn,

cn+1 ≥ 1

6
bn,

dn+1 ≥ 1

3
bn.

Note that cn ≥ bn−1/6 = an and dn ≥ bn−1/3 = 2an so that bn+1 ≥ 11an/6+ bn/3. Assume also
that bn < 4an. Then

bn+1 >
11

24
bn +

1

3
bn =

19

24
bn =

19

4
an+1,

which proves the inequality with room to spare. (In fact, 4 can be replaced by 1 + 2
√

3.)

15. Let X1,X2,X3,X4 be the positions of the 4 points. Note that you can almost surely uniquely
write α1X1 +α2X2 +α3X3 +α4X4 = 0, with α1 +α2 +α3 +α4 = 1, and the question becomes to
compute P (α1, α2, α3, α4 > 0). The trick is to express, equivalently −X1 = β2X2+β3X3+β4X4,
and compute P (β2, β3, β4 > 0). Define the eight events S1 = {β2, β3, β4 > 0}, S1 = {β2 <
0, β3, β4 > 0}, and so all, for all combination of signs of βi. Then Si are pairwise disjoint. (E.g.,
if S1 ∩ S2 6= 0, then β2X2 + β3X3 + β4X4 = −β′

2X2 + β′
3X3 + β′

4X4, for positive βi, β′
i. But this

is impossible, by linear independence.) Also P (∪iSi) = 1 and all P (Si) are the same (since Xi

equals, in distribution, to −Xi). So P (S1) = 1/8.

16. Let’s start with the upper bound. One should start with the observation that many com-

ponents are very small . So we see if counting the smallest ones suffices. For example, the
probability that a site x is itself a component of size 1 is at least 1/16. Therefore, the ex-
pected number of components consisting of single sites is at least mn/16. Unfortunately, it’s
cumbersome to improve 1/16 to 1/8 by counting other small components.

A very slick solution instead proceeds by putting down edges between neighboring squares
with the same color. For any pair of neighboring squares, the probability that there is an edge
between them is 1/2. There are (m − 1)n + (n − 1)m pairs of neighboring squares and let A
be the random number of edges. Note that N , the number of components, is at least mn − A
(every new edge can decrease the number of components by at most one), but this is clearly not
enough, as the E(A) is about mn for large m and n. So we need another insight, which is that
any edge which creates a new cycle does not increase the number of components.
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This will happen for at least one edge in every monochromatic 2× 2 square. Why? Imagine
ordering such 2×2 squares so that every next square in the ordering is not included in the union
of the previous ones. (For example, we can order their upper left corners alphabetically.) Then
every new 2× 2 square has at least one new site, hence at least two new edges, one of which will
create a new cycle.

Let B be the number of monochromatic squares. Then E(B) = (m − 1)(n − 1)/8 and
N ≥ mn − A + B, so that E(N) ≥ m + n + (m − 1)(n − 1)/8 > mn/8.

Now for the upper bound. Attach to every component the unique member that is the leftmost
of its top sites. Call such points component sites. Then we need to estimate the probability
that a point x = (a, b) is a component site. Here we imagine the rectangle as a matrix and a, b
as indices, so that (1, 1) is the top left corner. Clearly when a = b = 1 the probability is 1. Still
easy is the case when a = 1, and b ≥ 2, when the probability is at most 1/2, as the necessary
requirement is that the left neighbor be of opposite color.

Otherwise, a necessary condition for x being a component site is as follows. Let i ≥ 0 be the
number of contiguous squares of the same color as x to the right of x. Then the left neighbor of
x (if any), the top neighbors of x and the said i sites, and the right neighbor of the i’th site (if
any), all have to be of the opposite color. For a, b ≥ 2, this gives

P (x is a component site) ≤ 1

2

(

n−b−1
∑

i=0

1

22(i+1)
+

1

22(n−b)+1

)

=
1

6
+

1

12
· 1

22(n−b)
,

while if b = 1, a ≥ 2, the upper bound is twice as large. This implies

E(N) ≤ 1 +
n
∑

b=2

1

2
+

m
∑

a=2

(

1

3
+

1

6
· 1

22(n−1)

)

+
m
∑

a=2

n
∑

b=2

(

1

6
+

1

12
· 1

22(n−b)

)

=
1

6
(m − 1)(n − 1) +

1

2
(n − 1) +

4

9
(m − 1) + 1 +

1

18
(m − 1)2−2(n−1)

Then

6E(N) ≤ (m + 2)(n + 2) − 3 − 1

3
(m − 1)

(

1 − 2−2(n−1)
)

,

which ends the proof.

13. The arc containing (1, 0) is likely to be larger than the others. Imagine choosing a point
at random instead of (1, 0). This point falls into any part proportionally to its length. So the
answer via the suggested route actually is 3E(L2

1)/(2π). But is is better to proceed directly than
to compute E(L2

1).

The arc containing (1, 0) consists of two pieces, the clockwise one and the counterclockwise
one. Their lengths are equal in expectation. So let L be the length of counterclockwise piece.
Then

P (L ≥ x) = P (no pt. with angle in [0, x)) = (1 − x/(2π))3

for x ∈ [0, 2π], and so

E(L) =

∫ 2π

0
(1 − x/(2π))3 dx =

π

2
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and the answer is 2E(L) = π.

19. The number of possible pairings is 1 · 3 · . . . (2n − 1). Let an be the number of pairings that
satisfy the condition. Write the recursive equation:

an = an−1 + 2an−2.

You get this by considering the two socks 2n, call them (2n)1 and (2n)2. Decide upon the pair for
(2n)1 first. If it is (2n)2, (with probability 1/(2n− 1)), then you are left with the same problem
with n− 1 pairs. If not, it must be paired with one of the socks (2n − 1) (two possibilities) and
then (2n)2 needs to be paired with the other (2n − 1) sock.

Thus, if an = 1 · 3 · . . . (2n − 1)pn, then an = an−1 + 2an−2, a1 = 1, a2 = 3. This is a linear
recursion, with solution

an =
2n+1 + (−1)n

3

and therefore

pn =
(2n+1 + (−1)n)2nn!

3(2n)!
.

20. The answer is 2
3 , independently of n. Here is the proof, from the original paper by J. Justicz,

E. R. Scheinerman, and P. M. Winkler, American Mathematical Monthly 97 (1990), 881–889.

The question will first be reformulated: take 2n points 1, 2, . . . , 2n are pair them at random,
so that all (2n)!

2n n! = (2n − 1) · (2n − 3) · . . . · 3 · 1 pairings are equally likely. The event that an
interval intersects all others has the same probability as in the original formulation.

We have a lot of freedom to organize the random pairing, and this freedom will be exploited
in the proof. Namely, we can choose pairs one by one — then, if we know the pairings of 2j
points, we may choose the (2j +1)’st point, which we call Aj+1, in any way we wish from among
2n − 2j remaining points, and then pair it with the random one of the remaining 2n − (2j + 1)
points. It is advantageous to choose Aj close to the center, and so as to make the paired
points as balanced as possible among the two sides: the left side {1, . . . , n}, and the right side
{n + 1, . . . , 2n}.

Here is how we do it. Start with A1 = n, and let B1 be its mate. Assuming we know
A1, . . . , Aj and there respective mates B1, . . . , Bj , we choose Aj+1 as follows: if Bj is on the left
side let Aj+1 be the leftmost unpaired point on the right side, and if Bj is on the right side let
Aj be the rightmost unpaired point on the left side. Note that Aj < Bj exactly when Bj is on
the right side. The second step of this recursive procedure is to choose the random mate Bj+1

of Aj+1 among the other 2n − (2j + 1) unpaired points.

We call the j’th pair AB-type if Aj < Bj, and BA-type otherwise. Now the left and the right
side will have equal number of paired points while the pairs are AB-types. After the first BA-
type, the left side has two more paired points. This imbalance by two points is maintained while
BA-types continue, until the next AB-type, when balance is restored. Observe also that there
are never any unpaired points between the leftmost and the rightmost point among A1, . . . , Aj .
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After the (n − 2)’nd pair is chosen, there are four unpaired points a < b < c < d. We have
two possibilities

1. Balanced case: a and b are on the left side, c and d on the right side.

2. Unbalanced case: a on the left side, b, c and d on the right side.

There is a single choice, among three equally likely ones, still left to be made, that is, to choose
the mate of a.

Now all Aj , j ≤ n− 2 must be between a and c, as a and c are unpaired, and a is on the left
and c on the right. Therefore, if a is paired with c, the interval [a, c] will intersect all others.
Clearly, the interval [a, d] will intersect all others if a is paired with d. We will assume that a
is paired with b from now on, and prove that then no interval intersects all others. This will
end the proof, as an interval that intersects all others occurs in two out of three choices for the
pairing of a, hence with probability 2

3 .

Certainly neither [a, b] nor [c, d] can intersect all others, as they are disjoint. Suppose that
some interval defined by a pair Aj0 , Bj0 , for some j0 ≤ n−2, intersects all others. In the balanced
case defined above, all Aj , j ≤ n − 2 must all be between b and c and thus the interval defined
by Aj0 , Bj0 cannot intersect both [a, b] and [c, d].

The final possibility is thus the unbalanced case, when the (n − 2)’nd pair must be a BA-
type. On the other hand, the interval defined by Aj0, Bj0 intersects [c, d] and so the j0’th pair
must be an AB-type. Thus there is a k ∈ [j0 +1, n− 2] so that the (k− 1)’st pair is an AB-type
while the k’th pair is a BA-type. In particular, Ak < n (which it always is when k > 1 and the
previous pair is AB-type) and Ak < Aj0 (for the same reason, except that now k > j0). This
means that [Bk, Ak] ∩ [Aj0 , Bj0 ] = ∅. This is a contradiction, so no interval intersects all others
in this case.


