Math 16A (LEC 004), Fall 2008. December 9, 2008.

TOTAL

FINAL EXAM

NAME(print in	CAPITAL letters, fi	irst name first):	KE	: Y		
ID#:		-				
each worth 30 p MUST SHOW a may be a factor Make sure th	Each of the first foundation of the first foundation. Read each quality ALL YOUR WORK in determining creditated at you have a total fire exam before beginning the exam before beginning.	estion carefully TO RECEIVE it. Calculators, of 10 pages (in	and answer FULL CRE books or not	it in the space EDIT. Clarity tes are not al	ce provided. of your solution of your solution.	YOU utions
1						
1						
2						
3						
4	•					
5						1
6						
7						

1. Compute derivatives of the following two functions. Do not simplify!

(a)
$$y = \frac{\sqrt{x-4}}{3x-1}$$

$$y' = \frac{\frac{1}{2}(x-4)(3x-1) - \sqrt{x-4} \cdot 3}{(3x-1)^2}$$

(b)
$$y = x^4 \cdot \cos(2x)$$

$$y' = 4x^3 \cos(2x) - x^4 \sin(2x) \cdot 2$$

2. Find the equation of the tangent line to the curve $(x+y)^4 + x^2y - y = 0$ at the point (0,1).

$$4(x+y)^{3}(1+\frac{dy}{dx}) + 2xy + x^{2}\frac{dy}{dx} - \frac{dy}{dx} = 0$$

$$12$$
Plug in $x = 0$, $y = 1$:
$$4(1+\frac{dy}{dx}) - \frac{dy}{dx} = 0$$

$$4 + 3\frac{dy}{dx} = 0$$

$$\frac{dy}{dx} = -\frac{4}{3} + \text{slope}$$

$$y = -\frac{4}{3}x + 1$$

$$y = -\frac{4}{3}x + 1$$

3. Compute the following limits.

(a)
$$\lim_{h \to 0} \frac{(1+h)^{-4} - 1}{h} =$$

$$\lim_{h\to 0} \frac{f(x+h) - f(x)}{h} = f'(x)$$

Let $f(x) = x^{-4}$, and $x = 1$. Then $f'(x) = -4x^{-8}$.

 $\lim_{h\to 0} f(x) = x^{-4}$, and $\lim_{h\to 0} f(x) = -4x^{-8}$.

(a)
$$\lim_{x \to 5} \frac{x-5}{x-\sqrt{4x+5}} = \lim_{x \to 5} \frac{(x-5)(x+\sqrt{4x+5})}{(x-\sqrt{4x+5})(x+\sqrt{4x+5})}$$

$$= \lim_{x \to 5} \frac{(x-5)(x+\sqrt{4x+5})}{(x-5)(x+\sqrt{4x+5})} = \lim_{x \to 5} \frac{(x-5)(x+\sqrt{4x+5})}{(x-5)(x+\sqrt{4x+5})} = \frac{5+\sqrt{25}}{6} = \frac{5}{3}$$

$$= \lim_{x \to 5} \frac{(x-5)(x+\sqrt{4x+5})}{(x-5)(x+1)} = \frac{5+\sqrt{25}}{6} = \frac{5}{3}$$

4. Consider the function

$$f(x) = \begin{cases} x^4, & x < 0, \\ ax^2 + b, & 0 \le x \le 1, \\ x^3 + x, & x > 1. \end{cases}$$

(a) Determine the numbers a and b so that y = f(x) is continuous for all x.

Cont. at 1:
$$a+b=2$$
; $a=2$

10

(b) Assuming the values of a and b obtained in (a), determine all the values of x for which y = f(x) is not differentiable.

At 0:
$$\frac{d}{dx}(x^4) = 4x^3$$
both are 0 at $x = 0$

$$\frac{d}{dx}(2x^2) = 4x$$
At 1: $\frac{d}{dx}(2x^2) = 4x$
both are 4 at $x = 1$

$$\frac{d}{dx}(x^2 + x) = 3x^2 + 1$$

the function . differentiable everywhere.

5. Consider the function $f(x) = \frac{8(x-2)}{x^2} = 8x^{-1} - 16x^{-2}$.

(a) Determine the domain of y = f(x), its intercepts, and horizontal and vertical asymptotes. Compute the left and right limits at vertical asymptotes.

Intercept: (2,0)
H.a.:
$$\lim_{x\to\infty} f(x) = \lim_{x\to\infty} \frac{g}{x} - \frac{1b}{x^2} = 0$$
,
V.a: $x=0$; $\lim_{x\to0+} \frac{g(x-2)}{x^2}$, $\lim_{x\to0-} \frac{g(x-2)}{x^2} = -\infty$

(b) Determine the intervals on which y = f(x) is increasing and the intervals on which it is decreasing. Identify all local extrema.

$$4'(x) = -8x^{-2} + 32x^{-3} = -8x^{-3}(x-4)$$

and the second is the second of the se

(d) Determine the intervals on which y = f(x) is concave up and the intervals on which it is concave down. Identify all inflection points. (Note: $3 \cdot 32 = 6 \cdot 16$.)

$$4''(x) = 16x^{-3} - 3.32 x^{-4} = 16x^{-4}(x-6)$$
 3

$$\frac{|(-\infty,0)|(0,6)|(1,\infty)}{2!!} + |(6,\frac{3}{9})| \text{ rugl. pt. } 1$$

(e) Sketch the graph of y = f(x). Identify all points of importance on the graph.

(f) Determine the domain and range of the composite function $y=\sqrt{f(x)}$. Domain: $x \ge 2$, i.e., $(2, \infty)$ Range: [0,2].

8

(g) Determine the domain and range of the composite function $y = f(x^2 + 1)$.

Domain: all x

Range: $y=x^2+1$ has range [1,00). On 5 thus outerval, of has values on [-8,4]

- 6. A construction contractor needs to build a small rectangular storage box with a square base, flat roof and volume 1,600 cubic feet. Every square foot of side walls costs \$10 (that is, the cost of side walls is the area multiplied by \$10), and every square foot of the roof costs \$4. Assume that the base does not need to be built, so it costs nothing.
- (a) Determine the dimensions of the box that will minimize the building costs. Justify all your conclusions!

$$C = 40 \times h + 4 \times^{2} = 40 \times \frac{1,600}{x^{2}} + 4 \times^{2}$$

$$= \frac{64,000}{x} + 4 \times^{2} = \frac{64,000}{x} + 4 \times^{2}$$

$$= \frac{64,000}{x} + 4 \times^{2} = \frac{20}{x}$$

$$= \frac{64,000}{x} + 4 \times^{2} = \frac{20}{x}$$

$$= \frac{1,600}{40} = 4$$

$$= \frac{1,600}{40} = 4$$

(b) Now assume that the height of the box is restricted to be between 5 and 10 feet. With this additional restriction, what dimensions of the box minimize cost?

When
$$h = \Gamma$$
, $\chi^2 = \frac{1600}{5} = 320$, $\chi = \sqrt{320} \approx 17.9$ 2
When $h = 10$, $\chi^2 = \frac{1600}{10} = 160$, $\chi = \sqrt{160} \approx 12.6$
So $\frac{dC}{dx}$ is a negative between $\sqrt{160}$ and $\sqrt{320}$, 4 10 and $\sqrt{320}$, 4 10 and $\sqrt{320}$, 4 10

20

7. Water flows into a conical reservoir (with radius of the base 5 m, and height 10 m) as shown in the picture. At one point, the water level in the reservoir is measured to be 4 m, and the rate of inflow of water is measured to be 2 m³/sec. Find the following two rates. (The volume of a cone is $\frac{1}{3}\pi r^2 h$, where r is the radius of the circular base of the cone and h is its height.)

(a) The rate at which the water level in the reservoir is increasing.

Side view:

$$\frac{r}{h} = \frac{r}{40} = \frac{1}{2}$$

$$r = \frac{1}{2}h$$

$$V = \frac{1}{3}\pi r^{2}h = \frac{1}{12}\pi h^{3}$$

$$\frac{dV}{dt} = \frac{1}{12}\pi r \cdot 3h^{2}\frac{dh}{dt} = \frac{1}{4}\pi h^{2}\frac{dh}{dt}$$

$$Plug \quad \text{for } h = 4, \quad \frac{dV}{dt} = 2, \quad \text{for } get$$

$$\frac{dh}{dt} = \frac{2}{4\pi} = \frac{1}{2\pi} \quad (m/nu)$$

$$\frac{dh}{dt} = \frac{2}{4\pi} = \frac{1}{2\pi} \quad (m/nu)$$

(b) The rate at which the area of the water surface in the reservoir is increasing. (Surface refers to the top circular surface of the water that is exposed to air.)

$$A = \pi r^2 = \frac{1}{4} \pi h^2 + \frac{1}{4} \pi h^2 +$$

- 8. Your hardware company makes a flash drive called Bolt. The total demand, at zero price, for Bolt is 6000 units per year. At the current price of \$60 per unit, you sell 3000 Bolts. Your fixed operating costs are \$20,000 per year, and each Bolt costs you \$20 to make. As usual, assume that the demand function is linear.
- (a) Write down the demand, revenue, cost, and profit functions.

(a) Write down the demand, revolute, costs, and product
$$\frac{x}{6000}$$
 $\frac{y}{6000}$ $\frac{x}{6000}$ $\frac{y}{6000}$ $\frac{y}{6000}$

(b) Which price should you charge for Bolt charge to maximize your profit? How many Bolts would you then sell per year?

$$\frac{dP}{dx} = -\frac{1}{25} \times +100 = 0, x = 2500)^{5} p = 70$$
As P 1s a quadratic function with negative 10 leading coefficient, P has maximum at x = 2500.

(c) Which production level would maximize the profit per unit sold, that is, $\bar{P} = \frac{P}{x}$.