Math 16A — 002, Fall 2009. Oct. 21, 2009.

MIDTERM EXAM 1

NAME(print in	CAPITAL letters, fir	rst name first):		
NAME(sign):		·	·	
ID#:				•
answer it in the CREDIT. Clari or notes are not Make sure th	space provided. YOU ty of your solutions re allowed.	J MUST SHOW AI may be a factor in 5 pages (including t	oints. Read each questL YOUR WORK TO determining credit. (this one) with 4 proble	RECEIVE FULL Calculators, books
1				
2				
3				
4				
TOTAL				

- 1.
- (a) A line has y-intercept (0,3) and slope -1/3. Find its x-intercept.

$$y-3 = -\frac{1}{3}x$$

 $y = -\frac{1}{3}x + 3$ $y = 0$ when $-\frac{1}{3}x + 3 = 0$
 $x = 9$

(b) A circle has center at (0,5) and goes through the origin. Find the equation of this circle.

$$(x-0)^{2} + (y-5)^{2} = 25$$

$$x^{2} + (y-5)^{2} = 25$$

(c) In addition to the circle from (b), consider the line x + y = 12. Find all points of intersection (if there are any) between the line and the circle.

$$y = 12 - x$$

$$x^{2} + (7 - x)^{2} = 25$$

$$x^{2} + 49 - 14x + x^{2} = 25$$

$$2x^{2} - 14x + 24 = 0$$

$$x^{2} - 7x + 12 = 0$$

$$(x - 3)(x - 4) = 0$$

$$x = 3, 4$$
Answer: (3, 9) (4, 8)

2. Consider the function $f(x) = \frac{x^2 - x}{x^2 - 2x - 3}$. Determine its domain, intercepts, and vertical asymptotes. Determine left and right limits at all vertical asymptotes. Determine also its horizontal asymptote and find any points where the graph of y = f(x) intersects its horizontal asymptote. Then sketch the graph of this function on which all obtained points and asymptotes are clearly marked.

$$f(x) = \frac{x(x-1)}{(x-3)(x+1)}$$
Interce

mptote. Then sketch the graph of this function on which all obtained points and asymptotes clearly marked.

$$f(x) = \frac{x(x-1)}{(x-3)(x+1)}$$

Domain $x \neq 3$, $x \neq -1$

Tuturcepte: $(0,0)$, $(1,0)$

Vertical asymptotes: $(x-1)$ and $(x-1)$ and $(x-1)$ asymptotes: $(x-1)$ and $(x-1)$ and $(x-1)$ asymptotes: $(x-1)$ and $(x-1)$ and

Horitontal asymptote:

$$\lim_{x\to\infty} \frac{x^2-x}{x^2-2x-3} = 1$$
There then with h.a.
$$\frac{x^2-x}{x^2-2x-3} = 1, \quad x^2-x = \frac{x^2-2}{x^2-2x-3}$$

$$\frac{x^2-x}{x^2-2x-3} = 1, \quad x^2-x = \frac{x^2-2}{x^2-2x-3}$$
(-3,1)

3. Compute the following limits. Give each answer as a finite number, $+\infty$ or $-\infty$.

(a)
$$\lim_{x \to 3} \frac{x+5}{\sqrt{x+1}} = \frac{3}{\sqrt{4}} = \frac{4}{\sqrt{4}}$$

(b)
$$\lim_{x \to 3} \frac{x-3}{x-1-\sqrt{x+1}} = \lim_{x \to 3} \frac{(x-3) \cdot (x-1+\sqrt{x+1})}{(x-1-\sqrt{x+1}) \cdot (x-1+\sqrt{x+1})}$$

$$= \lim_{x \to 3} \frac{(x-3) \cdot (x-1+\sqrt{x+1})}{(x-4)^2 - (x+4)}$$

$$= \lim_{x \to 3} \frac{(x-3) \cdot (x-1+\sqrt{x+4})}{(x-4)^2 - (x+4)}$$

$$= \lim_{x \to 3} \frac{(x-3) \cdot (x-1+\sqrt{x+4})}{(x-3) \cdot (x-1+\sqrt{x+4})}$$

$$= \lim_{x \to 3} \frac{(x-3) \cdot (x-1+\sqrt{x+4})}{(x-3) \cdot (x-3)}$$

$$= \lim_{x \to 3} \frac{x-1+\sqrt{x+4}}{x} = \frac{2+2}{3}$$

$$= \lim_{x \to 3} \frac{(x-3) \cdot (x-1+\sqrt{x+4})}{(x-3) \cdot (x-1+\sqrt{x+4})} = \frac{2+2}{3}$$

$$= \lim_{x \to 3} \frac{(x-3) \cdot (x-1+\sqrt{x+4})}{(x-3) \cdot (x-1+\sqrt{x+4})} = \frac{4}{3}$$

$$= \lim_{x \to 3} \frac{(x-3) \cdot (x-1+\sqrt{x+4})}{(x-3) \cdot (x-1+\sqrt{x+4})} = \frac{4}{3}$$

$$= \lim_{x \to 3} \frac{(x-3) \cdot (x-1+\sqrt{x+4})}{(x-4)^2 - (x+4)} = \frac{4}{3}$$

$$= \lim_{x \to 3} \frac{(x-3) \cdot (x-1+\sqrt{x+4})}{(x-4)^2 - (x+4)} = \frac{4}{3}$$

- 4. Consider the functions $f(x) = 4\sqrt{x} + 2x 15$ and g(x) = 2|x| + x + 1.
- (a) Determine the domains of the functions y = f(x) and y = g(x).

Domain of f: 1>0 Domain of g: all x

(b) Discuss continuity and differentiablity of y = g(x).

 $g(x) = \begin{cases} 3x+1, & x > 0 \\ -x+1, & x < 0 \end{cases}$

The function to continuous for all x.

It is differentiable everywhere but at x=0 because the might and left derivatives there are 3 and -1, respectively.

(c) A line is tangent to the graph of y = f(x) and perpendicular to the line x + 3y + 7 = 0. Determine the equation of this line.

e the equation of this line. $f'(x) = \frac{4}{2\sqrt{x}} + 2 = \frac{2}{\sqrt{x}} + 2$ $\frac{2}{\sqrt{x}} + 2 = 3$ $\frac{2}{\sqrt{x}} = 1$ $\int x' = 2, \quad x = 4$ $P \text{ o'ut:} \quad (4, 4 \cdot \sqrt{4} + 2 \cdot 4 - 15) = (4, 1)$ $\lim_{x \to 2} y = 3x - 11$ $\lim_{x \to 3} y = -\frac{1}{3}x + \frac{1}{3}$ $\lim_{x \to 3} y = -\frac{1}{3}x + \frac{1}{3}$

(d) Compute f(g(1)) and g(f(1)).

$$g(1) = 4$$
 $f(g(1)) = f(4) = 1$
 $f(1) = -9$ $f(4) = 1$
 $f(1) = -9$ $f(4) = 1$