Math 16A (LEC 004), Fall 2008. November 19, 2008.

MIDTERM EXAM 2

NAME(print in	in CAPITAL letters, first name first):	
	:	
MUST SHOW may be a factor Make sure th	s: Each of the first four problems is worth 15 points, whi 0 points. Read each question carefully and answer it in the WALL YOUR WORK TO RECEIVE FULL CREDIT. Out of the determining credit. Calculators, books or notes are that you have a total of 7 pages (including this one) with 6 pages before beginning to work.	e space provided. YOU Clarity of your solutions
1		
1	-	
2	_	
3		
4		
5		
6		
TOTAL	_	

- 1.
- 1. Compute the derivatives of the following two functions. Do not simplify!

$$(a) y = \frac{\cos x}{5x^2 - 1}$$

$$y' = \frac{-\epsilon_{1} x \cdot (\sum x^{2} - 1)^{2} - cos x \cdot 10x}{(\sum x^{2} - 1)^{2}}$$

(b)
$$y = (\sin(7x))^8$$

2. A car is driving on a straight highway and its speed is checked by a police radar which is at distance 3/4 of a mile from the road. At one point, the radar measures the car's distance from itself as 5/4 miles and also that this distance is decreasing at the rate of 40 miles/hour (see the picture). How fast is the car driving along the road?

3. Find the equation of the tangent line to the curve $x^4 + y^4 + 3xy^2 - y = 6$ at the point (1, -1). (You may leave the equation of the line in the point-slope form.)

$$4x^{3} + 4y^{3} \frac{dy}{dx} + 3y^{2} + 6xy \frac{dy}{dx} - \frac{dy}{dx} = 0$$

$$4 - 4 \frac{dy}{dx} + 3 - 6 \frac{dy}{dx} - \frac{dy}{dx} = 0$$

$$11 \frac{dy}{dx} = 7, \quad \frac{dy}{dx} = \frac{7}{11} = \text{slope}$$

$$Line: \quad \frac{7}{11} = \frac{7}{11} (x-1)$$

4. You are standing on top of an 80 ft. tall tower. You throw a rock straight up with velocity 64 ft/sec. How fast is the rock traveling in the moment when it hits the ground? Assume the acceleration of the rock is constantly -32 ft/sec².

$$S = -16t^{2} + 64t + 80$$

$$\frac{dS}{dt} = -32t + 64$$

$$S = 0 \quad \text{when}$$

$$-16(t^{2} - 4t + 5) = 0$$

$$+ (t - 5)(t + 1) = 0$$

$$t = 5(ec)$$
At $t = 5$,
$$\frac{dS}{dt} = -32.5 + 64 = -96(qt/tce)$$

5. Consider the function $f(x) = \frac{(x-2)^2}{x^2+4}$.

(a) Determine the domain of this function.

(b) Determine the intervals on which y = f(x) is increasing and the intervals on which it is $f'(x) = \frac{2(x-2)(x^2+4) - (x-2)^2 \cdot 2x}{(x^2+4)^2} = \frac{2(x-2)(x^2+4 - x(x-2))}{(x^2+4)^2}$ $= \frac{2(x-2)(2x+4)}{(x^2+4)^2} = \frac{4(x-2)(x+2)}{(x^2+4)^2} = 0 \text{ at } x=2,-2$

 $\uparrow' \begin{array}{c|c} |(-\infty,-2)|(-2,2)|(2,\infty) \\ + & - & + \\ \hline 2 & & 7 \end{array}$ (-2,2) boral max (2,0) boral mu

(c) Determine the horizontal asymptote of this function.

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{x^2}{x^2} = 1$$

(d) Sketch the graph of y = f(x) and determine the range of this function.

Interupto: (2,0), (0,1)

Range: [0,2]

6. You are the head manager of a store that sells flat-screen TV's. A new TV called L2 is coming on to the market. You want to order a certain number of L2's. You know that when you make the order, the company that makes L2's will first charge you a flat sum of \$50,000 (as your share of marketing costs) and then \$1,000 for every L2 you order.

The market research department at your store tells you that you can sell 1000 L2's for \$1500, and 500 L2's for \$2000. You want to sell every L2 you order.

(a) Determine the demand function for L2, assuming it is linear. Identify the proper interval for the order size x.

$$\frac{x + p}{x + p} = -\frac{100}{200} = -\frac{100}{200} = -x + 1000$$

$$\frac{x + p}{x + p} = -x + 200$$

$$0 \le x \le 2000$$

(b) Express the store's profit P as a function of x.

$$P = R - C = \times P - C = \times (-x + 2500) - 1000x - 50000$$

$$= -x^2 + 1500x - 50000$$

(c) Compute the marginal profit and determine intervals on which P increases.

$$\frac{dP}{dx} = -2x + 1500 = 0 \text{ at } x = 700$$

$$\frac{(0,750)}{dx} + -$$

$$\frac{dP}{dx} + -$$

$$\frac{(0,750)}{dx} + \frac{(750,1500)}{dx}$$

(c) To maximize the profit, what is the number of L2's that your store should order and at what price should you be selling them?

Order 8180:
$$X = 700$$
.
Price: $P = -700 + 2000 = 1700$