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Chapter 10

Linear Differential Operators and Green’s
Functions

We have seen that linear differential operators on normed function spaces are not
bounded. Differential operators are important for the study of differential equations
and we would like to analyze them in spite of their lack of continuity. There are two
main approaches to this problem. One is to use a weak topology, not derived from
a norm, with respect to which differential operators are continuous. This is what
is done in distribution theory, studied in Chapter 11. The other approach, which
we follow in this chapter, is to consider special classes of unbounded operators that
are defined on dense linear subspaces of a Hilbert, or Banach, space.

The inverse of a linear differential operator is an integral operator, whose kernel
is called the Green’s function of the differential operator. We may use the bounded
inverse to study the properties of the unbounded differential operator. For example,
if the inverse is a compact, self-adjoint operator, then the differential operator has
a complete orthonormal set of eigenfunctions.

We begin by giving some general definitions for unbounded operators. We will
consider unbounded linear operators acting in a Hilbert space, although similar
ideas apply to unbounded operators acting in a Banach space.

10.1 Unbounded operators

One of the main new features of unbounded operators, in comparison with bounded
operators, is that they are not defined on the whole space. For example, a general
continuous function does not have a continuous derivative, so differential operators
are defined on a subspace of differentiable functions. The definition of an unbounded
linear operator

A: DA CH-H

acting in a Hilbert space H therefore includes the definition of its domain D(A).
We will assume that the domain of A is a dense linear subspace of H, unless we
state explicitly otherwise. If the domain of A is not dense, then we may obtain a
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246 Linear Differential Operators and Green’s Functions

densely defined operator by setting A equal to zero on the orthogonal complement
of its domain, so this assumption does not lead to any loss of generality.

An operator A is an extension of A, or A is a restriction of A, if D(A) D D(A)
and Az = Ag for all z € D(A). We write this relationship as A D A, or A C A.
From Theorem 5.19, if A is a bounded linear operator on a dense domain D(A) in
H, then A has a unique bounded extension to H. Consequently, it is only useful to
consider densely defined operators when the operator is unbounded.

The domain of a differential operator defines the somewhat technical property
of the smoothness of the functions on which the operator acts. More importantly, it
also encodes any boundary conditions associated with the operator. The following
example, which we discuss in greater detail later on, illustrates differential operators
and their domains.

Example 10.1 Let Aju = u” with k = 1,2, 3,4 be differential operators in L?([0, 1])
with domains

D(A1) = {u € C*([0,1]) | u(0) = u(1) = 0},
D(4A:) = C*([0, 1)),

D(4s) = {u € H*((0,1)) | u(0) = u(1) = 0},
D(A4) = H?((0,1))

Here, H? ((0,1)) is the Sobolev space of functions whose weak derivatives of order
less than or equal to two belong to L?([0,1]). The Sobolev embedding theorem
implies that H2((0,1)) C C*([0,1]), so it makes sense to use the pointwise values of
u in defining D(A3). Then A; C Ay C Ay, and A; C A3 C Ay.

The adjoint of an unbounded operator A : D(A) C ‘H — H is an operator
A* :D(A*) CH - H.

Generalizing the basic property in (8.9) of the adjoint of a bounded linear operator,
we want

(Az,y) = {z, A™y) for all z € D(A) and all y € D(A*), (10.1)

where D(A*) is the largest subspace of H for which (10.1) holds. In more detail,
if y € H, then ¢, (z) = (y, Az) defines a linear functional ¢, : D(4) - C. We
say that y € D(A*) if ¢, is bounded on D(A). In that case, since D(A) is dense
in ‘H, the bounded linear transformation theorem in Theorem 5.19 implies that
¢y has a unique extension to a bounded linear functional on #, and the Riesz
representation theorem in Theorem 8.12 implies there is a unique vector z € H
such that ¢,(z) = (2,2). Then (y, Az) = (z,z) for all z € D(A), and we define
A*y = z. Summarizing this procedure, we get the following definition.
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Definition 10.2 Suppose that A : D(A) C H — H is a densely defined unbounded
linear operator on a Hilbert space . The adjoint A* : D(A*) C H — H is the
operator with domain

D(A*) = {y € H | there is a z € H with (Az,y) = (z, 2) for all z € D(A)}.

If y € D(A*), then we define A*y = z, where z is the unique element such that
(Az,y) = (z,2) for all z € D(A).

Tt is possible that D(A*) is not dense in H, even if D(A) is dense, in which case
we do not define A** (see Exercise 10.15 for an example).

As we will see below, the adjoint of a differential operator is another differential
operator, which we obtain by using integration by parts. The domain D(A) defines
boundary conditions for A, and the domain D(A*) defines adjoint boundary condi-
tions for A*. The boundary conditions ensure that the boundary terms arising in
the integration by parts vanish.

A particularly important class of unbounded operators is the class of self-adjoint
operators. Self-adjointness includes the equality of the domains of A and A*. For
differential operators, this equality of domains corresponds to the self-adjointness
of the boundary conditions.

Definition 10.3 An unbounded operator A is self-adjoint if A* = A, meaning
that D(A*) = D(A) and A*z = Az for all x € D(A). An unbounded operator A is
symmetric if A* is an extension of A, meaning that D(A*) D D(A) and A*x = Az
for all z € D(A).

It is usually straightforward to show that an operator is symmetric, but it may
be more difficult to show that a symmetric operator is self-adjoint.

Example 10.4 For the differential operators defined in Example 10.1, we will see
that A} = As, so A; is symmetric but not self-adjoint, while A3 = As, so A3 is
self-adjoint. We will also see that Ay = A} = A5 where Asu = " with domain

D(4s) = {u € H*([0,1]) | u(0) = u(1) = u'(0) = u'(1) = 0} .

Since Aj; is not an extension of Ay or A4, neither Ay nor Ay is symmetric. We also
have A} = A4, so As is symmetric, but not self-adjoint.

Although differential operators are not continuous, they have a related property
called closedness.

Definition 10.5 An operator A : D(A) C H — H is closed if for every sequence
() in D(A) such that z, - = and Az, — y, we have z € D(A) and Az =y.
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Note carefully the difference between continuous and closed operators. For a
continuous operator A, the convergence of the sequence (z,,) implies the convergence
of (Az,), and

nh_)ngo Az, = A (nlgréo a:n) . (10.2)
For a closed operator A, the convergence of (z,) does not imply the convergence of
(Az,); but if both (x,) and (Ax,) converge, then (10.2) holds. The graph I'(A) of
an operator A : D(A) C H — H is the subset of H x H defined by

I'(A) = {(z,y) | x € D(A) and y = Az}.

An operator is closed if and only if its graph is a closed subspace of H x H.

An operator A is closable if it has the following property: for every sequence
(zn,) of elements in D(A) such that z,, = 0 and Az, — y for some y € H, we have
y = 0. We define the closure A of a closable operator A to be the operator with
domain

D(A) = {z € H |there is a sequence (z,) in D(4) anday € H
such that z,, - = and Az, — y}.

If 2, = 2 and Az, — y, then we define Az = y. Since A is closable, the value
y does not depend on the sequence (z,) in D(A) that is used to approximate x.
The graph of A is the closure of the graph of A in H x H, and A is the smallest
closed extension of A. If A is not closable, then the closure of the graph of A is not
the graph of an operator, and A has no closed extensions (see Exercise 10.8 for an
example). Every symmetric operator is closable (see Exercise 10.2). We say that a
symmetric operator A is essentially self-adjoint if its closure is self-adjoint.

Example 10.6 The operators A; and As in Example 10.1 are not closed because
we may choose a sequence of functions u,, € C?([0, 1]) such that u,, — u and u, — v
in L?([0,1]), where v is not continuous. Hence u is not C?, and therefore does not
belong to the domain of A; or A;. The operators As and A, are closed. Both
A; and A, are closable, with A} = Az, and Ay = A4. Thus, A; is essentially
self-adjoint, but A, is not.

If A: D(A) C H — H is one-to-one and onto, then we define the inverse operator
A7l :H — H by A~'y = z if and only if Az = y. The range of A~! is equal to the
domain of A. If A is closed, then the closed graph theorem, which we do not prove
here, implies that A~! is bounded.

Proposition 10.7 If A:D(A) C H — H is a densely defined linear operator on a
Hilbert space H with a bounded inverse A=! : H — H, then (A4*)~! = (A~1)*.
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Proof. Since A~! is bounded, it has a bounded adjoint. If z € D(A*) and y € H,
then

(A7) Az, y) = (A%z, A7) = (2, AA7ly) = (z,y).

Therefore (A~1)*A*z = z for € D(A*). Moreover, if z € H and y € D(A), then
(A" (AN z,y) = (A7) 2, Ay) = (2, A7 Ay) = (z,y).

Since D(A) is dense in H, it follows that (A=1)*z € D(A*) and A* (A~ 1)*z = 2. O

The definitions of the resolvent set, spectrum, and resolvent operator for an
unbounded operator A : D(A) C H — H are analogous to those for a bounded
operator. The resolvent set p(A) of A consists of the complex numbers A such that
A — ) is a one-to-one, onto map from D(A) to H, and (A — AI)~! is bounded. The
spectrum o (A) is the complement of the resolvent set in C. If A € p(A), then we
define the resolvent operator Ry : H — H by

Ry=(0O—A)"'.

If A is closed, then the closed graph theorem implies that Ry is bounded whenever
A — ) is one-to-one and onto. Unlike bounded operators, unbounded operators
may have an empty spectrum (see Exercise 10.13 for an example).

10.2 The adjoint of a differential operator

In this section, we consider differential operators acting on smooth functions, and
explain how to determine their adjoints. We discuss the domain of the adjoint in
more detail in Section 10.4.

A linear ordinary differential operator of order n is a linear map A that acts on
an n-times continuously differentiable function u by

Au = Z aju?,
=0

where u(9) denotes the jth derivative of u, and the coefficients a; arereal or complex-
valued functions. Our goal is to study BVPs (boundary value problems) for ODEs
of the form

Au = f, Bu =0, (10.3)

where Bu = 0 denotes a set of linear boundary conditions.
For concreteness, we assume that all functions are defined on the interval [0, 1],
and we consider second-order ordinary differential operators A of the form

Au = au” + bu' + cu, (10.4)
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where a, b, and c are sufficiently smooth functions on [0, 1]. The same ideas apply to
linear ordinary differential operators of arbitrary order. We assume, unless stated
otherwise, that a(xz) > 0 for all 0 < z < 1, so that A is second-order at every point.

For a second-order differential equation, we expect that we need to impose two
boundary conditions to obtain a unique solution, although this is not always suffi-
cient to guarantee uniqueness. Sometimes we may want to consider overdetermined
or underdetermined boundary value problems with a larger or smaller number of
boundary conditions. We always assume that the boundary condition Bu =0 is a
homogeneous system of linear equations that involves the values of 4 and «' at the
endpoints x = 0,1. Higher derivatives of u may be expressed in terms of u and u'
by use of the differential equation.

Some common types of boundary conditions are:

u(0) =0, w(l)=0 Dirichlet;
w'(0)=0, «/'(1)=0 Neumann;
w(0) = u(l), «'(0)=4'(1) periodic;
aou(0) + Bou'(0) =0, aiu(l)+ F1u'(1) =0 mixed.

In the mixed boundary condition, ay, a1, By, and ; are complex constants. Instead
of imposing conditions that involve the solution at both endpoints, we can impose
two conditions at one of the endpoints:

w(0) =0, «'(0)=0 initial;
u(l)=0, 4/(1)=0 final.

For linear problems, nonhomogeneous boundary conditions may be reduced to
homogeneous ones by subtraction of any function that satisfies the nonhomogeneous
conditions: if Au = f, Bu = b, and Bu, = b, then v = u — u,, satisfies Av = ¢
and Bv = 0, where g = f — Au,. In practice, it may be convenient to retain
nonhomogeneous boundary conditions when using Green’s formula below, but in
developing the general theory it is simplest to assume that all boundary conditions
have been reduced to homogeneous ones.

We begin by formulating the adjoint boundary value problem, using the following
result.

Proposition 10.8 (Green’s) Suppose that A is given by (10.4), where a € C2([0, 1)),
b e C([0,1]), and ¢ € C([0,1]). Let (-,-) denote the usual L?-inner product,

1
(v,u) = / v(z)u(z) dz,
0
and define A* by

A*v = (@v)" — ()" + ev. (10.5)
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Then, for every u,v € C?([0,1]), we have
(v, Au) — (A*v,u) = [a (Bu' —V'u) + (b— a')Bul, . (10.6)

Proof. Integration by parts implies that

1
(v, Au) = / U (au" + bu' + cu) dx
0

1
[awu’ + bou; +/ {—(a0)' v’ — (D) u + cvu} dz
0

1
[atu’ — (a)" u + bﬁu](l) +/0 ((Ev)” - (511)[ + Ev)udw,
which gives (10.6). O

We call A* in (10.5) the formal adjoint of A (“formal” because we have not
specified its domain). The adjoint A* depends on the inner product as well as on A
(see Exercise 10.10). We will use the standard L2-inner product, unless explicitly
stated otherwise.

Example 10.9 Let D be the differentiation operator,
_4d
da’
Then D* = —D, (iD)* =iD, and (Dz)* = D2, s0 D is formally skew-adjoint, while
iD and D? are formally self-adjoint.

(10.7)

Given boundary conditions B for A, we define adjoint boundary conditions B*
for A* by the requirement that the boundary terms in (10.6) vanish. Thus, for
v € C?%([0,1]), we say that B*v = 0 if and only if

(v, Au) = (A*v,u)  for all u € C?([0,1]) such that Bu = 0.
For A given by (10.4), we have B*v = 0 if and only if
[a(vu' —7'u) + (b—a') Eu](l) =0  for all 4 such that Bu = 0.
We say that the BVP (10.3) is self-adjoint if A = A* and B = B*.
Example 10.10 Suppose that A = D2. Then Green’s formula may be written as
(v,u") — (", u) = [ou' — E'u]é .
If Bu = 0 is the Dirichlet conditions u(0) = (1) = 0, then we have
[ou’ — v'uly = w(D)w'(1) — v(0)u'(0).

This vanishes for all values of «'(0) and «'(1) if and only if v(0) = v(1) = 0. Thus,
the Dirichlet boundary value problem for D? is self-adjoint. Neumann, mixed, and
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periodic boundary conditions are also self-adjoint. For initial conditions «(0) =
u'(0) = 0 the boundary terms reduce to

[ou' — 'u]y = o()u' (1) — o' (Du(1).

These terms vanish if and only if v(1) = v'(1) = 0, so final conditions are the adjoint
of initial conditions, and the initial or final value problem for D? is not self-adjoint.

If we impose no boundary conditions on u, then we must require that v(0) =
v'(0) = v(1) =v'(1) = 0. The adjoint of an undetermined boundary value problem
is therefore overdetermined, and conversely.

Let us find all the formally self-adjoint, second-order differential operators. Ex-
panding the expression for A* in (10.5) and equating it with the expression for A
in (10.4), we find that

au' +bu' +cu=au’ + (2@ —b)u' + @' —b +o)u
for every u € C?([0,1]). We must therefore have
a=ad, b=2a —-b, c=a' —b +¢.

These relations are satisfied if and only if a is real, Reb = a', and Im¢ = —Im b/2,
where Re z and Im z denote the real and imaginary parts of z € C, respectively.
The coefficients of a self-adjoint, second-order ordinary differential operator A are
therefore determined by three real functions: a, Im b, and Rec. For operators with
real coefficients, there are only two independent real-valued coefficient functions,
which we denote by p and ¢, where a = —p, b = —p', and ¢ = q. The resulting
formally self-adjoint operator, called a Sturm-Liouville operator, is given by

Au = —(pu')' + qu, (10.8)

or A= —D(pD) + q. For example, if p =1 and ¢ = 0, we get the second-derivative
operator A = —D?2. By imposing self-adjoint boundary conditions on functions in
the domain of a Sturm-Liouville operator, we obtain a self-adjoint operator.

For operators with imaginary coefficients, we find that a = 0, b = 2ir and
¢ = ir', which gives

Au=1i(2ru' +r'u),

or A =1i(rD + Dr), since Dr = rD + r'. Any real linear combination of these real
and imaginary formally self-adjoint operators is formally self-adjoint.
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10.3 Green’s functions

For concreteness, we consider the Dirichlet boundary value problem for the second-
order differential operator A defined in (10.4),

Au = f, u(0) = u(1) =0, (10.9)

where f :[0,1] — C is a given continuous function.
We look for a solution of (10.9) in the form

u(z) = / o(=,9) 1 () dy, (10.10)

where g : [0,1] x [0,1] — C is a suitable function, called the Green’s function of
(10.9). If we regard

A:D(4) C C([o,1]) = €([0,1])
as an operator in C([0,1]) with domain
D(A) = {u e C*([0,1]) | u(0) = u(1) = 0},

then the integral operator G : C([0,1]) — D(A) given by

Gi(z) = / o(e,9) £ (y) dy (10.11)

is the inverse of A.

We can write an equation for the Green’s function g in terms of the Dirac delta
function §. We give a heuristic discussion here, and use it to motivate the classical
definition of the Green’s function in Definition 10.11 below. In Chapter 11, we
will show that the delta function has a mathematically rigorous interpretation as a
distribution.

We regard § as a “function” on R that has unit integral concentrated at the
origin, meaning that

/ 0(z)dr =1, 4(x) =0 for z #0.
More generally, for any continuous function f, we have
| se-niwar= @)

Formally, we also have



254 Linear Differential Operators and Green’s Functions

where H is the Heaviside step function, defined by

0 ifz<0,
H(w)_{ 1 ifz>0.

The step function is constant on any interval that does not contain the origin and
has a jump of one at zero. Conversely, the delta function,

§=H (10.12)

is the derivative of the step function. We will give a precise meaning to these results
when we study distribution theory in Chapter 11.

The Green’s function g(z,y) associated with the boundary value problem in
(10.9) is the solution of the following problem:

Ag(z,y) =d(z—y),  9(0,y) =g(1,y) =0. (10.13)

Here, A is a differential operator with respect to z, and y plays the role of a
parameter. If u is given by (10.10), then formally differentiating under the integral
sign with respect to z, we find that for 0 < z < 1

Au(z) = / Ag(z,y)f(y)dy = / 5z —y)f(y) dy = f(z).

Moreover, u satisfies the boundary conditions, since

1 1
w(0) = / 00,9 f(@)dy =0,  u(l) = / 9(L,9)f(y) dy = 0.

Thus, (10.10) provides an integral representation of the solution of (10.9).

We may reformulate (10.13) in classical, pointwise terms. From (10.4), (10.12),
and (10.13), we want g(z,y) to satisfy the homogeneous ODE (as a function of x)
when z # y, and we want the jump in a(z)g,(z,y) across z = y to equal one in
order to obtain a delta function after taking a second z-derivative. We therefore
make the following definition.

Definition 10.11 A function g: [0,1] x [0,1] — C is a Green’s function for (10.9)
if it satisfies the following conditions.

(a) The function g(z,y) is continuous on the square 0 < z,y < 1, and twice
continuously differentiable with respect to  on the triangles 0 <z <y <1
and 0 < y < z < 1, meaning that the partial derivatives exist in the interiors
of the triangles and extend to continuous functions on the closures. The left
and right limits of the partial derivatives on z = y are not equal, however.

(b) The function g(z,y) satisfies the ODE with respect to z and the boundary
conditions:

Ag=0 n0<z<y<landl<y<z<l, (10.14)
9(0,y) =g(1,y) =0 for0<y<1. (10.15)
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(¢) The jump in g, across the line x = y is given by

1
@7
where the subscript 2 denotes a partial derivative with respect to the first
variable in g(z,y), and

9 (v y) —9. (v ,y) = (10.16)

% ,y) = lim g.(z,y),  g.(y ,y) = lim g,(z,y).
z—yt Ty~

We will discuss the existence and construction of the Green’s function below.
First we show that if a function g satisfies the conditions in this definition, then the
expression in (10.10) gives a solution of (10.9).

Proposition 10.12 Let A be given by (10.4), where a,b,c € C([0,1]) and a(z) >0
for all 0 < z < 1. If g satisfies (10.14)—(10.16) and f € C([0,1]), then Gf given by
(10.11) is a solution of (10.9).

Proof. The proof is by direct computation. The only non-trivial part to check is
that the function

w(z) = / o291 () dy

satisfies the ODE Au = f. We split the integration range into 0 < y < z and
z<y<l:

2

) = [asty 0.8 o] [ [ o@nrw s [ owprwa]. o

Leibnitz’s formula for the differentiation of an integral with variable limits states
that if a(z) and B(x) are continuously differentiable functions of z, and h(z,y) is
a continuous function of (z,y) on a(z) < y < B(x) that has a continuous partial
derivative hg(z,y) with respect to z on a(z) <y < B(z), then

d B(z) . / 8(x)
EEL@)M%M@ﬁﬂ”@hwﬁmﬁ—a@Mmﬂ@»+ﬁw)M@wﬁw
(10.18)

Using this formula to compute the derivatives in the expression on the right-hand
side of (10.17), we find that

%= [ st o@a i@+ [ o) - @

1
AgA%MNww,

du

) /0 gzz(xay)f(y) dy + [gw(m,m_) - gw(x,a:"')] f(x)
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Thus,

A( / g(w,y)f(y)dy)z [ 4910 v+ ao) loxo,5) = g2(a.5)] 1)

Since g(x,y) is smooth in z < y and x > y, we have g,(z,77) = g,(z",z) and
ge(z,2T) = g, (z—, ). Tt follows from the properties of g that Au = f. O

Thus, we can give an integral representation of the solution of (10.9) if we can
construct the associated Green’s function. We may write the Green’s function
in terms of the solutions of the homogeneous equations. When a, b, and ¢ are
continuous functions and a(z) # 0, the homogeneous ODE

au” +bu' +cu =0 (10.19)

has a two-dimensional space of solutions spanned by any linearly independent pair
of solutions. For example, we may construct a basis {u1,us} of the solution space
by solving (10.19) subject to the initial conditions u(0) = 1, v'(0) = 0 for u = uy
and u(0) = 0, u'(0) = 1 for u = us. The solutions exist by the existence theorem
for ODEs in Theorem 3.7. The uniqueness of solutions of the initial value problem
implies that if u is a solution of (10.19), then u = u(0)u; + u'(0)us, so u is a linear
combination of {u1,us}.

In order to construct a function g satisfying the conditions of Definition 10.11,
we choose nonzero solutions v; and vy of Av = 0 such that

01(0) =0, (1) =0. (10.20)

The pair {v1,v2} is linearly independent if and only if the only solution of the
homogeneous Dirichlet problem, Au = 0 with u(0) = »(1) = 0, is u = 0. The
Green’s function g then has the following form:

[ Cly)m(@)umly) f0<z<y,
g(””’y"{ Cly)v (y)v(z) fy<z<l. (10.21)

It is clear that g is continuous, satisfies Ag = 0 whenever z # y, and ¢(0,y) =
9(1,y) = 0. The jump condition in (10.16) is satisfied if C(y) is given by

1
Cly) = ——0, 10.22
W) = W) (1022)
where W is the Wronskian of v; and vs:
V1 V2
W= ol vl = V10 — V2] (10.23)

If a is nonzero at every point, then the Wronskian of two linearly independent
solutions is nonzero at every point, so C in (10.22) is well-defined.

Thus, if the homogeneous Dirichlet problem has only the zero solution, then g
defined by (10.21) has all the properties required in Proposition 10.12 and is unique.
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Example 10.13 The stationary temperature distribution in a rod of unit length
that has both ends kept at a constant zero temperature, with heat loss through its
surface proportional to u, and that is subject to a given nonuniform heat source per
unit length f, is the solution of

—u" +u=f u(0) = u(1) = 0. (10.24)

To construct the Green’s function we need two linearly independent solutions vy,
vg of the homogeneous version of (10.24) that satisfy v1(0) = 0 and v3(1) = 0. The
general solution of the homogeneous equation is of the form

xr

u(z) = c1€” + cae™".

For v; and vy we choose the solutions

vy (z) = sinh z, va(z) = sinh(1 — z),
where
T _ e
sinhz =
2
The Wronskian, W = —sinh 1, of these solutions is a nonzero constant, so the

solutions are linearly independent combinations of e* and e~*. The Green’s function
is given by

(2,y) = sinh zsinh(1 —y)/sinh1 f0<z <y <1,
g\&Y) = sinhysinh(l —z)/sinh1 f0<y <z <1.

We may also write this equation as

sinh (z<)sinh (1 — z
g(zy) = S0 <)Sinh1( >),

where
T< =min(z,y), o> =max(z,y).

The Green’s function is a symmetric function of (z,y), as is always the case for real,
self-adjoint boundary value problems.

We can use the Green’s function to study the relationship between the solvability
of the direct and adjoint BVPs. The following argument shows that the Fredholm
alternative in Definition 8.19 applies to linear BVPs for ODEs.

Suppose that the homogeneous BVP,
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has only the zero solution and the coefficient a of the highest derivative never
vanishes. Then we can construct its Green’s function, and therefore the nonhomo-
geneous BVP,

Au = f, Bu =0,
has a unique solution u € C%([0,1]) for every f € C([0,1]). If
A*v =0, B*v =0,
then for every f € C([0,1]) we have
(f,v) = (Au,v) = {u, A*v) = 0.

Hence, v = 0, and the homogeneous adjoint BVP has only the zero solution. We can
then construct the adjoint Green’s function g*(z,y), and the adjoint BVP A*v = h,
B*v =0 has a unique solution v € C?([0, 1]) for every h € C([0,1]).

Since (A*)~! = (A71)*, the direct and adjoint Green’s functions are related by

9" (z,y) = 9(y, ). (10.25)

If A is self-adjoint, then g is Hermitian symmetric.

If A is singular, then A* is also singular. In that case, it is possible to define
a generalized inverse of A, whose kernel is called the modified Green’s function of
A, and show that the direct BVP is solvable if and only if the right-hand side
is orthogonal to the kernel of the adjoint (see Exercise 10.9 for an example, and
Stakgold [52] for further discussion).

Finally, we describe the Green’s function representation of the solution of a BVP
with nonhomogeneous boundary conditions. We begin by giving a formal derivation
of the representation. For definiteness, we consider the Dirichlet problem for a real,
second-order ODE,

Au = f(x), u(0) = ap, u(l) =ay, (10.26)

where A is defined in (10.4). A similar derivation applies to other types of boundary
conditions. The adjoint Green’s function g*(z,y) satisfies

A*g* =é(z —y), g*(0,y) = g*(1,y) =0,

where A* is a differential operator in z, and y plays the role of a parameter. Using
Green’s identity (10.6), we find that

/0 (6" (@) Au(z) — A*g* (2, y)u(2)} do
= [a

(@)9" (@, y)us(2) = a(@)g; (@, y)u(@) + {b(z) = as(@)} ¢* (@, y)u(@)],—o »
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where the z-subscript denotes a derivative with respect to z. We have formally that

/ A*g* (2, y)u(e) do = / 5(z — y)u(z) do = u(y).
0 0

Hence, using the equations satisfied by g* and u, and rearranging the result, we get

u(y) = / 6" (@,9) (@) do + [a(2)g% (@, y)u(@)] o

Exchanging = and y in this equation, and using (10.25) to replace g* by g, we obtain
the following Green’s function representation of the solution of (10.26):

u(z) = / o(2,9) 1 (y) dy + a(L)gy (=, Der — a(0)g, (z, 0)ao.

The above derivation of this representation does not constitute a proof. We can,
however, verify the correctness of the result directly. From Proposition 10.12, the
function

up(z) = /0 9(z,y) f(y) dy

is the solution of the nonhomogeneous equation Au, = f that satisfies the homoge-
neous boundary conditions u,(0) = u,(1) = 0. On the other hand, it follows from
(10.20)—(10.23) that

un(z) = a(l)gy(z, ar — a(0)gy(z,0)ao

is the solution of the homogeneous equation Aup = 0 that satisfies the nonhomoge-
neous boundary conditions u(0) = ag, up(1l) = ax.

10.4 Weak derivatives

In the previous sections, we considered “classical” differential operators that act
on continuously differentiable functions. The resulting differential operators lack a
number of desirable properties; for example, they are not closed or self-adjoint. To
obtain such operators, we need to extend the domains of the classical differentiation
operators to include functions whose weak derivatives belong to L2. In this section,
we define the notion of a weak L2-derivative in terms of integration against test
functions. We show that weakly differentiable functions can be approximated by
smooth functions, and we use this fact to study some of their basic properties. We
also define the Sobolev spaces H* of functions with k square-integrable derivatives,
and use them to give a precise description of the domains of some simple self-adjoint
ordinary differential operators.

We begin by considering functions defined on R. We say that ¢ : R -+ C is a
test function if it has compact support and continuous derivatives of all orders. We
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denote the space of test functions by C° (R). The following example shows that
there are many test functions.

Example 10.14 The function

_ Jexp[-1/(1—2?)] if 2| <1,
“O(m)_{o | | if 2] > 1,

belongs to C°(R). All its derivatives exist and are equal to zero at £ = +1. This
function is not analytic at x = 1, however, since its Taylor series at these points
converge to zero, rather than to the function itself. Rescaling this function,

v =ep (252,

we obtain a test function ¢ supported on the interval |z — x| < § whose integral
has any desired value.

Before defining weak derivatives, we show that C°(R) is dense in L?(R). To do
this, we approximate an L2-function by its convolution with a smooth approximate
identity, a technique called mollification.

Let ¢ € C(R) be a nonnegative test function with support [—1,1] and

/Rgo(a:) dx = 1.

For € > 0, we let
1 T
Pe(T) = —p (—) -
e \e
We call such a function ¢, a mollifier or averaging kernel. The family {p. | € > 0}
is an approximate identity as e — 0% since the support of ¢, shrinks to the origin

and each ¢, has unit integral. If u € L?(R), we define the mollification u. = . * u
of u, meaning that

1um=4%m—mmw@. (10.27)

The function u, belongs to C*°(R) because

@W@=/¢@m—mmm@. (10.28)
R

The differentiation under the integral sign is justified by the dominated convergence
theorem.

Lemma 10.15 If v € L?(R) and u,. is defined by (10.27), where ¢, is a mollifier,
then ||uc|| < ||u||, where || - || denotes the L?-norm.
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Proof. Using the fact that ¢, is nonnegative and has unit integral over R, we
find from the Cauchy-Schwarz inequality that

(@) = \ [0 =yt a = yyute) dy\

(/R pelz =) dy) " (/R ¢e(z = y)lu()l’ dy)
([ o= as) "

Squaring this equation and integrating the result with respect to =, we obtain that

[ uk iz < [ ([ oo -l ay) ae

Exchanging the order of integration, which is justified by Fubini’s theorem, we find

that
fucl? < [ ( [oda=v dw) ()2 dy = Jull”.
R \JR 0

Using this lemma, we prove that the mollifications u, converge to u in L2.

1/2

IA

Theorem 10.16 The space C2°(R) is dense in L?(R). If u € L?(R), then u, — u
strongly in L*(R) as € — 07.

Proof. Suppose that u € L?(R). Let 5 > 0 be arbitrary. The space C.(R) of
continuous functions with compact support is dense in L2(R) (see Theorem 12.50),
so there is a v € C.(R) such that ||u — v|| < /3. We define v, = ¢, xv € C°(R).
Then, from Lemma 10.15, we have

l[ue = vell < flu =[] <n/3.

The supports of v and v, are contained in a compact set. The argument in the proof
of Theorem 7.2 implies that v. — v uniformly as € — 0%, and therefore v — v in
L?(R). There is a § > 0 such that ||v — v|| < 7/3 for 0 < € < §, and then

llu = uell < flu = vl + [l = vell + llve — uell <.
It follows that u. — v in L?(R). a

To motivate the definition of a weak L?-derivative, we first consider u € C*(R)
with a “classical” pointwise, continuous derivative

v(z) = u'(z). (10.29)

The use of this formula, followed by an integration by parts, implies that

/ vpdr = — / up'dx  for all p € C(R). (10.30)
R R
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The boundary terms are zero because ¢ vanishes outside a compact set. Conversely,
if u € C1(R) satisfies (10.30) for some v € L?(R), then another integration by parts
implies that

/Ugod:c:/u'tpda: for all p € C*(R).
R R

Hence, v = u' because C°(R) is dense in L?*(R). Thus, (10.29) and (10.30) are
equivalent when u is continuously differentiable. Equation (10.30) makes sense,
however, if u and v are only square-integrable, because the derivative acts on the
test function. Rewriting the integrals as inner products, we obtain the following
definition of a weak derivative.

Definition 10.17 A function u € L?(R) has a weak derivative v = u' € L2(R) if
(v, ) = —(u,¢')  forall p € CX(R).

The Sobolev space H*(R) consists of the functions with k square-integrable weak
derivatives,

H*R) = {u € L2(R) | u,,...,u® € LQ(JR)} :

equipped with the following norm and inner product:

1/2
eall v = (/ {lul? + w2+ + [u®2} da:) :
R

R

Proposition 10.18 The differentiation operator D : H'(R) C L?(R) — L?*(R)
defined by Du = v' is closed.

Proof. Suppose that u,, — u and Du, — v in L*(R). It follows from this
convergence and the definition of the weak derivative that for every test function ¢,

(v,0) = lim (uy,, ) = — lim (un, ¢') = —(u,¢').
Hence u € H'(R), and Du = v, so D is closed. O

The closedness of D implies that H*(R) is complete and therefore a Hilbert
space. If a sequence (u,) is Cauchy in H*, then (ug)) is Cauchy in L? for each
j < k. Since L? is complete, there are functions v,v; € L? such that u, — v and
u%j) — vj as n — oo. Since D is closed, it follows that v; = v for each j < k, so
un, = v in H*.

An alternative, but equivalent, way to define L2-derivatives is as the L2-limit
of smooth derivatives. Thus, we say that u' = v if there is a sequence of smooth

functions w,, such that u, — w and u), = v in L?. The equivalence of these
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definitions follows from the following theorem, which shows that any H*-function
can be approximated in the H*-norm by a test function.

Theorem 10.19 The space C®°(R) is dense in H¥(R). If v € H*(R) and u, =
©e * u, where @, is a mollifier, then u, — u strongly in H*(R) as € — 0.

Proof. Suppose that u € H*(R), and ue = ¢, * u, where ¢ is a mollifier. The
function ¢, , : R — R defined by

‘Pe,w(y) = pe(r —y)

is a test function in C¢°(R). It therefore follows from (10.28) and the definition of
the weak derivative that

W) = [ 55 lede-plu)dy

(-1) /R (% (e — y)] u(y) dy

/ pe(z —y)u (y) dy
R

for every j < k and z € R. Theorem 10.16 implies that v&) — u(® in L2(R), so
ue — u in H*¥(R).

If u does not have compact support, then u. does not have compact support
either. To show that C°(R) is dense in H*(R), we truncate u before mollification.
We choose ¢ € C2°(R) such that

_ 1 ifz| <L,

ple) = {0 if |z] > 2,
and define ¥, (z) = ¢(x/n). Then u,, = 1¥,u has compact support, and u,, € H¥(R)
when v € H¥(R). One can show that u, — u in H*¥(R) as n — oo, and we have

just proved that ¢¢ * u, — u, as € = 0. Since ¢ * u, € C*(R), the density
follows. .

As an illustration of the use of mollification, we show that integration by parts
holds for H'-functions.

Proposition 10.20 Suppose that u,v € H'(R), then

/uv' dr = —/u'vdm. (10.31)
R R

Proof. From Theorem 10.19, there are sequences (un) and (v,) in C°(R) such
that u,, — u and v,, — v in H*(R). Since u,, and v, vanish outside a compact set,

we have
/unv;1 dr = — / up vy, dz.
R R
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Taking the limit of this equation as n — oo, and using the continuity of the L?-inner
product with respect to L2-convergence, we obtain (10.31). a

Example 10.21 Let A : H'(R) C L*(R) — L?*(R) be the operator A = iD,
meaning that Au = ju’. We claim that A is self adjoint. For every u,v € H(R),
we have

(Au,v) = —i/ﬂ'vdmzi/ﬂv'dmz (u, Av).
R R

Hence, A is symmetric and D(A*) D HY(R). If v € D(A*), then thereis aw € L*(R)
such that

(i, v) = {u,w) for all u € H'(R).
Since H'(R) contains C°(R), it follows that
(¢',0) = (pyiw)  for all p € C(R),

which means that v € HY(R) and w = iv'. Thus, D(A*) C H(R), so D(A*) =
HY(R), and A is self-adjoint.

We now consider functions defined on a bounded open interval (0,1). The space
of test functions C'°((0, 1)) consists of smooth functions that vanish outside a closed
interval contained strictly inside (0,1). A function v € L%([0,1]) is the weak L>-
derivative of u € L?([0,1]) if

1 1
/ vpde = —/ up'de  for all p € C((0,1)).
0 0

The Sobolev space H*((0,1)) consists of the functions in L2([0,1]) with k weak
derivatives in L*([0,1]).

Theorem 10.22 The space C*°([0,1]) is dense in H¥((0,1)).

Proof. We would like to obtain a smooth approximation of v € H*((0,1)) by
extending u to a function

~ _ Ju(z) ifze(0,1),
=0 T g0

in L2(R), and mollifying the extension %. However, % need not belong to H*(R)
because it may be discontinuous at the endpoints of (0, 1), so we cannot conclude
immediately that the restriction of ¢ *% to (0, 1) converges to u in H*((0,1)). The
proof therefore requires a more complicated argument, which we outline without
giving all the details. For § > 0, we define the stretching map Ls : (0,1) — (=4, 1+9)
by

Ls(z) = (1 + 26) (x - %) + %
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We define us € H¥((—8,1 + 8)) by us = uo Ly'. Then one can show that the
restriction of us to (0,1) converges to u in H*((0,1)) as § — 07. We extend us by
zero to obtain 5 € L?(R). Let ¢, be a mollifier, and

Pez(y) = pe(z —y).

For z € (0,1) and € < §, we have ¢, , € C°((—9,1+0)). The restriction of ¢, * us
to (0,1) is therefore a C* function on [0, 1] that converges to the restriction of us
to (0,1) in H*((0,1)) as € = 0F. The result then follows. O

Although C°(R) is dense in H¥(R) and C°((0,1)) is dense in L2([0,1]), it is
not true that C2°((0,1)) is dense in H*((0,1)) for k > 1.

Definition 10.23 The Sobolev space
Hg((0,1)) = C=((0,1)) € H*((0,1))
is the closure of C°((0,1)) in H*((0,1)).

It follows from the Sobolev embedding theorem below that HE((0,1)) consists
of the functions in H*((0, 1)) whose derivatives of order less than or equal to k — 1
vanish at the endpoints of (0,1).

In Section 7.2, we proved the Sobolev embedding theorem for periodic functions
by using Fourier series. Here we give a different proof, for which we need the
following lemma.

Lemma 10.24 Suppose that h : [0,1] = R is a continuous function such that

1
/ h(z)dz = 1.
0
Define £ : [0,1] x [0,1] = R by

B Jih(t)dt if0<y<um,
k(w’y)_{ — [/ h(tydt ifz<y<1

If u € C([0,1]), then

1 1
u(z) = /0 u(y)h(y) dy +/0 k(z,y)u' (y) dy forall0 <z <1.

Proof. 1If u € C*([0,1]), the fundamental theorem of calculus implies that, for
every z,y € [0,1],
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Multiplying this equation by h(y) and integrating the result, we obtain that

ue) = [ u(y)h(y) dy + / 1 ( / "0 dt) 1) o

Exchanging the order of integration, we find that

/0 1 ( /y ") dt) hy) dy /0 ’ ( / "hw) dy) ! (t) dt
—/: (/tlh(y)dy> (0 dt

/ k(e by (8)

and the result follows. O

Theorem 10.25 (Sobolev embedding) The space H'((0,1)) is a subset of
C([0,1]). There is a constant C' > 0 such that

|]]loo < Clul| g2 for all w € H1((0,1)). (10.32)

Proof. First, suppose that u € C*([0,1]). Then, from Lemma 10.24 and the
Cauchy-Schwarz inequality, we find that

1 1
w0l < |[ wwrma|+| [ Ko al
0 0
< Wil ol + G, g
< Clull,

since ||k(z, -)||r2 is bounded uniformly in z for a continuous function h. Taking the
supremum of this inequality with respect to x, we obtain that ||u||c < C||ul|g for
every u € C([0,1]). Since C* is dense in H!, it follows that this inequality holds
for every u € H'. Furthermore, every u € H'! is the uniform limit of a sequence of
C*°-functions, and is therefore continuous. O

Strictly speaking, an element of H' is an equivalence class of square-integrable
functions that are equal almost everywhere, and the embedding theorem states that
each such equivalence class contains a continuous function. An alternative way to
state this result is that there is a continuous map, or embedding,

J: H'((0,1)) = C([0,1])

that identifies a function u, regarded as an element of H'((0,1)), with the same
function u, regarded as an element of C([0,1]). The following theorem shows that
this embedding is compact.

Theorem 10.26 (Rellich) A bounded subset of H((0, 1)) is a precompact subset
of C([0,1]).
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Proof. Since C*([0,1]) is dense in H*((0,1)), it is sufficient to show that a subset
of C*°([0,1]) that is bounded in H'((0,1)) is precompact in C([0,1]). Suppose that
F is a subset of C*°([0,1]) such that there is a constant M with

||l < M for all u € F.

From (10.32), the set F is bounded in C([0,1]). Moreover, by the fundamental
theorem of calculus and the Cauchy-Schwarz inequality, we have for every u € F
and z,y € [0,1] that

ju(z) — uly)] = /:u'(ndt‘
- ‘ /le[z,y]u)u'(t)dt‘
<z —y? (/01 ' ()2 dt) v
< M|:c—y|1/2.

Here, X[4,y] is the characteristic function of the interval [z,y]. Thus F is equicon-
tinuous, and therefore the Arzela-Ascoli theorem implies that it is precompact in
c([o,1]). O

A function u € C ([0,1]) that satisfies
lu(z) —u(y)| < M|z —y|" for all z,y € [0,1]

for constants M > 0 and 0 < r < 1 is said to be Hélder continuous with exponent
r. Thus, the proof of Theorem 10.26 shows that every v € H' ((0,1)) is Hélder con-
tinuous with exponent 1/2. For a generalization of this result, see Theorem 12.73.

Proposition 10.27 If A is the second-order ordinary differential operator defined
in (10.4), where a, b, ¢ are smooth coefficient functions, then Green’s formula (10.6)
holds for all u,v € H?((0,1)).

Proof. Tfu,v € H?((0,1)), then there are sequences (uy), (v,) in C* ([0, 1]) such
that u, — u and v, — v in H%((0,1)). From Green’s formula, we have

(Atp,vp) — (Un, A*vp) = [a (Un'vn — Unol) + (¢ — a')ﬁvn]é .

Letting n — oo, we obtain Green’s formula for u and v, because Au, — Au,
Av,, — Av in L?, and, from the Sobolev embedding theorem, the boundary terms
converge pointwise. O

Example 10.28 Let us prove that the second derivative operator A = —D? with
domain

D(A) = {u € H*((0,1)) | u(0) = u(1) = 0}
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is self-adjoint. If v € D(A*), then there is a w € L*([0, 1]) such that
(—u",v) = {u,w) for all u € D(A).
Since D(A4) D C°((0,1)), it follows from the definition of the weak derivative that
v € H*((0,1)) and w = —v". Hence, D(A*) C H?((0,1)), and A* = —D? on its
domain. If u € D(A) and v € H2((0,1)), then an integration by parts implies that
(—u",0) = {u, —0") + [T

Thus, v belongs to D(A*) if and only if v(0) = v(1) = 0, so D(A) = D(A*) and
A= A*

As the previous example illustrates, the direct verification of self-adjointness

may be nontrivial even for the simplest unbounded operators. The following result,
which we state without proof, gives a basic criterion for self-adjointness.

Theorem 10.29 Let A be a closed, symmetric operator on a Hilbert space H.
Then the following statements are equivalent:

(a) A is self-adjoint;

(b) ker (A* +il) = {0};

(c) ran (A +4l) = H.

If m = dimker (A* —4I) and n = dimker (A* +4I), then the pair (m,n) is
called the deficiency index of A. Thus, a closed, symmetric operator is self-adjoint
if and only if its deficiency index is (0, 0).

10.5 The Sturm-Liouville eigenvalue problem

In this section, we study the Sturm-Liouville eigenvalue problem

— (pu") + qu = \u, (10.33)
u(0) = u(1) =0,
where the coefficients p, ¢ are given real-valued functions, and A € R. For definite-
ness, we consider the Dirichlet problem, but other self-adjoint boundary conditions

can be analyzed in a similar way. Equation (10.33) is the spectral problem for the
self-adjoint Sturm-Liouville operator A : D(A) C L?([0,1]) — L?([0, 1]) defined by

Au = — (pu') + qu, (10.34)
D(A) = {u € H*((0,1)) | u(0) = u(1) = 0}. (10.35)
Theorem 10.30 Suppose that p € C*(]0,1]), ¢ € C([0,1]) are real-valued functions
and p(z) > 0 for all z € [0,1]. There is an orthonormal basis of L? ([0,1]) that

consists of eigenfunctions of the Sturm-Liouville eigenvalue problem (10.33). The
eigenvalues \; < Ay < ... are real and simple, and A\, — 00 as n — 0.
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Proof. We begin by showing that if A is real and sufficiently negative, then the
only solution of (10.33) is u = 0, so A is not an eigenvalue of A. We take the inner
product of (10.33) with u, and integrate the result by parts. This gives:

1 1
/ {p|u'|2 +q|u|2} dr = /\/ lul? dz. (10.36)
0 0
We let
o = min P@), B= 02221‘1(“’)' (10.37)

Since p > 0, we have a > 0; if ¢ > 0, then 8 > 0 also, but we may have g < 0.
Using (10.37) in (10.36), and rearranging the result, we find that

1 1
a/ /| d:c+(ﬂ—)\)/ lul* dz < 0.
0 0

It follows that if A < 3, then

L 1
/ |u'|” dz =/ lu|* dz =0,
0 0
so u = 0.

This result shows that the kernel of A — A is zero when A < . From what we
have shown previously, the Green’s function gy of A — AI exists. Therefore, A is in
the resolvent set of A, and the self-adjoint resolvent operator Ry is given by

Ry = (M — A)~1 - L2([0,1]) — L2(0, 1)),
Ryf(z) = - / ox(9) 1 () dy.
0

Since g, is continuous, we certainly have

/01 /01 [gx(z,9)]2 dady < oo,

so R, is Hilbert-Schmidt and hence compact. The spectral theorem for compact,
self-adjoint operators implies that there is an orthonormal basis of L%([0,1]) con-
sisting of eigenvectors {u, | n € N} of Ry with eigenvalues {p,, | n € N} such that
tn — 0 as n — oo. Since (AI — A)Ry) = I, we have u, € D(A) and Au,, = Ayunp,
where

1
B<An=A——,
Hn
S0 A, = 00 as n — oo. The Sturm-Liouville operator A therefore has a complete
orthonormal set of eigenvectors that forms a basis of L?([0, 1]).
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If an eigenvalue A is not simple, then (10.33) has a pair of linearly independent
solutions. It follows that every solution of the Sturm-Liouville equation

— (pu") + qu = Iu

vanishes at z = 0, 1 since it is a linear combination of eigenvectors. This contradicts
the existence of a solution of the initial value problem with nonzero initial data for
u(0). O

The compactness of the resolvent may also be obtained as a consequence of
Rellich’s theorem, in Theorem 10.26. We define a symmetric, sesquilinear form a
on Hg ((0,1)) by

a(u,v) = /01 {pu'v' + quv} dz. (10.38)
We call a the Dirichlet form of A. For u,v € D(A), we have
a(u,v) = (Au,v) = {u, Av).
The set D(A) x D(A) is dense in H} ((0,1)) x H} ((0,1)), and the form extends con-

tinuously to the larger space. The associated quadratic form a(u,u) on H}((0,1))
is given by

L 2
a(u,u) = / {ohe'f? +qlul’} de.
0

As we saw above, we have the estimate

1 1
a(u,u) > a/ lu'|* da +,8/ [ul® da.
0 0

It follows that if u € D(A), then

((A = X)u,u) > a/l [u'|” dz + (8 —N) /1 lul” de.
0 0

If A < 3, this estimate implies that (A\I — A)~! maps bounded sets in L? to bounded
sets in H}, which are precompact in L? by Rellich’s theorem. Hence, 4 has a
compact resolvent.

The operator A is diagonal in a basis of eigenvectors. We may therefore solve
the Sturm-Liouville BVP

—(pu") + qu = Iu+f,
u(0) = u(1) =0,
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by expanding u and f with respect to the orthonormal basis of eigenvectors. As-
suming that A is not an eigenvalue of A, the solution is

o) = 3 P o),

where the series converges in L%(]0,1]). We may write the operator A as

o0 oo oo
A=Y Mg ®@u,, D(A) = {chun et ‘ DL+ X)) fenl® < oo} :
n=1 n=1 n=1
where the sum converges strongly on the domain of A. The resolvent operator of A
is
= Up @ Uy,

Ry=) ———
n=1 A= )\"

where the sum converges uniformly for A € p(A), and the Green’s function g, of
A — A is given by

g)\(xay) = A — N

n=1
where the sum converges in L?([0, 1] x[0, 1]). The resolvent operator and the Green’s
function, regarded as functions of A, have poles at the eigenvalues of A.

Example 10.31 The simplest example of a Sturm-Liouville eigenvalue problem is
—u" = du, u(0) = u(1) = 0.
The eigenfunctions u,, and eigenvalues \,, where n = 1,2,3, ..., are given by
un(z) = V/2sin (nwz) An = nir?

The associated eigenfunction expansion is a Fourier sine expansion. Neumann
boundary conditions lead to a Fourier cosine expansion. Thus, Theorem 10.30
provides another proof of the completeness of the Fourier basis. In this example,
the nth eigenfunction has n — 1 zeros inside the interval (0,1). This property holds
for all regular Sturm-Liouville eigenvalue problems (see Coddington and Levinson

[6])-

A Sturm-Liouville problem is said to be regular if it is posed on a bounded
interval [a,b] and p(z) # 0 for every a < = < b; otherwise, it is said to be sin-
gular. We have just proved that a regular Sturm-Liouville eigenvalue problem has
a complete orthonormal set of eigenvectors. The resolvent operator of a singular
Sturm-Liouville operator may or may not be compact and, if it is not compact,
then the corresponding Sturm-Liouville eigenvalue problem may have a continuous
spectrum as well as, or instead of, a point spectrum.
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Example 10.32 The function p(z) = 1 — z? vanishes at the boundaries of the
interval [—1,1]. The corresponding singular Sturm-Liouville eigenvalue problem on
[-1,1], with ¢ =0, is

— (A=) =xu  for —1<z <1,

[1 (1= 2%) [/ + [uf?} do < oo, (10.39)

This eigenvalue problem has a complete orthogonal set of eigenvectors, the Legendre
polynomials, with eigenvalues A, = n(n + 1) (see Exercise 6.12). Since A, =
n(n + 1) = oo as n — oo, the resolvent operator (—I — A)~! is compact. No
boundary conditions are required at the singular endpoints. The condition in (10.39)
rules out singular solutions which are unbounded at z = £1.

More generally, if m € N is a positive integer, then the singular Sturm-Liouville
problem,

m2

- [(1 - .CEZ)'LLI]I + 1_—1_2

! 2 2 |u[?
/ {(1—m)|u'| +W}da:<oo,
—1 -

has eigenvalues A\, = n(n + 1), where n = m,m + 1,.... The corresponding eigen-
functions are the Legendre functions uw = P*. They may be expressed in terms of
the Legendre polynomial P, = P? as

U= Au for —-1<z<1,

m m m/2 dm
Pra) = (—)™(1-22)™ —=Pa(@)
mz 1 dmtn

2npl dgmtn \T DA

= (-)™(1-2?)

Example 10.33 An example of a Sturm-Liouville operator on the whole of R with
a compact inverse is the quantum harmonic oscillator,

Au = —u" + z?u, D(A) = {u € H*(R) | 2°u € L*(R)} .

Its eigenvectors are the Hermite functions (see Exercise 6.14), which form a complete
orthonormal set in L?(R).

Example 10.34 An example of a Sturm-Liouville operator on L?(R) with a non-
compact inverse is given by

Au = —u" + u, D(A) = H*(R).

The inverse of A is given by
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The spectrum of A is [1,00) and is continuous. For A € C\ [1,00), the resolvent
operator Ry = (A\I — A) ! is given by

Ryu(z) = / VI Ne=uly(y) dy,
R

1
T2/I-A

where we use the branch of the square-root with Re+/z > 0 in order to ensure that
the kernel decays at infinity. The resolvent operator has a branch cut along the
continuous spectrum of A.

10.6 Laplace’s equation

Adjoint operators and Green’s functions can be defined for partial differential equa-
tions as well as ordinary differential equations. If the partial differential operator
has a compact, self-adjoint inverse (or resolvent), then it has a complete orthonor-
mal set of eigenvectors. In this section, we discuss Laplace’s equation, which is
one of the most important linear PDEs. We will consider classical solutions in this
section. Weak solutions are discussed further in Section 12.11.

Let © be a bounded, open, connected set in R™, with a sufficiently regular
boundary 9€2. We will not make the required regularity assumptions precise here
(see Gilbarg and Trudinger [15] for a detailed discussion). We denote by C*(Q) the
space of functions that are k-times continuously differentiable in 2, and by C* ()
the space of functions whose partial derivatives of order less than or equal to k exist
in Q and extend to a continuous function on the closure €.

If F: Q - R" is a continuously differentiable vector field on 2, then the
divergence theorem states that

/V-de:/ F -nds, (10.40)
Q o0

where n is the unit outward normal to 9Q, and dS is an element of (n — 1)-
dimensional surface area on 0f).

The Laplacian operator —A acting on a function u(z) where z = (x1,...,z,) €
R™ is given by

n
8%u

—Auy = — g
5 -
i1a$i

It is convenient to introduce a minus sign in the definition of the Laplacian operator

because A is a negative operator. The Dirichlet problem for the Laplacian on Q is

—Au=f in Q, (10.41)
u=h on 0f.
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Other types of boundary conditions, such as Neumann conditions

%zh on 01,

where du/On = Vu - n is the outward normal derivative of u, can be treated in a
similar way. First, we show that the Laplacian is formally self-adjoint.

Theorem 10.35 (Green’s) If u,v € C%(Q), then

ov Ou
/Q(uAv —vAu) dx = /asz (ua—n _Ua_n> ds.

Proof. The result follows from an integration of the vector identity
uAv —vAu =V - (uVv —vVu)
over {2 and an application of the divergence theorem. d

If Bu = 0 is a boundary condition for the Laplacian, then we define the adjoint
boundary condition B*v = 0 by the requirement that the boundary terms in Green’s

formula vanish. If
(u,v) = / uv dx
Q

is the L2-inner product on 2, then we have that
{(Au,v) = (u, Av) for all u,v € C%(Q) such that Bu = B*v = 0.

For example, the adjoint boundary condition to v = 0 is v = 0, so the Dirichlet
problem for Laplace’s equation is self-adjoint.
The n-dimensional é-function has the formal properties

6(x) =0 forz#y, 6(x)de =1, 6(z —y)f(y)dy = fy)
R7 R™
for any continuous function f : R* — C. The Green’s function g(z,y) of the
Dirichlet problem for the Laplacian is the distributional solution of
—Ag=46(z—-vy) for z € Q, (10.42)
g9(z,y) =0 for z € 09
The self-adjointness of the boundary value problem implies that g is symmetric,
meaning that g(z,y) = g(y, ).

The Green’s function representation of the solution of (10.41) follows formally
from Green’s formula:

_ ou 0g
/Q{gAu—uAg} dr = /BQ {g% —u%} ds.
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Using (10.41) and (10.42) in this equation, and indicating the integration variable
explicitly, we obtain that

99(z,y
[ =ow01@ +u@t - do = [ 1@ L2 as(a),
Q aQ on(z)
Evaluating the integral involving the delta function, exchanging x and y, and using
the symmetry of the Green’s function, we find that

99(z,y)
u(z) = z, dy — h(y)—=—==dS(y).
@ = [ safea— [ Gt
Thus, we can represent the solution of (10.41) for general data f : Q@ — R and
h: 002 = R in terms of the Green’s function.

To give a nondistributional characterization of the Green’s function, we integrate
(10.42) over a small ball B,(y) of radius € centered at y, use the divergence theorem,
and let € — 0*. This gives

99

li Yzy)de=-1 * €n, 10.43
Jim, o5(y) O (z,y)dz or every y ( )

where 9/0n is the unit outward normal derivative to the ball. We also have

—Ag=0 for z,y € Q and z # y,
g(z,y) =0 for z € 90 and y € Q.

For most domains 2, it is not possible to obtain an explicit analytical expression
for g. A simple solvable case is that of the free-space Green’s function g; defined
on R™. In view of the rotational invariance of the Laplacian, we look for a solution
g7 = g¢(r) that depends only on r = |z — y|, where | - | denotes the Euclidean norm
on R™. The polar form of Laplace’s equation implies that

1 d 1 dgf
— (12 = £ . 10.44
T gy (r o 0 orr >0 (10.44)

The solution of (10.44) is

1
gr = c2log (—) when n = 2,
T

Cn
—2

9= when n > 3, (10.45)

where ¢, is a constant, and we omit an arbitrary additive constant.
The radial derivative of g is constant on any sphere centered at y, so the singu-
larity condition in (10.43) implies that

1
lim 1990 - _ L (10.46)
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where w,, is the area of the unit sphere in R™. This area is given by

271-"'/2

“r = Tn/2)

where the Gamma function T is defined, for z > 0, by
o«
T(x) :/ et dt.
0
One can show that
1
I(z+1) =2l(x), ra)=1i, r (—) =+/T.

Hence, for each n € N,

r=o-n e ) = (k-2) (k- 2) (1) v

which gives ws = 27 (the length of the unit circle), and w3 = 47 (the area of the
unit sphere).
Using (10.45) in (10.46), we find that

1 1

02:&)_27 Cn = (n_z)w”

when n > 3.
Thus, the free-space Green’s function gy of Laplace’s equation in two and three

space dimensions is given by

1 1
gf($7y) = % log (m) when n = 2,

1
T,Yy) = ——— when n = 3.
9¢(z,y) y p—
In contrast to the one-dimensional case, the Green’s function is unbounded at x = y.
Returning to the Green’s function for Laplace’s equation on a bounded domain,

we may write the solution of (10.42) in the form

9(z,y) = g5 (x —y) + ¢(2,9),
where ¢(x,y) satisfies

—Ap=0 €N,

o(z,y) = —gs(x —y) =z €N

If y € Q, then the boundary data —g¢(z —y) is smooth for z € 9. The solution of
an elliptic PDE, like Laplace’s equation, on a smooth domain with smooth boundary
data is smooth, and therefore p(z,y) is a C* function on Q x 2. We have used the
free-space Green’s function to “subtract off” the singularity in the Green’s function
on a bounded domain.
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The eigenvalue problem for the Laplacian is

—Au=\u in Q, (10.47)
u=0 on Of.

We again assume Dirichlet boundary conditions for definiteness, when the eigen-
values are strictly positive. If  is a bounded domain with a sufficiently regular
boundary, then one can show that the Green’s operator is a compact, self-adjoint
operator on L2(f2). Consequently, it has a complete orthonormal set of eigenfunc-
tions.

Using the divergence theorem, we find that

/Qu(—A—)\I)ud;c /Q{—V-(uVu)+|Vu|2 —)\u2} dz

Vul> = M2} da.
| {var =)

The boundary terms vanish because u = 0 on 9f2. Hence, if X is an eigenvalue of
the Dirichlet problem for —A with eigenfunction wu, then

/Q {qu|2 - )\uz} dz = 0.

Since u # 0, it follows that A > 0. If A = 0, then Vu = 0 in 2, so u = constant.
The boundary condition implies that v = 0, so A = 0 is not an eigenvalue of the
Dirichlet problem. A similar argument applies to the Neumann problem for the
Laplacian, with boundary condition du/0n = 0 on 0%, except that A = 0 is an
eigenvalue with constant eigenfunction v = 1.

It is not possible to compute the eigenvalues and eigenfunctions of the Laplacian
explicitly unless the domain 2 has a special shape. For example, if the boundary of
Q is made up of coordinate surfaces of a coordinate system in which the Laplacian
separates, then we may use the method of separation of variables illustrated in the
next two examples.

Example 10.36 The eigenvalue problem for the Laplacian with Dirichlet boundary
conditions on the rectangle Q = [0, a] x [0,b] C R? is

_(Uzz+uyy)=/\u, 0<.’L’<a, 0<y<b7

u(0,y) = u(a,y) =0,
u(z,0) = u(z,b) = 0.

The eigenfunctions v = u, ,, and eigenvalues A = A, ,, where m,n = 1,2,3,...,

are given by
2 . /mmx\ . (nTY
thnn(@,9) = = sin (T ) sin ()
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m?  n?
Am,n = w2 (? + b—2> .

The corresponding eigenfunction expansion is a Fourier sine expansion. The lowest
eigenvalue is simple, but higher eigenvalues need not be. For example, in the case
of a square, a = b, the eigenvalue A = 5072 /a® has multiplicity 3 corresponding to
(m,n) = (5,5),(1,7),(7,1). The Green’s function g(z,y; &, n) satisfies

= (9zz + gyy) = 6(z = &)o(y —n),
9(0,y;6,m) = g(a,y;&,m) =0,
9(2,0;¢,m) = g(z,b;¢,m) =0

The eigenfunction expansion of the Green’s function is

4 X X sin (marz /a) sin (nwy/b) sin (mné /a) sin (n7n /b)
9(@,y;&,m) _b Z: g 2 (mz/a2 +n2/b2) ’

where the series converges in L2() x ).

Example 10.37 The Dirichlet eigenvalue problem for the Laplacian in the three-
dimensional unit ball

Q={zeR ||z| <1}
may be solved using spherical polar coordinates (r, 6, ), where
z =rsinfcosyp, y=rsinfsiny, 2z =rcosb,

and 0<r,0<6 <7, 0<p < 2r. The eigenvalue problem (10.47) for Laplace’s
equation is

19 Bu -i-#2 smﬁa—u +#82—u =k%u, forr<1
2or\" or r2sinf 06 00 r2sin®0 0p? | ’ ’
u=~0 for r = 1.

Here, we write A = k2, since A\ > 0. First, we separate the radial and angular
dependence, and look for solutions of the form u(r, 8, ) = R(r)Y (0, ). This gives

S 0PR) + (k- BYR=0, r<1,  RO)=0, (104

1 0 12)4 1 9%y
- [—sinﬁﬁ (s1n6 60) + —sin203—902] = uy, (10.49)

where p is a constant. Equation (10.49) is the eigenvalue problem for the Laplace-
Beltrami equation on the unit sphere. The nonzero, square-integrable solutions
that are 27-periodic in ¢ are parametrized by two integers (I,m), where [ > 0 and
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m=—l,—1+1,...,1—1,l. The eigenvalues are u = [(l + 1) and the eigenfunctions
are the spherical harmonics Y = Y™, given by

vm0,9) = (-1 [T

1/2 .
] P (cos§)e'™?.

Here, P/"(z) is the Legendre function defined in Example 10.32. The set
{Y/"|1>0and |m| <1}

forms a complete orthonormal basis of L?(82), where 0Q = {z € R? | |z| = 1} is
the two-dimensional unit sphere in R3.

Up to an arbitrary multiplicative constant, the solution of the radial equation
(10.48) that is bounded at r = 0 is given by

R(r) = ji(kr),
where j;(z) is the Ith order spherical Bessel function that satisfies

1(z+1)]u=0_

xr2

2
u' + =+ [1 -
T

The boundary condition R(1) = 0 implies that j;(k) = 0, so that k¥ = z,, where
x = 2, with n = 1,2,... is the nth positive zero of j;(z). The corresponding
eigenvalues are therefore A = A, where A\, = zlz’n, and A;, has a multiplicity
of (21 + 1) corresponding to the different possible choices of —I < m < I. The
eigenfunctions,

Ul,m,n(T,0,0) =51 (\//\l,nr) P (cos§)e™?, 1>0,m|<Il,n>1,
form a complete orthogonal basis of L?((2).

Finally, we consider two examples of partial differential operators that are not
formally self-adjoint.

Example 10.38 The advection-diffusion operator is
A=a -V+A

where a is a smooth vector field. The equation Au = 0, or
Au+a-Vu=0

describes the steady state of a quantity u, such as temperature or the density of a
pollutant, subject to diffusion and advection by a velocity field a. We consider A
as acting on C?(f2), where (2 is a smooth, bounded domain in R”. For simplicity,
we suppose all functions are real-valued. Then, using the vector identity

V-(ua) =Vu-a+uV -a,
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and the divergence theorem, we find that

/Q(a-Vu+Au)vda: = /Qu(—V-(av)thv)dm

ou ov
+/(99 (uva-n+va—n—ua—n) ds.

Thus, the formal adjoint of A is
A*=-V-a+A.

Example 10.39 The heat operator is
A=-0,+A.

We consider A as acting on real-valued functions u(z,t) in C?(€2 x [0,77]), where
is a smooth, bounded domain in R”, and 7' > 0. Then

T T
/ /(—ut+Au)vdmdt = / /u(vt+Av) dxdt
o Ja
/uv da:-i—/ / <6u )det
a0 5n

Thus, for example, the adjoint problem to the initial value problem for the heat
equation,
=Au+f in Q x [0,T1,
u(z,t) =0 for z € 092,
U(:E, 0) = ’u,o(.Z'),
is the final value problem for the backward heat equation,

—n=Av+g in Q x [0,T7,
v(z,t) =0 for z € 09,
v(z,T) = vp(x).

10.7 References

For more on unbounded operators and a proof of the closed graph theorem, see Kato
[26] or Reed and Simon [45]. For Sturm-Liouville problems, see Coddington and
Levinson [6]. For an introduction to Green’s functions for PDEs, see Zauderer [57].
An extensive collection of Green’s functions for various boundary value problems for
PDEs is given in Morse and Feshbach [39]. Mikhlin [38] gives a detailed and careful
analytical discussion of Green’s functions for Laplace’s equation. Further analysis
of spectral problems for ODEs and PDEs is given in Vol. 3 of Dautry and Lions [7].
For the definition and properties of special functions, such as the Gamma function,
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Bessel functions, and spherical harmonics, see Hochstadt [23] or Lebedev [31]. For
a summary of formulae and integrals, including ones that involve special functions,
see Gradshteyn and Ryzhik [16].

10.8 Exercises
Exercise 10.1 Prove that if A** exists, then it is an extension of A.
Exercise 10.2 Prove that a symmetric operator is closable.

Exercise 10.3 Show that the operator A on H = L?(T), with domain

D(A) = {f(:v) =3 ane™ | 3 a2 < oo} ,

neZ nez

defined by

A (Z aneina)> — Z n2aneinw

nez nEL

is a self-adjoint extension of the classical differentiation operator —d?/dz® with
domain C?(T).

Exercise 10.4 Let M : D(M) C L?*(R) — L*(R) be the multiplication operator
Mf = xf with

D(M)={feL*R) |zf € L*R)} .

Show that M is self-adjoint.

Exercise 10.5 Suppose that {e, | n € N} is an orthonormal basis of a separable
Hilbert space H, and A, € R. For z € H, let z,, = (ep,x) € C, so

oo
xr = E Tnen-
n=1

Define an operator A : D(A) C H — H by

D(A) = {a: cH ‘ ia +A2)|@al? < oo} ,

=1

A (i acnen) = i A Tn€n.
n=1 n=1

Prove that A is self-adjoint.
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Exercise 10.6 Let A and B be two linear operators on a Hilbert space H with
domains D(A) and D(B), respectively, and assume D(A) N D(B) is dense. Define
an operator C by D(C) = D(A)ND(B) and Cx = Az + Bz for all z € D(C). Prove
that C* is an extension of A* + B*. Define D(AB) and D(B*A*) by

D(AB) = {z € D(B)|Bz € D(A)}
D(B*A*) = {z€D(A*)|A*z € D(B*)}

and assume that D(AB) and D(B*A*) are dense. Define operators AB and B* A*
on their respective domains in the obvious way. Prove that (AB)* is an extension
of B*A*.

Exercise 10.7 Prove that the adjoint of a densely defined, unbounded operator in
a Hilbert space is closed.

Exercise 10.8 Let {z,, | n € N} be an orthonormal basis of a separable Hilbert
space H, and let y an element of # that is not a linear combination of a finite
number of basis elements z,,. Define a linear operator A in H, whose domain D(A)
consists of finite linear combinations of the x, and y, as follows:

N N
A (Zanwn—i-by) =by, DA = {Zanxn+by ‘ an,b € (C} .

n=1 n=1

Show that A is not closable.

Exercise 10.9 Consider a singular self-adjoint BVP,

- (]7[1,), +qu = fa
u(0) =u(1) =0.

Suppose that the null space of the homogeneous problem is one-dimensional with
orthonormal basis {¢}. Define the modified Green’s operator G : L%([0,1]) —
L2([0,1]) where u = G if and only if u satisfies the problem

—(pu) +qu = f — (o, f)o,
u(0) = u(1) =0, (p,u) = 0.

Prove that G is well defined, and show that G is an integral operator of the form

1
Gf(z) = /0 o(e,9) () dy.

Compute the modified Green’s function g in terms of .



FEzercises 283

Exercise 10.10 Let r : [0,1] & R be a smooth, nonnegative function. Let #
be the Hilbert space of (equivalence classes) of Lebesgue measurable functions u :
[0,1] — C such that

/ (@) @) de < oo,

with the inner product

1
(u,v) = / r(z)u(z)v(zr) de.
0
Determine the formally self-adjoint, second-order differential operators on H.

Exercise 10.11 Prove that the Wronskian W (z) of the Sturm-Liouville operator
(10.8) satisfies p(z)W(x) = constant. Verify directly that the Green’s function is
symmetric.

Exercise 10.12 The following linearized BBM (Benjamin-Bona-Mahoney) equa-
tion for u(x,t), where x,t € R, arises in the analysis of water waves:

—Uggt T Ut = Uy,

u(z,0) = uo(x).
Use a Green’s function to reformulate this equation as an evolution equation
uy = Ku,

for a suitable integral operator K : L?(R) — L?(R), and deduce that there is a
global in time solution with u(-,t) € L?(R) for any initial data ug € L?(R). Show
that the L?-norm of u is conserved.

Exercise 10.13 For k = 1,2,3, let A; : D(A;) C L*([0,1]) — L2([0,1]) be the
first-order differential operators Apu = iu’ with domains

D(Al) = Hl((oa 1))7
D(4:) = {ueH'((0,1) [u(0) =u(1)},
D(A) = {ue HY((0,1)|u(0)=0}.

Show that the spectrum of A; is C, the spectrum of A, is the set {2n7 | n € Z},
and the spectrum of Az is empty.

Exercise 10.14 Consider the operators A;, As defined by Azu = iu', with

)
D(A2) = {u € H'((0,1)) | u(0) = u
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Show that both operators are closed and symmetric. Compute ran (4 £ ¢) and
ker(Aj £14). Use Theorem 10.29 to determine whether or not these operators are
self-adjoint.

Exercise 10.15 Let ¢ be a nonzero function in L?(R) and define an operator
A:D(A) C L*(R) — L*(R) by

Au = ( /R u(z) da:) o, D(A) = L'(R) N [A(R).

Show that A is a closed, unbounded operator that is densely defined in L?(R). Show
that

D(4") = {¢}"
and A* = 0 on D(A*), so the domain of A* is not dense in L?(R).

Exercise 10.16 If u € H' ((0,0)) and u(0) = 0, prove Hardy’s inequality:

|u[? 12
dx <4 |u'|* de.
2 -
o Z 0

Exercise 10.17 Suppose that u; and uy are two solutions of the Dirichlet problem
for Laplace’s equation

—Au=f x €,
u=nh x € 09,

where 2 is a smooth, bounded domain in R” and f: Q@ — R and h : 92 — R are
given functions. Show that if v = w3 — us then

/ |Vo|? dz = 0,
Q

and deduce that the solution is unique. What can you say about solutions of the
Neumann problem, with boundary condition

ou
—_— = ?
o h z € 001

Exercise 10.18 According to Maxwell’s equations, the magnetic field B generated
in three-dimensional space by a steady current distribution J satisfies

curl B =17, divB = 0.

A mathematically identical problem arises in fluid mechanics in reconstructing an
incompressible velocity field u, with divu = 0, from the vorticity w = curl u. Derive

the Biot-Savart law,
IJ(y) x (x—v)
B = | ———~dy.
) / dr[x —y| i
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HINT. Write B = curl A and derive a Laplace equation for A.

Exercise 10.19 Let N, be the n x n Jordan block

010 ... 0

0 01 ... 0
Ny = Do .o >

0 0 0 ... 1

0 00 ... 0

and let ¢, =n~1/2(1,1,...,1)" € C". Show that for each n € N and t > 0:
||etN" H <el; || Npen —en|| <n 172 HetN"cn - etcn” < n 2l

Let H = @2, C*, meaning that = € H is of the form
o0
2
T = (T1,T2,.-.,Tn,---), zn € C, Z|mn| < 0.
n=1

Here, |-| denotes the Euclidean norm on C*. Let A,, = N,, + inl,, where I,, is the
n X n identity, and define A : D(A) C H — H by

A= @Ana A(x17m27-"5$n5"') = (A1$17A2$2;---;Anxn7"')7
n=1

where D(A) = {z € H | Az € H}. We define the associated Cp-semigroup T'(t) =
et/ for t > 0, where T'(t) : H — H, by

T(t) (z1,Z2,y .y Tpy...) = (etAlarl,etAQa:g, et ).

Show that the spectrum of A is {in € C | n € N}, and consists entirely of eigenval-
ues, so it is contained in the left-half plane {A € C | Re A < 0}. Show, however, that
the spectral radius of T'(t) is greater than or equal to e, so the spectral mapping
theorem does not hold for A.

HinT. Consider the action of T'(¢) on the vectors (0,0,...,0,¢,,0,...) € X. This
example of an operator with arbitrarily large Jordan blocks illustrates some of the
pathologies that can arise for unbounded, nonnormal operators on a Hilbert space.

Exercise 10.20 Consider heat flow in a rod with rapidly varying thermal conduc-
tivity a,(z) = a(nz), where n € N and a(y) is a strictly positive periodic function
with period one, assumed continuous for simplicity. If the ends of the rod are held
at an equal fixed temperature, and there is a given heat source f(x) per unit length,
the temperature u,(x) satisfies the boundary value problem

d d
- (an(w)%un) —f@), 0<z<l,  un(0) = un(l) = 0.
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Integrate this ODE and solve for u,(z). Let H}([0,1]) be the Sobolev space
Hy([0,1]) = {u:[0,1] = R [ u,u’ € L*([0,1]), u(0) = u(1) = 0},

with the inner product

1
(u, v) :/ u'v' dx.
0

Show that u, — u weakly in Hg ([0, 1]), where u is the solution of the homogenized
equation

—% <ah%u) =f(z), 0<z<1, u(0) = u(1) =0,

and the effective conductivity a” is the harmonic mean of the original conductivity,

1 /1 1
— = ——dy.
ah  Jo al(y)



