Chapter 11

Distributions and the Fourier Transform

A distribution is a continuous linear functional on a space of test functions. Dis-
tributions provide a simple and elegant extension of functions that clarifies many
aspects of analysis. For example, the delta function may be interpreted as a distri-
bution. An advantage of distributions is that every distribution is differentiable, and
differentiation is a continuous operation on spaces of distributions. Moreover, every
tempered distribution has a Fourier transform, and a function whose Fourier trans-
form is not defined as a function may nevertheless have a distributional transform.
One limitation on the use of distributions is that there is no product of distributions
that preserves the usual properties of the pointwise product of functions. Therefore,
when studying nonlinear problems involving distributions, one must make sure that
any products of distributions that appear are well defined.

11.1 The Schwartz space

In this section, we define a space of test functions on R" called the Schwartz space
that consists of smooth, rapidly decreasing functions.
We begin by introducing a concise notation for partial derivatives. Let

Zy={n€Z|n>0}
denote the nonnegative integers. A multi-index
a=(ai,...,an) €LY

is an n-tuple of nonnegative integers «; > 0. For multi-indices a = (a1,...,a,)
and 8 = (B1,-..,08n), we define

n n
|| :Zai, al :Hai!,
i=1 i=1

a+B=(a1+ b1, ,an+ Brn),
a>f ifandonlyifa; > g;fori=1,...,n.
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288 Distributions and the Fourier Transform

If 2 = (x1,...,2,) € R" and a = (a1, ...,a,) € Z7}, then we define

o [ 8\™ 8\
7 =(o) ~(am)

n

o (73
2 = [[ =8,

i=1

|| =[x + ...+ 22.

We use the notation z*f to denote the function whose value at z is z% f(z).
The Taylor remainder theorem for f € C*(R®) may be written as

f@=Y iaaf(xo)(x—xo)urk(x), (11.1)

la|<k
where the remainder term r; satisfies

lim _TRE) ()

=0.
z—zo |x — To|¥

The Leibnitz rule for the derivative of the product of f,g € C*(R") may be written
as
al

rUD= Y

B+r=a

(8°F) (079)- (11.2)

For multi-indices o, 8 € Z%, and ¢ € C*°(R"), we define

Pas(p) = sup [2°0%p(c)]. (11.3)

We also write pa,g(¢) as ||¢]a,s-

Definition 11.1 (Schwartz space) The Schwartz space S(R™), or S for short,
consists of all functions ¢ € C*°(R™) such that p,,(¢) in (11.3) is finite for every
pair of multi-indices o, 8 € Z.

If ¢ € S, then for every d € N and a € Z} there is a constant Cy  such that

Cd,a

0% ()| < —=
] < St

for all x € R™.

Thus, an element of S is a smooth function such that the function and all of its
derivatives decay faster than any polynomial as |z| — co. Elements of S are called
Schwartz functions, or test functions. There are many functions in §. For example,
every function of the form

—clz—zo 2

q(z)e ,
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where ¢ > 0, g € R?, and

is a polynomial function on R", is a Schwartz function.

In order to define a notion of the convergence of test functions, we want to put
a topology on S. As we will see, the appropriate topology is not derived from a
norm, but instead from the countable family {p, s} of seminorms. We therefore
first discuss topologies defined by seminorms in more generality.

Definition 11.2 Suppose that X is a real or complex linear space. A function
p: X — Ris a seminorm on X if it has the following properties:

(a) p(z) > 0for all z € X;
(b) p(z +y) < p(x) + p(y) for all z,y € X;
(¢) p(Az) = |Alp(z) for every z € X and X € C.

A seminorm p has the same properties as a norm, except that p(z) = 0 need
not imply z = 0. Suppose that {p,}aca is a countable or uncountable family of
seminorms, indexed by a set A, defined on a linear space X. Then X is a topological
linear space with the following base N of open neighborhoods:

N ={Nzoy, ane|lr€X,1...,0, € A, and € > 0},
Naiar,ysomse = {Y € X | pas(® —y) <efori=1,...,n}.

A sequence (z,,) converges to x € X in this topology if and only if py(z — z,) = 0
as n — oo for each a € A.

We say that a family {p,}aca of seminorms separates points if p,(x) = 0 for
every a € A implies that x = 0. In that case, the associated topology is Haus-
dorff. A topological linear space whose topology may be derived from a family of
seminorms that separates points is called a locally convez space.

If the family of seminorms {py,...,p,} is finite and separates points, then

|z|| = pr(x) + - .. + pp(x)

defines a norm on X. Thus, there is no additional generality in using a finite family
of seminorms instead of a norm. The main case of interest to us here is that of a
locally convex space X whose topology is generated by a countably infinite family
of seminorms {p, | n € N}. In that case, the topology is metrizable because

d(z,y) = %%% (11.4)

defines a metric on X with the same collection of open sets as those generated by
the family of seminorms (see Exercise 11.2). A metrizable, locally convex space that
is complete as a metric space is called a Fréchet space.
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The function p, g in (11.3) is a seminorm on S. We equip S with the topology
generated by the countable family of seminorms

{Pays |, B € LY} (11.5)

This family separates points, since pg o is just the sup-norm. The following propo-
sition shows that S is a Fréchet space.

Proposition 11.3 The Schwartz space § with the metrizable topology generated
by the countable family of seminorms (11.5), where p, g is given by (11.3), is com-
plete.

Proof. Let (@) be a Cauchy sequence in S. We have to prove that (p,,) converges
in the topology of S to a function ¢ € S. The sequence (¢,,) is Cauchy with respect
to the sup-norm py . Since the space of bounded continuous functions on R with
the supremum norm is complete, there is a bounded continuous function ¢ such
that ¢, — ¢ uniformly. For each multi-index «, the sequence 0%y, is Cauchy with
respect to the sup-norm, and hence converges uniformly to a bounded continuous
function v¢,. We claim that

Yo = 0% for every multi-index a. (11.6)

We prove (11.6) by induction on |a|. The equation holds for |a| = 0. Suppose we
have proved (11.6) for every a with |a| < m. Then, if || = m + 1, there exists an
a € 77 such that |a| = m and 3 = a + e; for some j, where ¢; is the jth standard
basis vector of Z™. The fundamental theorem of calculus implies that

t
0%pn(z + tej) — 0%pn(z) = / 0% 0%pp(x + se;) ds.
0
Clearly, 8% 0® = 0°. Letting n — 0o, we obtain that

t
0"l +te;) = 0°5@) = [ oo +3e) ds

We divide this expression by ¢ and take the limit of the resulting expression as
t — 0%. Using the definition of derivative and the continuity of g, we find that

8 p(x) = Ys(x)-

Finally, for every pair of multi-indices (a, (), the sequence (z®9”¢p,) is Cauchy
with respect to the uniform norm, so it converges uniformly. The uniform limit is
equal to the pointwise limit 298¢, so Pa,s(pn — ) — 0 for all multi-indices, and
therefore (y,) converges in S. O

One main motivation for the use of this topology on § is that differentiation is
a continuous operation.
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Proposition 11.4 For each a € Z, the partial differentiation operator 9% : & —
S is a continuous linear operator on S.

Proof. The fact that 0% is a linear map of S into S is obvious. To prove the
continuity, suppose that ¢, — ¢ in S. Then pg,(pn —¢) = 0 as n — oo for all
B,7 € Z%. Therefore,

PB,(0%pn — 0%p) = pg,atqy(n — ) = 0
asn — oo for all B,y € Z%, so 0%p, — 0% in S. O

The Schwartz space is not the only possible space of test functions. Another
useful choice is the smaller space D = C°(R"™) of smooth functions with compact
support. The appropriate topology on D is, however, harder to describe than the
topology on S because it is not metrizable.

11.2 Tempered distributions

The topological dual space of S, denoted by §* or &', is the space of continuous
linear functionals 7' : S — C. Elements of S* are called tempered distributions. The
space S* is a linear space under the pointwise addition and scalar multiplication of
functionals.
Since S is a metric space, a functional 7' : § — C is continuous if and only if for
every convergent sequence o, — ¢ in S, we have
lim T(pn) = T(p).

n—oo
The continuity of a linear functional 7" is implied by an estimate of the form
IT(p)| < Z Ca,ll#lla,p
lal,|8|<d

for some d € Z and constants c,g > 0. Conversely, one can show that if T is
continuous, then such an estimate holds for some d and ¢, g.

Example 11.5 The fundamental example of a distribution is the delta function.
The name “delta function” is a misnomer because it is not a function on R", but a
functional on §. We define § : S — C by evaluation at 0:

3(p) = ¢(0).

The linearity of ¢ is trivial. To show the continuity, suppose that ¢, — ¢ in S.
Then ¢, — ¢ uniformly, and therefore ¢, (0) — ¢(0). Hence, 6(p,) = d(¢), so
é € §* is a continuous linear functional. Similarly, for each z¢ € R", we define the
delta function supported at xg by evaluation at xo:

20 () = @(20).
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Example 11.6 Suppose that f is a continuous, or Lebesgue measurable, function
on R™ such that

If(2)] < g(x) (1 + |m|2)d/2

a.e. in R” for a nonnegative integer d > 0 and a nonnegative, integrable function
g:R* -5 R. Then

Ty(p) = - f(@)p(z) dz (11.7)

defines a tempered distribution, as follows from the estimate:
d/2
Tl < [ o (1+12P)" lola)|do

/2

< | [ st@rds] sup [0+ 1) foto].
n TzER™

Moreover, the function f is uniquely determined, up to pointwise-a.e. equivalence,

by the distribution Tf. To see this, let {¢¢ | € > 0} be an approximate identity in

S(R™), for example the Gaussian approximate identity,

pelz) = Wexp (—%) |

Then for each € > 0 and z € R, the function ¢, , defined by

‘Pe,z(y) = 906('%' - y)

is an element of S(R™), and

Ty (pe,e) = (pe * f) (2).

Since we can recover f pointwise-a.e. from its convolutions with an approximate
identity, we see that f is determined by T}.

Distributions of the form (11.7) that are given by the integration of a test func-
tion ¢ against a function f are called regular distributions, and distributions, such as
the delta function, that are not of this form are called singular distributions. Thus,
we may regard tempered distributions as a generalization of locally integrable func-
tions with polynomial growth.

A function that has a nonintegrable singularity, or a function that grows faster
than a polynomial (such as e°/®l” where ¢ > 0), does not define a regular tempered
distribution since its integral against a Schwartz function need not be finite.

Example 11.7 The function (1/z) : R\ 0 — R has a nonintegrable singularity at
z = 0, so it does not define a regular distribution. We can, however, use a limiting
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procedure to define a singular distribution called a principal value distribution,
denoted by p.v.(1/z). We define its action on a test function ¢ € S(R) by

1

p.v.— (p) = lim ¢lz) dz.

T e—0+t lz|>e T
The limit is finite because of a cancellation between the nonintegrable contributions
of 1/z for z < 0 and z > 0:

1 oo _ _ [ee) _ —
p(x) w(@M:/ o) —p(=2) .
0

V.— = li
pv.o () = lim | 2 z

The integrand is bounded at « = 0 since ¢ is smooth. For 2 > 0, we have

1 T
<7 [ 10 d <2

R —

so the continuity of p.v.(1/z) on S follows from the estimate

1 _ _ [e’s}
[ ]2 ﬂwww+/
0 z 1
2[|¢'lloo + 2|0 lloo

= 2(llello + lleollo) -

zlpl@) — p(=a]|
x2

jo)

“

|
S
IN

IN

Example 11.8 The function 1/|z|? : R* \ {0} — R has an integrable singularity
at the origin when n > 3 since the radial integral

1
/ r2pnlgy
0

1 _ w@)x
@ = [ TR

defines a regular distribution in $*(R™). If n = 2, the function is not integrable, but
we can define an associated singular distribution, called a finite part distribution,
denoted by f.p.(1/|z|?):

RIS p(x) — ¢(0) o(z)
f.p.|$|2(go) = /|x<1 7d:c+/| dx.

|| ai>1 |2f?

is finite. In that case

The action of the elements of the dual space $* on & may be represented by a
duality pairing, which resembles an inner product:

(n): 8" xS —>C.
We write the action of a distribution T on a test function ¢ as

T(p) = (T, ¢)-
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If ‘H is a Hilbert space, then the duality pairing on H* x H can be identified with
the inner product on H by the Riesz representation theorem. Note, however, that
in the case of an inner product on a Hilbert space, the duality pairing is antilinear
in one of the variables, whereas the duality pairing on $* x § is linear in both
variables.

Another notation for the action of T € S* on p € S is

T(p) = / T(2)p(z) dr,

as if 8* were a function space. If T} is the regular distribution defined in (11.7),
then this notation amounts to the identification of Ty with f. The action of the
distribution J,, is then written as

520() = / 5@ — 20)p(x) de = (xo).

Since the pairing on $* xS shares a number of properties with inner products defined
through an integral, this notation is often convenient in computations, provided one
remembers that it is just a way to write continuous linear functionals.

The tempered distributions are a subspace of the space D* of distributions that
are continuous linear functionals on the space D of smooth, compactly supported
test functions. Unlike tempered distributions, distributions in D* can grow faster
than any polynomial at infinity. The Fourier transform of a distribution in D* need
not belong to D*, however, whereas we will see that every distribution in §* has
a Fourier transform that is also in §*. To be specific, we therefore restrict our
discussion to tempered distributions, although similar ideas apply to distributions
defined on other spaces of test functions.

11.3 Operations on distributions

We say that a continuous function f : R* — C is of polynomial growth if there is
an integer d and a constant C' such that

If@)|<C O+ foralzeRre

T € 8 and f € C*(R") is such that f and 0%f have polynomial growth for
every a € Z7, then we define the product fT' € S* by

(fT,0) =(T,fp) forallpeS.

This definition makes sense because fo € S when ¢ € S. It is straightforward to
check that fT is a continuous linear map on § if T is.

Example 11.9 If T = § is the delta function, then
(£0,0) = (0, fo) = F(0)p(0) = (f(0)4, ).
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Hence, fé = f(0)J.

The definition of products may be extended further; for example, the product
f8 = £(0)d makes sense for any continuous function f. It is not possible, however,
to define a product ST € S* for general distributions S,7T € S§* with the same
algebraic properties as the pointwise product of functions (see Exercise 11.7).

Next, we define the derivative of a distribution. To motivate the definition,
we first consider the regular distribution 7 associated with a Schwartz function
f. Integrating by parts, we find that the action of the regular distribution T,
associated with the ath partial derivative of f, on a test function ¢ is given by

(Toes,0) = / (0°f) pdz = (-1)l°! / £(@°9) dz = (=1)°I(T;, 0%).

The following definition extends the differentiation of functions to the differentiation
of distributions.

Definition 11.10 Suppose that T is a tempered distribution and « is a multi-
index. The ath distributional derivative of T is the tempered distribution 0*T
defined by

(0T, p) = (=1)\°NT,8%p)  forallp € S. (11.8)

Equation (11.8) does define a distribution. The linearity of the map 0*T : S —
C is obvious. The continuity of 9*T follows from the continuity of 7" and 9% on S.
If o, = ¢ in S, then 0%p,, = 0% in S, so

(0°T, pn) = (=1) T, 0%n) = (~1)I°(T, %) = (9°T, ).

Thus, every tempered distribution is differentiable. The space of distributions is
therefore an extension of the space of functions that is closed under differentiation.
The following structure theorem, whose proof we omit, shows that S is a mini-
mal extension of the space of functions of polynomial growth that is closed under
differentiation.

Theorem 11.11 For every T' € S* there is a continuous function f : R* — C of
polynomial growth and a multi-index o € Z? such that T' = 0°f.

If Ty is a regular distribution whose distributional derivative is also a regular
distribution T}, then

/ godz = (—1)°/ f0%pdx for all p € S.
n Rn

In this case, we say that the function g is the weak or distributional derivative of
the function f, and we write g = 8% f. Thus, the weak L?-derivatives considered in
Section 10.4 were a special case of the distributional derivative. If f does not have
a weak derivative g, then the distributional derivative of T still exists, but it is a
singular distribution not associated with a function.
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Example 11.12 Let f : R — R be the function
0 ifz<0,
@)= {

z ifx>0.

Then f is Lipschitz continuous on R, but it is not differentiable pointwise at z = 0,
where its graph has a corner. Integrating by parts, and using the rapid decrease
of a test function, we find that the action of the distributional derivative of f on a
test function ¢ is given by

(o)== [ agdo= [ pdo=(H,0),
0 0
where H is the step function,

0 ifz<0,
H(z)_{ 1 ifz>0.

Thus, f is weakly differentiable, and its weak derivative is the step function H.

Example 11.13 The distributional derivative of the step function is given by

<E#ﬂ=4HM3=—Am¢@W$=W®=®MY

Hence, the step function is not weakly differentiable. Its distributional derivative is
the delta function, as stated in (10.12).

Example 11.14 The derivative of the one-dimensional delta function § is given by

(0',0) = =(0,¢") = =¢'(0).

More generally, the kth distributional derivative of § is given by
(69, 0) = (=1)**)(0).

Example 11.15 The pointwise derivative of the Cantor function F', defined in
Exercise 1.19, exists a.e. and is equal to zero except on the Cantor set. The function
is not constant, however, and its distributional derivative is not zero. One can
show that the distributional derivative of F' is the Lebesgue-Stieltjes measure up
associated with the Cantor function, described in Example 12.15, meaning that

uﬂwz/mmmwﬂn

—0o0

The use of duality to extend differentiation from test functions to distributions
may be applied to other operations. Suppose that K, K’ : S — S are continuous
linear transformations on S such that

/ (Kf)pdr = f(K'p)dz  forall f,po€S. (11.9)
n R’II.
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We call K' the transpose of K. The transpose K' differs from the L2-Hilbert space
adjoint K* of K because, unlike the L2-inner product, we do not use a complex-
conjugate in the duality pairing. If T is a tempered distribution, then we define the
tempered distribution KT by

(KT, ) =(T,K'p) forall p € S.

If T} is the regular distribution associated with a test function f € S, then we have
KTy = Tky, so this definition is consistent with the definition for test functions.

Example 11.16 For each h € R", we define the translation operator 1, : § - S
by

hf (@) = f(x = h).
We then have that
/ (T f)pdx = A flr—pp)dz for all f,p € S.
We therefore define the translation 7,7 of a distribution T' by
(1o T, ) = (T, T—pp) for all p € S.
For instance, we have 0, = 75,9.
Example 11.17 Let R : S — S be the reflection operator,
Rf(z) = f(-=).
Then
/ (Rf)pdx = A f(Ry)dz for all f,p € S.

Thus, for T € §*, we define the reflection RT € S§* by

(RT, ) ={T, Rp) for all p € S.

We end this section by defining the convolution of a test function and a distri-
bution. The convolution ¢ * 1) of two test functions ¢, € S is defined by

n

(o) (z) = / oz —y)p(y) dy. (11.10)
The following properties of the convolution are straightforward to prove.

Proposition 11.18 For any p,9%,w € S, we have:

(&) pxp =9 x*yp;
(b) (px9) xw=9px(Y*w),
(c) T *v) = (Thep) * ¢ = @ x (1Y) for every h € R".
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It is clear from (11.10) that the definition of convolution can be extended from
test functions to more general functions provided that the integral converges. For
example, the convolution of a continuous function with compact support and an
arbitrary continuous function exists, and the convolution of two L!-functions exists
and belongs to L'. On the other hand, the convolution of two functions neither of
which decays at infinity need not be well defined.

Using the translation and reflection operators defined in Example 11.16 and
Example 11.17, we may write the convolution in (11.10) as

(p%9) (2) = / (Rra0) ()b (y) dy.

n

We therefore define the convolution ¢ * T : R® — C of a test function ¢ € S and a
tempered distribution 7' € §* by

(o +T) (z) = (T, R7zp)-
One can prove that ¢ * T € C°(R™), and is of at most polynomial growth.

Example 11.19 The convolution of a test function with the delta function is given
by

(¢ x0)(x) = (6, Rraip) = (R72¢0)(0) = (Rep)(—2) = (),

meaning that ¢ x § = . This fact provides a distributional interpretation of the
formula

[ 3=t dy = o(o)
Similarly, the convolution with a derivative of the delta function is
(p % 0%0)(z) = (=1)!%1(5,0° Ry p) = 8% ().

More general convolutions of distributions may also be defined (for example,
0%« T = 0%T for any T € §*), but we will not give a detailed description here.

11.4 The convergence of distributions

Let (T},) be a sequence in S*. We say that (T},) converges to T in S* if and only if

lim (T, ) ={T,¥) for every ¢ € S. (11.11)

n—oo

We denote convergence in the space of distributions by

T,—~T as n — 0o.
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Example 11.20 Let T}, be the distribution in S(R) defined by
(T, ) = n3/]Rei"mgo(a:) dx.
Integrating by parts four times, and using the rapid decrease of ¢ € S, we find that

—0 as n — 00.

einw
|mww{A oD (2) de

n

Thus, we have T,, — 0 in $*(R). The cancellation of oscillations for large n in
the integration of n®ei™® against a smooth test function outweighs the polynomial
growth in n.

For each ¢ € S, the map
T — (T, ) (11.12)

is a linear functional on S*. The convergence of distributions defined in (11.11)
corresponds to convergence with respect to the weakest topology such that every
functional of the form (11.12) is continuous. This topology, called the weak-* topol-
ogy of §*, is the locally convex topology generated by the uncountable family of
seminorms {p,, | ¢ € S}, where

po(T) = (T, ¢)|  for T € S*. (11.13)

Sequences of distributions that converge to the delta function are particularly
important. Such sequences are called delta sequences. We have already encoun-
tered several examples of delta sequences, without thinking of them in terms of
distributions.

Example 11.21 A simple delta sequence in S(R) is given by

1/n
nwzgjﬂmmm

For any continuous function ¢, we have
Th(p) — »(0) =6(p) as n — 00,

so T,, — 6. Any approximate identity gives a delta sequence; for example, the
Gaussian approximate identity

on(z) = T g=na®/2 (11.14)

is a delta sequence that consists of elements of S(R).
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The following proposition gives a useful delta sequence of oscillatory functions.
We define the sinc function by

. _ [ sinz/z ifx#0,
smcw‘{ 1 if 7 = 0.

The integral of the absolute value of the sinc function does not converge, since it
decays like 1/z as |z| — oo, but a contour integral argument gives the following
improper Riemann integral

R
lim sincx dx = 7. (11.15)
R—oo R
Proposition 11.22 For n € N, let
sin nx
() = . 11.16
on(z) = T (11.16)

Then o, — § in S*(R) as n — oo.
Proof. From (11.15), we see that
n .
on(x) = —sincnz

has unit integral for every n € N. To avoid difficulties caused by the lack of absolute
convergence of the integral of o,, at infinity, we split the integral of o, against a
test function ¢ € S into two terms:

/ s1nm;g0($) dm:/ s1nm:g0($) dm+/ smn:c(p(m) . (11.17)
—o0 |z|>1

™ T |z|<1 ™

An integration by parts implies that the first integral on the right-hand side tends
to zero as n — 00, since

sinnz 1 o(z) ] 1 o)\’
p(z)dr = = [cosnz——=| + = cosnx | —= | dz.
|z|>1 L n T 1 n |z|>1 Zr

We write the second term on the right-hand side of (11.17) as

/<1 sinmv(p(w)dx:/<1 sin nx (@) — (0)] dm+¢p(0)/ sin nx d

™ T |z|<1 ™

We may write o(z) = ¢(0) + ztp(z) where p € C*. The first integral on the
right-hand side is therefore given by

1 / sinnz ¢ (x) dz,
lz|<1

™

and an integration by parts shows this approaches zero as n — oco. Making the
change of variable nz — x and using (11.15), we see that the second term approaches
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»(0) as n — oo, which proves the result. Note that the proof shows that o, *xp — ¢
uniformly for every ¢ € S. O

The identification ¢ — T, continuously embeds the Schwartz space S into the
space §* of tempered distributions. This embedding is clearly not onto, but the
next result, whose proof we only outline, states that S is dense in S*.

Theorem 11.23 The Schwartz space is dense in the space of tempered distribu-
tions.

Proof. Let (p,) be an approximate identity in S. Then (p, * T') is a sequence
of C*°-functions of polynomial growth that converges to T in &*. The Schwartz
functions (p, * T)e‘e‘“2 therefore converge to T in S* as n — oo and e —» 07. O

A similar proof shows that S is dense in Cy, with respect to uniform convergence,
and in LP for 1 < p < oo.

11.5 The Fourier transform of test functions

In this section, we define the Fourier transform of a Schwartz function, and show
that the Fourier transform is a continuous, one-to-one map from S onto S. In the
next section, we will extend the transform by duality to a continuous, one-to-one
map from S&* onto S*.

Definition 11.24 If ¢ € S(R"), then the Fourier transform ¢ : R* — C is the
function defined by

1

~ _ —ik-x n
p(k) = an? /Rn p(z)e dz for k € R". (11.18)

There are many different conventions for where to place the factors of 27 and the
signs in the Fourier transform. In the next proposition, we show that the transform
of a rapidly decaying function is smooth, and the transform of a smooth function is
rapidly decaying. As a result, the Fourier transform maps the Schwartz space into
itself. We define the Fourier transform operator F : S =+ S by Fp = ¢.

Proposition 11.25 If ¢ € S(R"), then:
(a) ¢ € C*(R"), and
0%¢ = F(—iz)%¢]; (11.19)
(b) k% is bounded for every multi-index o € Z, and
(tk)*¢ = F[0%]. (11.20)

The Fourier transform F : S(R®) — S(R™) is a continuous linear map on S(R™).
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Proof. Equation (11.19) follows by differentiation under the integral sign in (11.18).
This differentiation is justified by the dominated convergence theorem and the in-
tegrability of z%¢ for every a € Z%. Equation (11.20) follows from an integration
by parts in the formula

@(k) = W/eik“@“cp(x) dx
= W/(ik)ae_ik'ch(w) dx
= (ik)*@(k).

Thus, for every a, 8 € Z7}, we have
(ik)*0P ¢ = F [0%(—iz)P¢] . (11.21)
If p € S, then

. 1
lp(k)| = @

/e‘ik'wcp(a:) dz
1 [ +eP) o)
< (27T)n/2/ (1+|$|2)n/2+1

C sup [(1+1a2)"* " fp@)]]
zER™

dx

IN

where the constant C' is given by

1 1
C = CORE /" EPBREE dz < oo.

Taking the supremum of (11.21) with respect to k, using the Leibnitz rule to expand
the function on the right-hand side, and estimating the result, we find for the
seminorms in (11.3) that

[@llass < D Carprllllsr,or
al,ﬁl

for suitable constants Cyr g, where || < |a| and |8'| < |B] + n + 2. Hence, the
Fourier transform is a continuous linear map on S. O

An important example of the Fourier transform of a Schwartz function is the
transform of a Gaussian, which is another Gaussian.

Proposition 11.26 Suppose that A is an n xn symmetric, positive definite matrix.
The Fourier transform of the n-dimensional Gaussian

o(z) = exp (—%x - Aw) (11.22)
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is given by

o(k) = \/dlﬂ exp (—%k : A—1k> : (11.23)

Proof. First, we consider the one-dimensional Gaussian

o(z) = exp (—%) ,

where a > 0. We claim that

o(k) = —— exp (‘%) _ (11.24)

To prove this result, it suffices to consider the case a = 1. The formula for ¢ > 0
then follows from the change of variables z — \/axz. Thus, we just need to show
that

1 / —z?/2 —ikz —k%/2
— | e e de=c¢e .
V2T
The left-hand side of this equation may be written as

1 —kZ/z/ —(a+ik)?/2
- 11 d .
Wors ¢ !

So we want to show that

1 N2

—(z+ik)*/2 _
— | e dxr = 1. 11.25
V2 / ( )

This integral is independent of k, since

d 1 N2 1 N2
el —(z+ik) /2d - ik —(z+ik) /2d
dk (\/27r/e m) Z\/27r /(m+z Je ?

1 d 2
R & —(z+ik) /2d
= e 4
V2 / dx
- iie—(w+z‘k)2/2|°°
vV 27T —00
= 0,

so (11.25) follows from the standard Gaussian integral,
o 2
/ e "2 de = \2r.

Now we consider the n-dimensional case. The Fourier tranform of the Gaussian
in (11.22) is given by

1 .
(k) = W/e—wm/%ﬂk'w dz. (11.26)
™
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Since A is positive definite, there is an orthogonal matrix @ such that QTAQ = A,
where A = diag()\, ..., \) is a diagonal matrix with the eigenvalues A; > 0 of A on
the main diagonal. We make the change of variables z = Q% and k = QFk in (11.26).
The Jacobian of the transformation z — T is det ) = 1. The resulting expression
factors into a product of one-dimensional Fourier integrals, which we may evaluate
using the one-dimensional computation:

. _ 1 —TAT/2,—ikT
QO(k) = W/e e dT

n
1 —\;jT2)2  —ik;T;
- e i/ %e iTi d7 .
I/ )

n 1 o

= H e ki/(2x;)
o1 VA

Rewriting this result in terms of k, and using the facts that det A = (Ag X2 ... \y)

and A~! = QTA1Q, we obtain (11.23). O

The covariance matrix A of the transform of a Gaussian is the inverse of the
covariance matrix of the Gaussian. Thus, the transform of a Gaussian that is
localized near the origin is delocalized, and conversely. The intuitive explanation
of this behavior is that more high-frequency Fourier components are required to
represent a rapidly varying, localized function than a slowly varying, delocalized
function. For example, the Fourier transform of the Gaussian approximate identity

0elr) = G e @%)

is given by

59 = gmee (~75).

Ase — 01, wehave o, — § and ¢, — (27) ™2 in S*. The spectrum of the Gaussian
becomes flatter as it concentrates at the origin. These limits are consistent with
the result below that § = (2r)~"/2.

The following proposition, whose proof we leave to Exercise 11.13, gives the
formulae for the Fourier transform of translates and convolutions. An important
result is the fact that the Fourier transform maps the convolution product of two
functions to their pointwise product. We will see in Section 11.9 that this is related
to the translational invariance of the convolution.

Proposition 11.27 If ¢,¢ € S and h € R, then:

The = e Fh, (11.27)

e hp =10, (11.28)



The Fourier transform of test functions 305

@+ = (21)" 2@ (11.29)

Finally, we prove that F is invertible on & with a continuous inverse. First, we
give a formula for the inverse.

Definition 11.28 If ¢ € S, then the inverse Fourier transform ¢ is given by

x 1 ik-x
o) = g7 L € ek) i

We define 7*: S = S by F o = ¢.
We will prove that F* = F !, meaning that
p=p=¢ forevery p€S. (11.30)

To motivate the proof of the inversion formula, we first give a formal calcula-
tion, based on the completeness formula in (11.33) below. Writing out F*@, and
exchanging the order of integration, we find that

Fo(z) = #/ei’” [/ e~ kY p(y) dy] dk

- [l

/5(3: —y)p(y) dy
o(z).

The exchange of integration in this calculation is not justified by Fubini’s theorem
because the integral is not absolutely convergent. To make the argument rigorous,
we introduce an “ultraviolet cut-off” in the integral before exchanging the order of
integration.

Proposition 11.29 The map F* is a continuous linear transformation on S, and
f* — ]_'—1_

Proof. Wehave F* = RoF, where R is the reflection defined by Rp(z) = p(—1z),
so the continuity of 7* on S follows from the continuity of R and F.

The n-dimensional Fourier transform is the composition of one-dimensional
Fourier transforms in each of the components z; of x € R*, ¢ = 1,...,n, so it
suffices to prove the result for n = 1. Introducing a cut-off in the k-integral, and
using Fubini’s theorem to exchange the order of integration, we find that

1 oo . oo 3
Frolx) = ek [ / e *o(y) dy] dk

27 —o0 —oo

1 R co
= — lim [/ e @Y o (y) dy] dk

2T R—oo "R s
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= — lim / / ek (@=v) gk
2T R—oo oo R

e(y) dy

= lim

R—o0 — oo

From Proposition 11.22, the sequence (sin Rz)/7z is a delta sequence as R — oo,
so F*¢ = . An identical argument shows that F¢ = ¢. Therefore F,F*: S — S
are one-to-one, onto continuous maps, and F* = F~L, |

We could have instead introduced a Gaussian regularization,
1 o o
F*p(x) = o— lim gikz—ek?/2 [/ e*op(y) dy] dk,
oo

27 e—0+ — oo

exchanged the order of integration, and passed to the limit in the resulting Gaussian
approximate identity.

11.6 The Fourier transform of tempered distributions

In this section, we define the Fourier transform of a tempered distribution. First,
suppose that f,o € S. Using the definition of the transform and exchanging the
order of integration, which is justified by Fubini’s theorem, we find that the action
of the Fourier transform f on a test function ¢ is given by

/W (/f(x)e_ik"” d:z:) (k) dk
/f(w)ﬁ (/ o(k)e k= dk) dzx

[ t@(@)da. (11.31)

In the notation of (11.9), this result means that 7' = F. We therefore define the
Fourier transform of a tempered distribution as follows.

/ﬂ@ﬂMM

Il

Definition 11.30 The Fourier transform of a tempered distribution T is the tem-
pered distribution 7' = FT defined by

N

(T, @) =(T,p) for all p € S. (11.32)

The inverse Fourier transform 7' = F~'T on S* is defined by

(T, ) =(T,p) for all p € S.

The linearity and continuity of the Fourier transform on S implies that 7' is a
tempered distribution. The map F : §* — S* is a continuous, one-to-one trans-
formation of S* onto itself. The fact that F~! is the inverse of F on S* follows



The Fourier transform on L! 307

immediately from the corresponding result on S, since
(T,p) =(T,$) = (T,p) forallpes.

The formulae for the Fourier transform of derivatives, translates, and convolutions
carry over directly to distributions (see Exercise 11.13). For example,

doT = (ik)T.
We also write the Fourier transform using the integral notation,

(k) = W / T(x)e=* da,

as if T were a function, with an analogous expression for the inverse. This notation
should be interpreted simply as a short-hand for the definition in (11.32).

Example 11.31 Let us compute the Fourier transform of the delta function. From
(11.32), we have

(6,0) = (8,¢) = (0).

From the formula for the Fourier transform on S, we have

P0) = s [ #l@)de = (Lo,

Hence, the Fourier transform of the delta function is a constant,

a 1
0= —r.
(271')"/2

Using the integral notation, we get from the inversion formula the following Fourier
representation of the delta function:

§(z) = (2;)11 /Rn e*? dk. (11.33)

The formula for the transform of the derivative implies that the transform of the
ath derivative of the delta function is a monomial,
— 1

078 = oy i0)"

11.7 The Fourier transform on L!

The Fourier integral

1

—ik-x

\>
—
Sy
~—
|
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converges if and only if f € L*(R™), meaning that

/n|f(:1:)|d;c<oo.

We define the Fourier transform f of an L'-function f by (11.34). This definition
is consistent with the distributional definition, since Fubini’s theorem justifies the
exchange in the order of integration in (11.31) when f € L1(R®).

Example 11.32 Let f = x[_g,gr] be the characteristic function of the interval
[ R, R], sometimes called a “box” function. Then

wk

Thus, the Fourier transform of a box function is a sinc function. The slow rate
of decay of the Fourier transform as k — oo, of the order k™!, is caused by the
discontinuities in f. Although f belongs to L*, the transform f does not. Thus, we
cannot recover f from f by use of the inverse Fourier integral, but we can use the
distributional definition of the inverse Fourier transform.

Example 11.33 For a > 0, let f(z) = exp(—alz|). Then

A 2
1(k) = \/;az -Cll- k2’

The following result, called the Riemann-Lebesgue lemma, gives a basic prop-
erty of the Fourier transform of L!-functions. We denote by Cy(R™) the space of
continuous functions f that approach zero at infinity, meaning that for every ¢ > 0
there is an R such that |f(z)| < € when |z| > R. This space is the completion of
C.(R™) with respect to the supremum norm, and is a Banach space.

Theorem 11.34 (Riemann-Lebesgue) If f € L'(R"), then f € Co(R™), and
@)™ flloo < 1 £ll1-

Proof. To prove the claim, we first observe that if ¢ € S, then

@m)"2(p(k)| = ‘ [eeptayao

[ 0@ ds.

Taking the supremum of this inequality over k, we find that

IN

@m)™* [1¢ll < llell; -
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The Schwartz space S is dense in L'. Hence, if f € L!, there is sequence (¢,,;) in
S that converges to f with respect to the L'-norm. Then (¢,,) is Cauchy in the
supremum norm, since

™)™ 1pm = @ell oo < llpm — ell; -

Since S is contained in Cy, and Cy is complete, there is a function g € Cy such that
¥m — § uniformly. Moreover, § = f because

0 = fw)| = @02 tim |om (k) - f)

m—0o0

Jin | [fon() - 1@ do

lim inf {|@r — fll1 = 0. .

(27r)"/2

IA

The Fourier transform is therefore a bounded linear map from L! into Cy. We
may make L' into an algebra with the convolution product, and Cy into an alge-
bra with the pointwise product. The following proposition shows that the Fourier
transform maps the convolution product into the pointwise product, up to a factor
of (27r)"/?, which depends on the normalization of the Fourier transform. Thus the
Fourier transform is an algebra isomorphism of L! and its image F(L') C Cy. The
image F(L') is strictly smaller than Cy, but a precise description of it is difficult.

Theorem 11.35 (Convolution) If f,g € L'(R"), then f x g € L'(R") and
Frg= @0 f.
Proof. Fubini’s theorem implies that

/If*g(w)l dz /‘/f(w—y)g(y)dy‘ dz

/ [/'f(“”—y)l dw] l9(y)| dy
(J1sena) (f1 ).

which shows that fxg € L' (R"™). Moreover, the absolute convergence of this integral
implies that we can exchange the order of integration in the integral for the Fourier
transform of f x g:

Froth) = 27;"/2 k[/ fz—y) ]dm

/
- 27$n/2/e ihy [/ B (O )dw] 9(y) dy
L ( —””f ) (/e""“'yg(y) dy)

27()”/2

IA
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= (2m)"fg.
O

One use of the convolution theorem is the computation of the inverse Fourier
transform of the product of two functions whose inverse Fourier transform we know.

Example 11.36 For a > 0, we have that

1 a _ 1 —alk|
F [7ra2+m2] = _27re .

Taking the inverse Fourier transform of the equation

1 1 1
—(a+b)|k| — \/or —alk| _ = —blk|
—c€ = ™ e e R
\/_

27 27 27

where a,b > 0, and using the convolution theorem, we obtain the semigroup relation

1 a+b (1 a 1 b
7 (a+b)2+22 <;a2 +x2) * (;b2 +a:2) '

Finally, we make a few comments about the extension of the Fourier transform
to a function of a complex variable, called the Fourier-Laplace transform. If f :
R" — C is an integrable function with compact support, then (11.34) defines an
entire function f : C* — C (meaning that f(k) is a differentiable, or analytic,
function of the complex variable k for all kK € C"), since the integral obtained by
differentiation under the integral sign converges for every k € C*. The Paley- Wiener
theorem, which we do not state here, gives a precise characterization of the Fourier
transforms of compactly supported functions. Similarly, considering the case of one
variable for simplicity, if f is integrable and the support of f(z) is contained in
the half-line > 0, then the Fourier transform f (k) is an analytic function of k in
the lower-half plane Imk < 0, because in that case the exponential e~** decays
as £ — +o00. Setting k = —iz, and omitting the normalization factor of /27, we
obtain the Laplace transform of f,

fer= [ " f@)e da,

which is analytic in the right-half plane Re z > 0. More generally, if supp f C [0, o)
and f(zx)e * is integrable for some a € R, then f(z) is analytic in the right-half
plane Re z > a. Methods from complex analysis, such as contour integration, may
be used to study and invert the Fourier-Laplace transform.

The space of Fourier transforms of test functions in D = C¢° is a space £ of
entire functions. Continuous linear functionals on £, equipped with an appropriate
topology, are called wultradistributions. The space L£* of ultradistributions contains
the space &* of tempered distributions, and the Fourier transform of an arbitrary
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distribution in D* may be defined as an ultradistribution, even if it has exponential
growth at infinity. For example, the Fourier transform

n!

= &, gn >, §(2n)

n=0 n=0

is well-defined as an ultradistribution. The series on the right-hand side does not
converge in 8*, however, since Schwartz functions need not have convergent Taylor
series expansions.

11.8 The Fourier transform on L2

We have seen that the Fourier transform is an isomorphism on both the Schwartz
space and on the space of tempered distributions equipped with their appropri-
ate topologies. In this section, we will see that the Fourier transform is also an
isomorphism on the Hilbert space L?(R") of square-integrable functions. To avoid
confusion with our notation for the duality pairing on $* xS, we denote the L2-inner
product by

(f,9) = /R ) F(x)g(z) da.

The duality pairing and inner-product of f € L? and ¢ € S are related by

Not every square-integrable function on R™ is integrable; for example, the func-
tion (1 4+ 2?)~'/2 belongs to L*(R) but not L'(R). Thus, we cannot define the
Fourier transform of a general L2-function directly by means of its Fourier integral.
Instead, we will use the L2-boundedness of the Fourier transform to extend it from
S(R") to L*(R™).

If p € S, then ¢ = P, since

7(27;;"/2/%:6)6_%% dz = 7(275”/2 /me“” dz.

Using (11.30) and (11.31), we see that for every p,9 € S

@0 = [ Fwi@ = [ s@i@ds= [ payb@ ds = (0.

n

Thus, the Fourier transform is an isometric map
F:ScIL*—-ScI”

The Schwartz space S is dense in L2, so the bounded linear transformation theorem
implies that there is a unique isometric extension F : L2 — L?. Moreover, F~! =
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F*, where F* is the Hilbert space adjoint of 7. Consequently, we have the following
theorem.

Theorem 11.37 (Plancherel) The Fourier transform F : L?(R") — L?(R") is a
unitary map. For every f,g € L?(R"), we have

(f,9) = (£,9), (11.35)

where f = Ff. In particular,

| i@ a= [

To compute the Fourier transform of a general function f € L2, we choose any
sequence (¢,,) in S (or, more generally, in L' N L?) that converges to f in L2. Then
f is the L?-limit of ($,,). For example,

‘ 2

f(K)

dk. (11.36)

f(k) = lim f(z)e **dg
= lim (z)eho—eel gy (11.37)
e—0t Jpn

where the limits are understood in the L?-sense. The inverse transform may be
computed in a similar way.

The Fourier transform is a unitary operator on L2(R"), so its spectrum lies on
the unit circle in C. The spectrum turns out to consist entirely of eigenvalues.
We will describe it, without proof, in the one-dimensional case. Multi-dimensional
eigenfunctions may be constructed from products of one-dimensional eigenfunctions
in each of the coordinates.

Since RF~! = F, where R is the reflection operator on L?, we have F? = R,
and F* = I. It follows that if A € C is an eigenvalue of F, then \* = 1, so
A € {1,i,—1,—i}. Each of these values is an eigenvalue of infinite multiplicity. A
complete orthonormal set of eigenfunctions is given by the Hermite functions,

1 2, d” 2
— /2 2 @ 11.38
n (T e e " .
onle) = ez (11.38)
where n = 0,1,2,.... One can prove that
Feon = (=)"on.

From Exercise 6.14, the Hermite functions are eigenfunctions of the differential
operator

Au = =" + 2%u.
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Taking the Fourier transform of this expression, we find that the terms involving
derivatives and multiplication by powers exchange places, so

FAu = k%0 — 4" = AFu.

Thus, A and F commute, which explains why they share a common set of eigen-
functions.

Once we know that the Hermite functions form an orthonormal basis of L?(R),
we can give an alternative definition of the L2-Fourier transform as

F (Z cn‘Pn) = Z(_i)ncn‘;on-
n=0 n=0

The unitarity of the Fourier transform on L? can be seen immediately from this
formula.

Just as we used Fourier series to define Sobolev spaces of periodic functions, we
can use the Fourier transform to define Sobolev spaces of functions with square-
integrable derivatives on R". Since

8o f = (ik)*f,

the partial derivatives of f of order less than or equal to s are square-integrable if
and only if (ik)®f is a square-integrable function for |k| < s. This is the case if the
function

(1+ k)% f

is square-integrable. More generally, we can define Sobolev spaces of distributions
with fractional, or even negative, order L2-derivatives.

Definition 11.38 Let s € R. The Sobolev space H*(R™) consists of all distribu-
tions f € §* whose Fourier transform f: R” — C is a regular distribution and

| ey

A similar proof to the proof of the Sobolev embedding theorem for periodic
functions, in Theorem 7.9, shows that if f € H*(R") for s > n/2, then f € Co(R™)
(see Exercise 11.12).

f(/g)‘2 dk < oo.

11.9 Translation invariant operators

There is a close connection between the Fourier transform and the group of trans-
lation operators 73, defined in Example 11.16. Since

The—zk-:c — ezk-he—zk-w’
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the exponential functions e~ *# with k € R™, are eigenvectors of 75, in S* with
eigenvalues e*". The Fourier transform is therefore an expansion of a function
or distribution with respect to the eigenvectors of 7. If A : §&* — S§* is a linear
translation invariant operator, meaning that A7, = 7, 4, then we expect that there
is a basis of common eigenvectors of 7, and A, so that A can be diagonalized by
use of the Fourier transform. In that case, the action of A on a distribution is to
multiply the Fourier transform of the distribution by a C'*°-function a of polynomial
growth,

AT = aT.

The function a is called the symbol of the operator A. Inverting the transform, we
find from the convolution theorem that

1
BICORE

with a suitable definition of the convolution a xT. Since 1p(a *T) = a x (1,T), the
convolution is translation invariant.

Example 11.39 A constant coefficient linear differential operator P : $* — S* is
translation invariant, and is given by

PT = Z co 0T

|| <d
for constants c¢,. The Fourier representation is PT = pT', where
plk) = Y calik)™.
loe|<d

Thus, the symbol of a differential operator is a polynomial. The convolution form
of the operator is

PT={ )" cad | *T.
o <d

It can be much simpler to define an operator in terms of its symbol than by an
explicit formula for its action on a function.

Example 11.40 The symbol of the differential operator (—A + I) is the quadratic
polynomial (|k|?> 4+ 1). The square-root (—A + I)!/? is the nonlocal operator with
symbol (|k|?> + 1)'/2. Its action on a distribution T is given by

(=A + )27 = F~1 [(|k|2 +1)127] .
The inverse operator (—A + I)~! has symbol (|k|? + 1)71, so
(—A+1)"'T = g+T,
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where g is the Green’s function of (—A + I), given by

1 ] 1
9= gmprt [mP+J'

For n = 3, where n is the number of space dimensions, computation of the inverse

Fourier transform gives

1 e_‘m‘

)= ——.

For n = 2, the Green’s function may be expressed in terms of Bessel functions. We
will study some other examples of Green’s functions in the next section.

We may also consider translation invariant operators defined on a subspace of
S*. For example, any bounded function a € LW(R") is the symbol of a translation
invariant operator A : L?(R") — L?(R") defined by Af =af.

Example 11.41 For g € L'(R"), we define the convolution integral operator G :
L2(R") — L%(R™) by
1

IGRYYE) /Rng(w —y)f(y) dy. (11.39)

The symbol of G is §. Since g € L, the Riemann-Lebesgue lemma (Theorem 11.34)
implies that § € Cy. Thus, the Fourier transform F diagonalizes G, and G = F*§F
is unitarily equivalent to multiplication by §. Unless § = constant on a set of
nonzero measure, the multiplication operator has a continuous spectrum, given by
the closure of the range of g, so this is also the spectrum of G.

More generally, the map G is well defined on L? whenever §j € L™ is bounded.
For example, suppose that fR is the function obtained by truncating the Fourier
transform of f € L?(R) at wavenumbers k with |k| < R:

;v _ [ f(k) if k[ <R,
fR("”)_{ 0  if|k| >R

Then fp = X[,R,R]f. Since
1 2.
F (X[—R,R]) = ;Rsmc(Rm),
the function fr = F~! [ fR] is given by
R
fr= ;sinc(R:c) x f.
Example 11.42 The symbol of the translation operator 7, itself is e~**. The

translation operators {7, | h € R"} form a unitary group acting on L?(R"). If
h # 0, then the spectrum of 7, is the unit circle in C and is purely continuous.



316 Distributions and the Fourier Transform

Example 11.43 The operator H : L?2(R) — L*(R) with symbol

h(k) = isgnk
is called the Hilbert transform. Since the modulus of the symbol is equal to one,
Plancherel’s theorem implies that H is a unitary map of L?(R) onto itself. Since
h? = —1, we have H? = —I. From Exercise 11.22 and the convolution theorem,

Hf = —% (p.vé) x f.

The Hilbert transform is one of the simplest examples of a singular integral operator.
Its properties are much more transparent from the Fourier representation than the
convolution form.

Example 11.44 The operator R, : L>(R") — L?(R") with symbol

. kyk
= Tap

is called the Riesz transform. Since |fpq| < 1, Rp, is a bounded linear map on
L?(R™). The Riesz transform recovers the second derivatives of a differentiable
function from its Laplacian:

0% f
—— =R,,Af.
O0z,0x, vl
One can also define pseudodifferential operators, whose symbol a(z, k) is a func-
tion belonging to a suitable class that is allowed to depend on both z and k, so

that

Af(z) = W / a(w, k) Fk)e™ di
1

= G / a(xz, k)e* @) f(y) dydk.

These operators are not translation invariant, and they allow the use of Fourier
methods in the analysis of variable coefficient, linear partial differential equations.

11.10 Green’s functions

Constant coefficient, linear partial differential equations on R” may be solved by
use of the Fourier transform. In particular, we can use the distributional Fourier
transform to compute their Green’s functions.

The Green’s function g of the Laplacian on R is a distributional solution of the
equation

—Ag=34. (11.40)
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The delta function has the physical interpretation of the density of a point source
located at the origin, and the Green’s function g is the potential of the point source.
Taking the Fourier transform of (11.40), we find that

1
k)= ———.
A complication in solving this equation for g is that the symbol |k|? of the Laplacian
vanishes at k = 0. We therefore need to interpret division by |k|? in an appropriate
sense. From Example 11.8, if n > 3, then a solution for § is the regular distribution

o101
g(k) - (27T)n/2 |k|25

and the Green’s function is

o) = s ().

The solution is not unique. We may add an arbitrary linear combination of § and
first-order partial derivatives of § to g. The inverse transform of this distribution is
a linear polynomial in z, which is a solution of the homogeneous Laplace equation.
We omit this function of integration for simplicity.

We will compute the inverse transform of § explicitly when n = 3; the computa-
tion for n > 4 is similar. Since g(k) decays too slowly as |k| — oo to be integrable,
we introduce a cut-off, as in (11.37). Using spherical polar coordinates (r,, ) in
k-space, with the z-direction corresponding to § = 0, we find from the inversion
formula and the sinc integral in (11.15), that

zkw
g@) = 27T3R5‘éo/|<R |$|2

2T zr\w|c030
= 27T 3 Rgnoo / / / —— r%sin Odpdddr

R
2
_ lim / sinr|z| dr
0

(27r) R—00 7|z
1 T
(2m)? |=|°

It follows that the three-dimensional, free-space Green’s function for Laplace’s equa-
tion is

1
Ar|z|’

g(z) =

as we found in Section 10.6 by a different method. For n = 2, a solution for § is

1 1
(k) = —f.p. —
(k) = 5—fp Tk
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where the finite part distribution is defined in Example 11.8. One can show that
the inverse Fourier transform of this distribution is of the form

1 1
=—log| — c
o) = 108 () +
for a suitable constant C, also in agreement with our previous result.
Next, we consider the initial value problem for the heat or diffusion equation.
The Green’s function g(z,t) is the solution of the following initial value problem:

1
gtziAg forz e R*, t >0,
g(-,t) € S*(R™) fort >0,
g(z,0) = d(x) for z € R™.

Taking the Fourier transform F, with respect to z of this equation, we find that
g(k,t) = Frg(x,t) satisfies the ODE

1

R T
gt = |k| ) g(k70) - (27l')n/2

2
The solution is given by

_ 2
o tIE2/2

. 1

Using Proposition 11.26 to invert the transform, we obtain that

1 —|z|%/(2t

The solution u(x,t) of the heat equation with initial condition

u(z,0) = f(),
is given by a convolution with the Green’s function:

1

U(.T, t) = W

/ e~/ £(4) .

Rn

Since the Green’s function is a Schwartz function, this expression makes sense as a
convolution for any initial data f € &*. The solution is C* in both z and ¢ when
t > 0. This is the smoothing property of the heat equation. It can be shown that
the solution of the initial value problem for the heat equation is not unique (see
Exercise 11.24). There is, however, a unique solution of polynomial growth, and
this is the one obtained by use of the Fourier transform.
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11.11 The Poisson summation formula

The Poisson summation formula states that a large class of functions f : R — C
satisfy the following identity:

> f(2mn) = Z fn (11.41)

n=—oo n——oo

The presence or absence of factors 27 in this equation depends on the normalization
of the Fourier transform. This formula may be used to derive identities between
infinite series, or even to sum a series explicitly. It can also be used to connect the
Fourier series of a periodic function with the Fourier transform.

Theorem 11.45 Suppose that f € C1(R), and there exist constants C > 0, € > 0
such that

[(1+2) " f@l <o (140 p@l<e (1142)

for all z € R. Then we have the identity

Z f(z+2mn) = \/_ Z e f(n (11.43)

n=—0oo n=—0oo

Proof. The condition in (11.42) implies that the sum

i f(@ + 2mn) (11.44)

n=—oo

converges uniformly, and ¢ is a continuously differentiable 27-periodic function.
Therefore, from Lemma 7.8, the Fourier series of g converges uniformly, and

1 ot 2w Cin
9(@) = o _Z (/0 e ™g(y) dy) ¢l
n=-—oo
Since g is related to f by (11.44), we can rewrite this as (11.43). O

Evaluation of (11.43) at z = 0 gives the Poisson summation formula (11.41).

Example 11.46 The Jacobi theta function 6 is defined for ¢ > 0 by

oo

oit)= > e

The Poisson summation formula implies that the theta function has the following
symmetry property:

o(t) = —0(1/%). (11.45)

1
Vi
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Theta functions have important connections with Riemann surfaces and the theory
of integrable systems. They also arise in the solution of the heat equation on the
circle, as in (7.21).

The Poisson summation formula holds, in particular, for Schwartz functions.
The convergence of the series on the left-hand side of (11.41) for every f € S
implies that the series Y o~y converges in S*. The series on the right-hand

side of (11.41) may be written as:

= fw=5 ¥ [emi@

n=—oo n=—oo

Hence, the series Y > e~ also converges in S*. Changing n to —n in this

sum, we obtain the following identity of tempered distributions:
oo

> bonla) =5 3 (11.46)

n=—oo n=—oo

This equation may be interpreted as the Fourier series expansion of a periodic array
of delta functions (sometimes called the “delta comb”). Its Fourier coefficients are
constants, independent of n.

More generally, we say that a distribution 7" € S(R) is periodic with period 27
if 79T =T. In that case, one can show that

A 1 = .
T=— T 6or
,_277'”:2_:00 nY2mn

for suitable Fourier coefficients 7}, € C. The Fourier coefficients have polynomial
growth in n, meaning that there are constants C' > 0 and d € N such that

Tl < C(1+n2)"*.

Thus, the Fourier transform of a periodic function or distribution is an $*-convergent
linear combination of delta functions supported at 27mn. The strengths of the delta
functions give the Fourier coefficients of the periodic function. The distribution T
is given by the S*-convergent Fourier series

I = &
T(;L’):E Z T,e"m".

n=—oo

11.12 The central limit theorem

A random wvariable describes the observation, or measurement, of a number as-
sociated with a random event. We say that a real-valued random variable X is
absolutely continuous if its distribution may be described by a probability density
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p € L}(R), meaning that for any a < b, the probability that X has a value between
a and b is given by

b
Pr(a < X <b) :/ p(z) dz. (11.47)
a
Since a probability is a number between zero and one, the density function p is
nonnegative and

o
/ p(z)de = 1. (11.48)
—0o0

We call any function p with these properties, a probability density. If X is not
absolutely continuous (for example, because it takes integer values with probability
one), then its distribution is described by a probability measure on R that does not
have a probability density function. We consider absolutely continuous random
variables for simplicity, but the central limit theorem does not depend on this
restriction.

The expected value of a function f(X) of X is given in terms of the density p
by

Bl/C01 = [ " H@)p(a) d,

provided that this integral converges. The mean p and the variance o? of X are
given by

u=E[X], #:EUX—HMV.

The expected deviation of X from its mean is therefore of the order of the standard
deviation o. If the mean and variance of X are finite, then the random variable Y
defined by X = p + oY has mean zero and variance one, so we can normalize the
mean of X to zero and the variance of X to one by an affine transformation. In
that case,

/00 zp(z) dz =0, /00 22p(z) dr = 1. (11.49)

— 00 — 00

Example 11.47 We say that a real random variable X is a Gaussian, or normal,
random variable with mean u and variance o? if its probability density p is given
by
L —Gmwp/2e)
p(z) = e A
2no

If u =0 and 02 = 1, then we say that X is a standard Gaussian.
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We say that N random variables {X1, Xs,..., Xy} are independent if

Pr(a1 SXI Sbl,a2 SX2 Sbg,,aNSXNSbN)
:Pr(al SXI Sbl)PI‘(az SX2 Sb2)Pr(aN§XNSbN)

In that case,

Elfi(X1)f2(X2) ... fn(Xn)] = E[f1(XD)]E[f2(X2)] .. .E[fn(XN)]-

Suppose that {X;, Xs,...,Xn} have a joint probability density p(x1,z2,...,ZN),
meaning that

Pr a1<X1<b1,a2<Xz<b2,.. aN<XN<bN)

by by pby
/ / / p(x1, %2, ..., xN)dx1d2s ... dTN

Then the random variables are independent if and only if p has the form

p(x1,%2,...,2N) = p1(x1)p2(z2) .. . pN(ZN).

Intuitively, independence means that the value taken by one of the random variables
has no influence on the values taken by the others.

In many applications it is important to consider the sum of a large number of
independent, identically distributed random variables. For example, a standard way
to reduce nonsystematic errors in the experimental measurement of a given quantity
is to measure the quantity many times and take the average. The central limit
theorem explains how this error reduction works, and also gives an estimate of the
expected difference between the measured value of the quantity and its true value.
As we will see, if the experimental measurements are independent and randomly
distributed with mean equal to the true value and with finite variance o2, then
for sufficiently large N the distribution of the average value of N measurements
is approximately Gaussian with mean equal to the true value and variance o?/N.
Thus, one needs to take four times as many measurements in order to double the
accuracy. This example is the original application that led Gauss to introduce the
Gaussian distribution.

A second example is the discrete-time random walk. Considering the case of one
space dimension for simplicity, we suppose that a particle starts at the origin at
time zero and moves a random distance X,, € R at time n € N, where X,,, and X,
are independent, identically distributed random variables for m # n. The particle
then takes random steps up and down the real line. The total distance moved by
the particle after N steps is

N
Sn=Y Xn. (11.50)
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A natural question is: What is the probability distribution of the position Sy of
the particle after N steps, given the probability distribution of each individual
step? The central limit theorem describes the limiting behavior of Sy as N — oo.
For instance, if each individual step has mean zero and variance one, then the
distribution of Sy approaches a Gaussian distribution with mean zero and variance
N. The corresponding v/ N-growth of Sy is characteristic of sums of N independent
random variables: the sums do not remain bounded as N — 0o, but there is a large
amount of cancellation, so the sums grow at a slower rate than the number of their
terms.

The Gaussian distribution is universal, in the sense that the distribution of any
sum of a large number of independent, identically distributed random variables
with finite mean and variance is approximately Gaussian, whatever the details of
the probability distribution of the individual random variables. The central limit
theorem remains true for sums of non-identical, independent random variables,
under a suitable, mild condition (such as the Lindeberg condition) that ensures the
distribution of the sum is not dominated by the distribution of a small number of
the individual random variables. Moreover, some weak dependence between the
variables may also be permitted.

Suppose that X and Y are independent random variables with probability den-
sity functions px and py, respectively. Then

Pra<X+Y <b) = // px (@)py (y) dzdy
a<lz+y<b

B /ab (/m px (2 = y)py (y) dy) dz.

Thus, the probability density of X +Y is the convolution of the probability densities
of X and Y. Hence, the convolution theorem implies that the Fourier transforms
of the densities multiply:

DPx+y = V2mPpxpy.

We can obtain the same result by an equivalent probabilistic argument. The char-
acteristic function px of a random variable X is defined by

Yx (k) =E [eikX] .

What we have called the characteristic function x4 of a set A is then referred to
as the indicator function of the set. If X is absolutely continuous with probability
density p, then

oxth) = [ " *p(e) do = VITH(=F).

—00

Thus, up to normalization conventions, the characteristic function is the Fourier
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transform of the probability density. If X and Y are independent, then we have
pxrv (k) = B[] = E[*XE[e*Y] = px (k)pv (k),

which agrees with the previous result. Because the Fourier transform maps convo-
lutions to products, in studying sums of independent random variables it is much
simpler to consider the characteristic functions rather than the densities themselves,
and we shall use this observation to prove the central limit theorem.

Example 11.48 If X is a Gaussian random variable with mean p and variance o2,
then the formula for the Fourier transform of a Gaussian implies that

E [ez'kX] — itk g—0?k?/2

The product of such characteristic functions is another function of the same form,
in which the means and variances add together. Consequently, the sum of inde-
pendent Gaussian random variables is a Gaussian whose mean and variance is the
sum of the individual means and variances, and problems involving Gaussian ran-
dom variables are stochastically linear. The product of two independent Gaussian
random variables is not Gaussian, however.

Suppose that {X;,X5,..., Xn} is a sequence of independent, identically dis-
tributed, random variables with finite mean and variance, and probability density
p. By making an affine transformation, we may assume that the mean is zero and
the variance is one without loss of generality. The probability density py of the
sum Sy = X7 + Xo + ...+ Xy is given by

PN =p*pk---*p.
—_——

N times
We denote the probability density of Sn/ VN by ¢qn. Then
an(z) = VNpn (\/N:c) : (11.51)

We will prove that Sy /v/N converges to a standard Gaussian as N — oo in the
following sense.

Definition 11.49 A sequence (X,) of random variables converges in distribution
to a random variable X if

lim E[f (X,)] =E[f(X)] for every f € Cy(R),

n—oo

where Cy(R) is the space of bounded, continuous functions f: R — C. A sequence
(pn) of probability densities converges weakly to a probability density p if

lim [ f(z)pn(z)dz = /f(m)p(w) dz for every f € Cy(R). (11.52)

n—o0
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If X,, and X are absolutely continuous random variables with probability den-
sities p, and p, respectively, then X,, converges in distribution to X if and only if
P converges weakly to p. Approximating the characteristic function of the interval
[a, b] by continuous functions, one can then also show that

lim Pr(a <X, <b)=Pr(a< X <b).

n—oo

The following theorem, called Lévy’s continuity theorem, provides a useful nec-
essary and sufficient condition for weak convergence.

Theorem 11.50 (Continuity) A sequence (p,) of probability densities converges
weakly to a probability density p if and only if (,) converges pointwise to p.

Proof. If p, converges weakly to p, then (11.52) with f(x) = e~ %2 implies that
Pn(k) converges to p(k).

We prove the converse statement in several steps. First, we show that if p,
converges pointwise to p, then (11.52) holds for every Schwartz function f € S.
Since the Fourier transform maps S onto S, an equivalent statement is that
lim [ f(@)pn(z)dz = /f(x)p(w) dx for every f € S.

n—oo

From Fubini’s theorem, as in (11.31), this statement is equivalent to

lim [ f(k)pn(k)dk = /f for every f € S. (11.53)

n—oo

Since p,, is a probability density, the Riemann-Lebesgue lemma, Theorem 11.34,
implies that p,, is a continuous function with |p, (k)| < 1/v/27 for every k € R.
Hence (11.53) follows from the pointwise convergence of p,, the integrability of f,
and the Lebesgue dominated convergence theorem.

If f € Co(R) is a continuous function that vanishes at infinity, then there is a
sequence (., ) of Schwartz functions that converges uniformly to f. The estimate

\ [ 1@ onte) = plo)] o \ U@ = on@lpnte) o
+ \ [ on(@) a(o) - p(@)] s

‘/wm — ()] ple) d

< Af = mlloe + ‘ [ on(@ lonta) = 9] de

and (11.52) for f = ¢, € S, implies that (11.52) holds for f € Co(R).
In order to show (11.52) for f € Cy(R), we first prove that

)

lim lim sup/ pn(z)dz = 0. (11.54)
|z| >R

R—oo pnosoco
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This condition means that probability cannot escape to infinity as n — oo. The
family of probability measures associated with the densities p,, is then said to be
tight. For each R > 0, we choose pr € Cp(R) such that 0 < pp(z) <1forallz € R
and ¢gr(z) = 1 when |z| < R. Then, by the dominated convergence theorem, and
the fact that [ p(z)dz =1, we have

lim | pr(z)p(z)ds =1. (11.55)

R—o00

Also, since ¢ € Co(R),

lim [ or@)pn(z) dz = / or(@)p(z) da.

n—oo

Using the fact that [ p,(z)dz = 1, we therefore have

n— 00 n—oo

lim sup/ pn(z)dz > lim sup/ [1 - pr(z)] pn(z)dz
[z|>R

> 1- / or(@)p(2) de,

and (11.54) follows from (11.55).
For f € Cy(R) and R > 0, we define fr = pgrf. Since f(z) = fr(z) for |z| <R,
we have the following estimate:

‘ [ 1) ba(@) - p(@)] @

A\
~
—~

8
~—

|
5
)
—~~

8
P
=
3
—~~

8
~—

I

8

IA
I}
=
8

| —

It then follows from (11.52) for f = fr € Co(R) and (11.54) that we can make the
right hand side of this equation arbitrarily small for all sufficiently large n. Hence,
equation (11.52) holds for all f € Cp(R). O

We can now prove the following central limit theorem.

Theorem 11.51 (Central limit) Let Sy be the sum of N independent, identi-
cally distributed, absolutely continuous, real random variables with mean zero and
variance one. Then Sy/v/N converges in distribution as N — oo to a Gaussian
random variable with mean zero and variance one.
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Proof. From Theorem 11.50, we just have to show that the Fourier transform
of the density gy of Sn/ VN converges pointwise to the Fourier transform of the
standard Gaussian density. Taking the Fourier transform of (11.51), we find that

gn(k) = PN (%) : (11.56)

Since py is the N-fold convolution of p, the convolution theorem, Theorem 11.35,

implies that
w()- e (&) o

We Taylor expand e~ % as
; 1
e =1—iz— §z2 1+ r(2)],

where r(z) is a continuous function that vanishes at z = 0 and is uniformly bounded
on the real line. Using the conditions in (11.48) and (11.49), we find that

ﬁ(\/%) = \/%_W/e_ikw/‘/ﬁp(x)d:c

e b ()
1

- \/—27[1—%(1+RN)],

where

= [ (22) i

The integrand converges pointwise to zero as N — oo, and the dominated con-
vergence theorem implies that limy_, o Ry = 0. Computing the Nth power of
p(k/V/N), and using (11.56)—(11.57), we obtain that

lim ¢n(k) = lim L [l—k—2(1+R )]N—iekz/2
gN\k) = ON N = . -

We can rescale the discrete random walk (11.50) to obtain a continuous-time
stochastic process W (t), called Brownian motion, or the Wiener process, that sat-
isfies

SNt
W) = lim —.
( ) N—oo /N
Here, we extend Sy to a function S; of a continuous time variable ¢ by supposing,
for example, that the particle moves at a constant velocity from its position at time
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N to its position at time N + 1. This limit has to be interpreted in an appropriate
probabilistic sense, which we will not make precise here.

As the central limit theorem suggests, Brownian motion W(t) is a Gaussian
process of mean 0 and variance ¢. Its sample paths are continuous, nowhere differ-
entiable functions of time with probability one. The probability density p(z,t) of
finding the particle at position W (t) = z at time ¢, assuming that W(0) = 0, is
given by

1 2,
T,t) = ——e~% /2,
pat) = —o—
The density p is the Green’s function of the heat equation
1
bt = Epzac: p(m,O) = 6(1.)

Brownian motion is the simplest, and most fundamental, example of a diffusion
process. These processes may also be described by stochastic differential equations,
and they have widespread applications, from statistical physics to the modeling of
financial markets.

11.13 References

See Hochstadt [22] for proofs and further discussion of the eigenfunctions of the
Fourier transform. Distributions are discussed in Reed and Simon [45]. For an
introduction to the theory of stochastic differential equations, see @ksendal [41].

11.14 Exercises

Exercise 11.1 Let X be a locally convex space. Prove the following.

(a) The addition of vectors in X and the multiplication by a scalar are contin-
uous.

(b) A topology defined by a family of seminorms has a base of convex open
neighborhoods. Such a topological space is called locally convex.

(c) If for all x € X there exists a € A such that p,(z) > 0, then the topology
defined by {p, | @ € A} is Hausdorff.

Exercise 11.2 Suppose that {p1,p2,ps, ...} is a countable family of seminorms on
a linear space X. Prove that (11.4) defines a metric on X, and prove that metric
topology defined by d coincides with the one defined by the family of seminorms

{p13p2ap3a .. }

Exercise 11.3 Let (x,) be a sequence in a locally convex space whose topology
is defined by a countably infinite set of seminorms. Prove that (z,) is a Cauchy
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sequence for the metric d defined in (11.4) if and only if for every @ € A and € > 0,
there is an N such that ps(z, — 2,,) < € for all n,m > N.

Exercise 11.4 If ¢ € S(R), prove that
@' = p(0)d" — ¢'(0)d.

Exercise 11.5 Prove that

. 1 . o
61—1>I(I)1+ ol A imd(x) in S*(R).

Exercise 11.6 Show that the distributional derivative of log |z| : R — Risp.v.1/z.

Exercise 11.7 Show that there is no product - : §* x §* — S§* on the space of
tempered distributions that is commutative, associative, and agrees with the usual
product of a tempered distribution and a smooth function of polynomial growth.
HinT. Compute the product z - §(z) - p.v.(1/z) in two different ways.

Exercise 11.8 Suppose that w € S(R) is a test function such that

/Rw(x) de = 1.

Show that every test function ¢ € S(R) may be written as

o(a) = (@) [ o)) + (@)

for some test function 1 € S(R). Deduce that if T is a tempered distribution such
that T' = 0, then T is constant.

Exercise 11.9 Let k € S and define the convolution operator

Kf(m):/k(m—y)f(y)dy for all f € S.
Prove that K : § — S is a continuous linear operator for the topology of S.

Exercise 11.10 For every h € R” define a linear transformation 7, : S —+ S by

() (@) = f(z = h).

(a) Prove that for all h € R, 73, is continuous in the topology of S.
(b) Prove that for all f € S, the map h +— 75, f is continuous from R" to S.

HinT. For (b), prove that for f € C(R™) one has limy_¢ ||7nf — f|loo = 0 if and
only if f is uniformly continuous. Also, note that it is sufficient to prove continuity
at h = 0, due to the group property of 7.
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Exercise 11.11 The density p of an array of N point masses of mass m; > 0
located at z; € R” is a sum of § functions

plz) = ij5(93 — ;).

Compute the Fourier transform p of p. Show that for any ¢ € S, and for any
ki,...,kny € R", z1,...,2ny € C we have

N
[ et - 0p@ dkae >0, Y 2y~ ki) 20

P,q=1
The Fourier transform p is said to be of positive type.

Exercise 11.12 Prove that if s > n/2, then H*(R") C Cp(R"), and there is a
constant C' such that

Ifllec < Cllfllm  forall f € H(R").

Exercise 11.13 Prove equations (11.27)—(11.29) for the Fourier transform of trans-
lates and convolutions. Prove the corresponding results for derivatives and trans-
lates of tempered distributions and for the convolution of a test function with a
tempered distribution.

Exercise 11.14 The Airy equation is the ODE
" —zu =0.

The solutions, called Airy functions, are the simplest functions that make a transi-
tion from oscillatory behavior (for < 0) to exponential behavior (for z > 0). Take
the Fourier transform, and deduce that

w(@) = c/eikx+ik3/3 dk,

where ¢ is an arbitrary constant. This nonconvergent integral is a simple example
of an oscillatory integral. Here, it may be interpreted distributionally as an inverse
Fourier transform. Why do you find only one linearly independent solution?

Exercise 11.15 Let f, : R — R be the function

n? if —1/n<z<0,
fal@)=< —n? if0<x<1/n,
0 otherwise.

Show that the sequence (f,) converges in S*(R) as n — oo, and determine its
distributional limit.
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Exercise 11.16 Let f € L'(R®) be a rotationally invariant function in the sense
that there is a function g : Rt — C such that

f(@) = g(l=))-

Prove that the Fourier transform of f is a continuous function f that is also rotation
invariant, and f(k) = h(|k|), where

h(k) = %\E /0 = sin(kr)g(r) dr-

Exercise 11.17 Show that

1 1
Al = @ / T ® T exp (—533 . Aw) dz.
Rn

We therefore call A~! the covariance matriz of the n-dimensional Gaussian proba-
bility distribution with density (27) /2 exp (—x - Az/2).

Exercise 11.18 Prove that if g € L? satisfies g(—z) = g(z), then § is real-valued.

Exercise 11.19 Give a counterexample to show that the Riemann-Lebesgue lemma
does not hold for all functions in L2. That is, find a function f € L?(R) such that
f is not continuous.

Exercise 11.20 Show that § € H*(R™) if and only if s < —n/2.

Exercise 11.21 Show that the integral equation
u(z) + / T Pufy) dy = f(2)
—0o0

has a unique solution u € L(R) for every f € L?(R), and give an expression for u
in terms of f.

Exercise 11.22 Show that
2 1
F ' [isgnk] = N (p.v.a:) .

Exercise 11.23 Show that the solution of the heat equation on a one-dimensional
semi-infinite rod,

1
Ut=§um O0<z<oo,t>0,
u(0,t) =0 t>0,

u(z,0) = f(x) 0 <2< o0,



332 Distributions and the Fourier Transform

is given by

uo(y) dy.

00 o—(z=9)?/(2t) _ o—(a+y)?/(2t)
u(z,t) =/
0 27t

This solution illustrates the method of images.

Exercise 11.24 Let

[ exp(=1/#3) ift >0,
f(t)_{o ift<o.

Show that

> £(n)
U(.’E,t) — Z f(2n()i;) w2n

n=0

is a nonzero solution of the one-dimensional heat equation u; = u,, with zero initial
data u(z,0) = 0.

Exercise 11.25 Find the Green’s function g(z,t) of the one-dimensional wave
equation,

gtt — Jzx = 07
g(:E:O) = 07 gt(.%',O) = (5(.2;‘)

Exercise 11.26 Consider the wave equation
uy = Au
for u(z,t), where t > 0 and z € R, with initial data
u(z,0) =0, u(z,0) = vo(x).

For simplicity, assume that vg € S(R™). Find the equation satsified by the Fourier
transform of u,

-~ 1 —ik-x
U(k,t): W/e k u(x,t) dflf,
and show that
_ 1 sin([k[t) ix.q -
u(z,t) = (271_)”/2/ ] e "o (k) dk,

where 0 is the Fourier transform of v and | - | denotes the Euclidean norm.
For n = 3, let dQ); denote the surface integration measure on the sphere of radius
t, so f‘m‘:t dQ; = 4mt?. Prove that the solution can be written as

1
u(z,t) = yn /|y|=t vo(z + y) dQ.
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For n = 2, prove that the solution is

u(z"t): 1 /|<thy_
Y=

2 <o TP

Interpret these formulae physically.
Exercise 11.27 Prove (11.45).

Exercise 11.28 Prove the following identity for all a > 0:
i 1 wl4e?™
n?+a> al-—e2m’

n=—0oo

By consideration of the limit a — 0%, show that

2

<1 ™
2 2=
n=1

Exercise 11.29 We define the Wigner distribution W (x, k) of a Schwartz function
(), where x, k € R™, by

Wiz, k) = ﬁ /Rn ® (:1: — %) ® (a: + %)eik'y dy.

Compute the Wigner distribution of a Gaussian exp (—z - Az), where A is a positive
definite matrix. Show that W is real-valued, and

W(z, k) = @ /Rn @ (k - g) @eil-z d,
/R" W (z, k) dk = |p(x)]?, W (e, k) dz = [0

R’n
Thus, the Wigner distribution W has some properties of a phase space (that is, an
(z, k)-space) density of ¢. Show, however, that W is not necessarily nonnegative.

Exercise 11.30 Let ¢ : R — C be any Schwartz function such that

[ e@rar=1,

—0o0

and define
o0 o
B[ @l Bo= [ Rlp0Pk
—0o0 — 00
Prove the Heisenberg uncertainty principle:
1

Show that equality is attained when ¢ is a suitable Gaussian.



