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Chapter 12

Measure Theory and Function Spaces

In this chapter, we describe the basic ideas of measure theory and LP spaces. We
also define Sobolev spaces and summarize some of their main properties. Many
results will be stated without proof, and we will not construct the most important
example of a measure, namely, Lebesgue measure. Nevertheless, we hope that this
discussion will allow the reader to use the concepts and results of measure theory
as they are required in various applications.

12.1 Measures

The notion of measure generalizes the notion of volume. A measure p on a set X
associates to a subset A of X a nonnegative number u(A), called the measure of A. It
is convenient to allow for the possibility that the measure of a set may be infinite. It
is too restrictive, in general, to require that the measure of every subset of X is well
defined. Some sets may be too wild to define their measures in a consistent way. Sets
that do have a well-defined measure are called measurable sets. Thus, a measure y is
a nonnegative, extended real-valued function defined on a collection of measurable
subsets of X. We require that the measurable sets form a o-algebra, meaning that
complements, countable unions, and countable intersections of measurable sets are
measurable. Moreover, as suggested by the properties of volumes, we require that
the measure be countably additive, meaning that the measure of a countable union
of disjoint sets is the sum of the measures of the individual sets. First, we give the
formal definition of a o-algebra.

Definition 12.1 A o-algebra on a set X is a collection A of subsets of X such
that:

(a) D e A;
(b) if A€ A, then A°= X\ A € A;
(¢) if {A; | i € N} is a countable family of sets in A, then [J;°, 4; € A.

A measurable space (X,.A) is a set X and a o-algebra A on X. The elements of .4
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336 Measure Theory and Function Spaces
are called measurable sets.

It follows from the definition that X € A, and A is closed under countable

intersections, since
oo o0 ¢
NAi=(U45]) -
i=1 i=1

Example 12.2 The smallest g-algebra on an arbitrary set X is {(), X }. The largest
o-algebra is the power set P(X), that is, the collection of all subsets of X.

If F is an arbitrary collection of subsets of a set X, then the o-algebra A(F)
generated by F is the smallest o-algebra on X that contains F. This o-algebra is
the intersection of all o-algebras on X that contain F.

Example 12.3 Suppose that (X, T) is a topological space, where T is the collection
of open sets in X. The o-algebra on X generated by 7 is called the Borel o-algebra
of X. We denote it by R(X). Since a o-algebra is closed under complements, the
Borel g-algebra contains all closed sets, and is also generated by the collection of
closed sets in X. Elements of the Borel o-algebra are called Borel sets.

Example 12.4 The Borel o-algebra of R, with its usual topology, is generated by
the collection of all open intervals in R, since every open set is a countable union of
open intervals. The collection of half-open intervals {(a,b] | a < b} also generates
R(R) (see Exercise 12.1). More generally, the Borel o-algebra of R” is generated
by the collection of all cubes C' of the form

C = (al,bl) X (a2,b2) X ... X (an,bn), (121)

where a; < b;. It is tempting to try and construct the Borel sets by forming the
collection of countable unions of closed sets, or the collection of countable intersec-
tions of open sets. The union of these collections, however, is not a o-algebra. It
can be shown that an uncountably infinite iteration of the formation of countable
intersections and unions is required to obtain the Borel o-algebra on R", starting
from the open sets. Thus, the structure of a general Borel set is complicated. This
fact explains the nonexplicit definition of the o-algebra generated by a collection of
sets.

Next, we define measures and introduce some convenient terminology.

Definition 12.5 A measure y on a set X is a map p: A — [0,00] on a o-algebra
A of X, such that:
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(b) if {A4; | i € N} is a countable family of mutually disjoint sets in .4, meaning
that A; N A; =0 for i # j, then

% <U Ai) = Z/J (A;). (12.2)

The measure is finite if u(X) < oo, and o-finite if there is a countable family
{4, € A|i=1,2,...} of measurable subsets of X such that u(4;) < oo and

= {Ja.
i=1

A measure space is a triple (X, A, u) consisting of a set X, a o-algebra A on X,
and a measure p: A — [0, 00].

In the countable additivity condition (12.2), we make the natural convention that
the sum of a divergent series of nonnegative terms is co. This countable additivity
condition on g makes sense because A is closed under countable unions. We will
often write a measure space as (X, u), or X, when the o-algebra A, or the measure
I, is clear from the context. It is also useful to consider signed measures, which
take positive or negative values, complex measures, which take complex values, and
vector-valued measures, which take values in a linear space, but we will not do so
here.

Example 12.6 Let X be an arbitrary set and A the o-algebra consisting of all
subsets of X. The counting measure v on X is defined by

v(A) = the number of elements of A,

with the convention that if A is an infinite set, then v(A) = co. The counting
measure is finite if X is a finite set, and o-finite if X is countable.

Example 12.7 We define the delta measure d,,, supported at o € R” on the Borel
o-algebra R(R") of R™ by

_ 1 if.?IQEA,
(st(A)_{ 0 1f.fL'0¢A

This measure describes a “mass” distribution on R” corresponding to a unit mass
located at zg. The formal density of this distribution is the delta function supported
at zo.

If a o-algebra A is generated by a collection of sets F, then we would like to
define a measure on 4 by specifying its values on F. The following theorem gives a
useful sufficient condition to do this. A separate question, which we do not consider
here, is when a function p : F — [0,00] may be extended to a measure on the
o-algebra A(F) generated by F.
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Theorem 12.8 Suppose that A is the o-algebra on X generated by the collection
of sets F. Let p and v be two measures on A such that

u(A) = v(A) for every A € F.

If there is a countable family of sets {A;} C F such that |J; A; = X and p(4;) < oo,
then p = v.

The following example of Lebesgue measure is fundamental.

Example 12.9 The Borel o-algebra of R, defined in Example 12.3, is generated
by the collection of cubes C in (12.1). Lebesgue measure is the measure A on the
Borel o-algebra R(R™) such that A(C) = Vol(C'), meaning that

/\((al,bl) X (az,bz) X ... X (an,bn)) = (bl — al)(bg — a2) .- (bn — an).

Lebesgue measure is o-finite, since

oo
R = (—i,i)".
i=1
As we discuss in Example 12.14 below, Lebesgue measure may be extended to the

larger o-algebra L£(R™) of Lebesgue measurable sets, which is the completion of the
Borel g-algebra with respect to Lebesgue measure.

We have not explained why Lebesgue measure should exist at all, but The-
orem 12.8 implies that it is unique if it exists. One can prove the existence of
Lebesgue measure by construction, although the proof is not easy. The construc-
tion shows the following result.

Theorem 12.10 A subset A of R is Lebesgue measurable if and only if for every
€ > 0, there is a closed set F' and an open set G such that F C A C G and
MG\ F) < e. Moreover,

A(4) = inf{\NU)|U isopen and U D A}
= sup{\K) | K is compact and K C A}.

Thus, a Lebesgue measurable set may be approximated from the outside by
open sets, and from the inside by compact sets.

Lebesgue measure has several natural geometrical properties. It is transla-
tionally invariant, meaning that for every A € L(R") and h € R", we have
A1 A) = A(A), where

ThA={y€R" |y=x+h for some z € A}.
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The space R” is a commutative group with respect to addition. An invariant mea-
sure on a locally compact group, such as Lebesgue measure, is called a Haar measure.
IfT:R* - R"” is a linear map and

TA={y e R"|y="Tx for some z € A},

then A(T'A) = |det T|A\(A). Thus, Lebesgue measure is rotationally invariant, and
it has the scaling property that A(tA) = t"A(A) for ¢ > 0.

If (X, A, u) is a measure space, a subset A of X is said to have measure zero if
it is measurable and u(A) = 0. Sets of measure zero play a particularly important
role in measure theory and integration.

Example 12.11 A subset A of R" is of measure zero with respect to the delta-
measure d;, defined in Example 12.7 if and only if A is a Borel set and zq ¢ A.

Example 12.12 For each z € R, the Lebesgue measure of the set {z} is equal to
zero, since

A({z}) = lim A({y ||z —y[ <e}) = lim 2e=0.

Hence every countable subset A = {z; | i € N} of R has measure zero, since the
countable additivity of Lebesgue measure implies that

AA) = 3 Az =o0.

One can show that a subset A of R" has Lebesgue measure zero if and only if for
every € > 0, A is contained in a not necessarily disjoint union of open cubes, the
sum of whose volumes is less than e.

It follows from the additivity and nonegativity of a measure that any measurable
subset of a set of measure zero has zero measure. We may extend a measure in a
unique fashion to every subset of a set of measure zero by defining it to be zero.

Definition 12.13 A measure space is complete if every subset of a set of measure
zero is measurable. If (X, A, ) is a measure space, the completion A of the o-
algebra A with respect to a measure p on A consists of all subsets A of X such that
there exists sets E and F in A with

ECACEF, and u(F\ E) =0.

The completion 7 of p is defined on A by

The complete measure space (X, A4, ) is called the completion of (X, A, p).
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Example 12.14 The Borel o-algebra R(R™) is not complete. Its completion with
respect to Lebesgue measure is the g-algebra £(R™) of Lebesgue measurable sets.
We will use the same notation A to denote Lebesgue measure on the Borel sets and
the Lebesgue measurable sets.

A property that holds except on a set of measure zero is said to hold almost
everywhere, or a.e. for short. When we want to make explicit the measure p with
respect to which a set has measure zero, we write p-a.e. We define the essential
supremum of a set of real numbers A C R by

ess supA = inf{C |z < C for all z € A\ N, where u(N) = 0}.

A Borel measure is a measure defined on the Borel o-algebra of a topological
space. Thus, the delta-measure and Lebesgue measure defined on R(R") are exam-
ples of Borel measures. The following example gives a useful class of Borel measures
on R

Example 12.15 Let F': R — R be an increasing, right-continuous function, mean-
ing that F(z) < F(y) for z <y, and

F(z) = lim F(y).

y—azt

There is a unique measure pr on the Borel o-algebra of R such that
pr ((a,b]) = F(b) — F(a).
From Exercise 12.3, if b, — bT is a decreasing sequence and a < b, then

ur ((a,ba]) = pr ((a,8) 7,

which explains why F' must be right-continuous. This measure is called a Lebesgue-
Stieltjes measure, and F' is called the distribution function of the measure. For
example, if F(x) = x, then we obtain Lebesgue measure. If F' is the right-continuous
step function,

1 ifz >0,
F(w)_{ 0 ifz<0,

then we obtain the delta measure supported at the origin. If F' is the Cantor
function, defined in Exercise 1.19, then we obtain a measure such that the Cantor
set C' has measure one and R\ C has measure zero. Despite the fact that up is
supported on a set of Lebesgue measure zero, we have pp({z}) = 0 for every z € R.

Kolmogorov observed in the 1920s that measure theory provides the mathemat-
ical foundation of probability theory.

Definition 12.16 A probability space (2, A, p) is a measure space such that u(Q2) =
1. The measure p is called a probability measure.
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In modeling a random trial or experiment, we form a sample space  that
consists of all possible outcomes of the trial, including outcomes that may occur
with probability zero. An event is a measurable subset of (2, and the collection
of events forms a o-algebra A on Q. The probability 0 < pu(A) < 1 of an event
A € Ais given by an appropriate probability measure defined on 4. The o-algebra
of a probability space has a natural interpretation as the collection of events about
which information is available.

Example 12.17 Let Q = {n € Z | n > 0} be the nonnegative integers and A the
set of all subsets of Q2. Let u be the measure on A such that

p(n) = e, ) =3 A

This measure is called the Poisson distribution.

Example 12.18 Suppose that 2 = R" and A is the Lebesgue o-algebra. The
standard Gaussian probability measure on R is given by

1 .
— “le2/2 g
A = Gy /A !

Here, the integral is the Lebesgue integral, defined below.

12.2 Measurable functions

Measurable functions are the natural mappings between measurable spaces. They
play an analogous role to continuous functions between topological spaces.

Definition 12.19 Let (X, .A) and (Y, B) be measurable spaces. A measurable func-
tion is a mapping f : X — Y such that

f'(B)e A forevery B € B.

The measurability of f : X — Y depends only on the o-algebras on X and Y,
and not on what measure, if any, is defined on X or Y. When a measure p is defined
on X, we say that two measurable functions f: X - Y and g : X —» Y are equal
a.e. if

p({z e X| f(z) # g(x)}) = 0.

Two functions on a measure space that are equal a.e. will often be regarded as
equivalent.

Example 12.20 A measurable map T : X — X on a measure space (X, A4, u) is
said to be measure preserving if
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for all measurable sets A. Measure preserving maps arise naturally in physics and
other applications. Ergodic theory studies the properties of various kinds of measure
preserving maps (see Theorem 7.11 and Theorem 8.35, for example).

Example 12.21 A measurable map X : Q — R on a probability space (2 is called
a random variable.

If B is the o-algebra generated by F, then the condition that
fFY{F)eA forall FeF

is sufficient to ensure that f is measurable. This follows from the fact that {f~'(B) |
B € B} is the o-algebra generated by {f '(F) | F € F}, and is therefore contained
in A.

Example 12.22 Every continuous function between topological spaces is Borel
measurable. A continuous function f : R* — R is measurable with respect to the
Lebesgue o-algebra on the domain R” and the Borel o-algebra on the range R.

From now on, we will restrict our attention to real-valued functions defined on
a measure space (X, A, u). Complex-valued functions may be treated by splitting
them into their real and imaginary parts. The fact that the real numbers are totally
ordered makes it particularly easy to develop the integral in this case. The theory
applies to real-valued functions defined on a general measure space X, but it is
helpful to keep in mind the case when X is R" equipped with Lebesgue measure.

It is often convenient to allow measures and functions to take on the values —oco
or co. We therefore introduce the extended real numbers R = [—o00,00]. We make
the following definitions of algebraic operations involving z € R and oo:

r+00=00, &—O00=—00,

Z-00=00, x-(—00)=—00 if x>0,
T-00=—00, «-(—00)=00 if z <0,
|0o| = | — oo = o0

We also define
0-00=0-(—00)=0.

For example, we will define the integral of a function that is infinite on a set of
measure zero, or the integral of a function that is zero on a set of infinite measure,
to be zero. We do not define oo — oo, and any expression of this form is meaningless.

We use the natural ordering and topology on R; as far as its ordering and
topology are concerned, R is isomorphic to the closed interval [-1, 1]. Any monotone
sequence {z,} of points in R has a limit. The limit of a monotone increasing
sequence is sup{z,} if the sequence is bounded, and oo if it is unbounded. The
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limit of a monotone decreasing sequence is inf{z,} if the sequence is bounded, and
—oo if it is unbounded. We equip R with the Borel o-algebra R(R). This o-algebra
is generated by the semi-infinite intervals of the form {[—o0,¢) : ¢ € R}, so we have
the following criterion for the measurability of a function f : X — R.

Proposition 12.23 Let (X,.A) be a measurable space. A function f: X — R is
measurable if and only if the set {x € X | f(z) < ¢} belongs to A for every c € R.

In this proposition, the sets {f(z) < ¢}, {f(z) > ¢}, or {f(z) > ¢} could be
used equally well. A complex-valued function f : X — C is measurable if and only
if f =g+ ih where g,h: X — R are measurable.

We say that a sequence of functions (f,) from a measure space (X, A, u) to R

converges pointwise to a function f : X — R if
lim fp(z) = f(z) for every z € X.
n—00

The sequence converges pointwise-a.e. to f if it converges pointwise to f on X \ N,
where N is a set of measure zero. The following result explains why all functions
encountered in analysis are measurable.

Theorem 12.24 If (f,) is a sequence of measurable functions that converges point-
wise to a function f, then f is measurable. If (X, A, u) is a complete measure space
and (f,) converges pointwise-a.e. to f, then f is measurable.

A measurable function that takes on finitely many, finite values is called a simple
function. Any measurable function may be approximated by simple functions.

Definition 12.25 A function ¢ : X — R on a measurable space (X,.A) is a simple

function if there are measurable sets Ay, As, ..., A, and real numbers ¢y, ¢s,...,¢p
such that
n
Y= Z CiXA; - (12.3)
i=1

Here, x4 is the characteristic function of the set A, meaning that

(z) = 1 ifzeA,
XA =00 ifz g A

The representation of a simple function as a sum of characteristic functions is not
unique. A standard representation uses disjoint sets A; and distinct values ¢;. In
that case, we have () = ¢; if and only if z € A;. Since the sets A; are required to
be measurable, a simple function is measurable.

Theorem 12.26 Let f : X — [0, 00] be a nonnegative, measurable function. There
is a monotone increasing sequence {y, } of simple functions that converges pointwise

to f.
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Proof. For each n € N, we subdivide the range of f into 22 + 1 intervals

[k—l k

L I TRET

)

) for k=1,2,...,2°", I, 92,1 = [2", 00]
of length 27". We define the measurable sets

Apk = Ing) for k=1,2,...,22" +1.
Then the increasing sequence of simple functions

22n+1
k-1
on= ) ( o )XAn,k

k=1

converges pointwise to f as n — oo. |

An arbitrary measurable function f : X — R may be written in a canonical way
as the difference of two nonnegative measurable functions,

f=f+_f—5 f+:ma‘x{f70}a f— :max{—f,O}. (124)

We call f, the positive part of f and f_ the negative part. We may then approximate
each part by simple functions.

12.3 Integration

The Lebesgue integral provides an extension of the Riemann integral which applies
to highly discontinuous and unbounded functions, and which behaves very well with
respect to limiting operations. To construct the Lebesgue integral, we first define
the integral of a simple function. We then define the integral of a general measurable
function using approximations by simple functions.

Suppose that

n
o= cixa
=1

is a simple function on a measure space (X, .4, u). We define the integral of ¢ with
respect to the measure p by

/sodu = Zcm(Ai)-

The value of the sum on the right-hand side is independent of how ¢ is represented
as a sum of characteristic functions.

This definition is already well outside the scope of the Riemann integral. For
instance, the characteristic function of the rationals is not Riemann integrable, but
its Lebesgue integral is zero. The Riemann integral of a function f : [a,b] - R
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is based upon the approximation of the function by simple step functions ¢, in
which the sets A; are intervals. It may not be possible to approximate a highly
discontinuous function by step functions, and then the Riemann definition of the
integral fails. The Lebesgue integral uses approximations of the function by simple
functions in which the sets A; are general measurable sets. Because of the way the
approximating simple functions are constructed in Theorem 12.26, the Lebesgue
approach to integration is sometimes contrasted with the Riemann approach by
saying that it subdivides the range of the function instead of the domain.

Definition 12.27 Let f : X — [0, 00] be a nonnegative measurable function on a
measure space (X, A, u). We define

/fdpzsup{/godp‘cpissimpleandgagf}.

If f: X > Rand f = fy — f_, where f; and f_ are the positive and negative
parts of f defined in (12.4), then we define

[tan= [ teau- [ -an

provided that at least one of the integrals on the right hand side is finite. If

/mw=/hw+/ﬁw<m

then we say that f is integrable or summable. A complex-valued function f : X — C
is integrable if f = g + ih where g,h : X — R are integrable, and then

/fdp:/gd,u—}-i/hd,u.

If A is a measurable subset of X, we define

/Afdll:/fXAdli-

The Lebesgue integral does not assign a value to the integral of a highly oscil-
latory function f for which both [ fi dp and [ f_ du are infinite.

Example 12.28 The function

f(z) = % [azQ sin (xi?)] = —% cos (a;iz) + 2z sin (x_lz) ,

is not Lebesgue integrable on [0, 1]. The function is not Riemann integrable on [0, 1]
either, since it is unbounded. Nevertheless, the improper Riemann integral

1
lim / f(z)dz =sinl

e—0t
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exists, because of the cancellation between the large positive and negative oscilla-
tions in the integrand.

Depending on the context, we may write the integral in any of the following

ways
[+ [raw  [r@au@, [ s as).

We will also write the integral [ fd\ of a function defined on R™ with respect to

Lebesgue measure A as
/fd:c, /f(:c) dz.

Example 12.29 If §,, is the delta-measure, and f : R® — R is a Borel measurable
function, then

[ 1 by = 1(z0).
We have f = g a.e. with respect to d,, if and only if f(zo) = g(zo)-

Example 12.30 Let v be the counting measure on the set N of natural numbers
defined in Example 12.6. If f : N —» R, then

/fdu=;fn,

where f, = f(n). This integral is well defined if f is nonnegative, or if the sum
on the right converges absolutely, in which case f is integrable with respect to v.
Thus, nonnegative and absolutely convergent series are a special case of the general
Lebesgue integral.

Example 12.31 We denote the integral with respect to the Lebesgue-Stieltjes mea-
sure pg on R defined in Example 12.15 by

[ fdue = [ sar.

If F' is a piecewise smooth, monotone increasing function with a countable number
of jump discontinuities, then the Lebesgue-Stieltjes integral includes a continuous
integral from the smooth parts of F', and a discrete sum from the jumps.

12.4 Convergence theorems

Suppose that a sequence of functions (f,,) converges pointwise to a limiting function
f- When can we assert that [ f, du converges to [ fdu? The following example
shows that some condition is required to ensure the convergence of the integrals.
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Example 12.32 Define f, : [0,1] = R by

[ n if0<z<1/n,
fnl®) = { 0 otherwise.

Then we have f,(z) = 0 as n — oo for every z € [0, 1], but

1
| fa@)dz =1
0
for every n, so fol fn(z) dzx does not tend to 0 as n — oc.

Two simple conditions that ensure the convergence of the integrals are the mono-
tone convergence of the sequence, and a uniform bound on the sequence by an in-
tegrable function. The corresponding theorems, called the monotone convergence
theorem and the Lebesgue dominated convergence theorem, are among the most
important and frequently used results in integration theory.

A sequence of functions (f,,), where f, : X — R, is monotone increasing if

fi@) <. < fama(2) < ful@) < fapa(z) < ... forevery z € X.

Theorem 12.33 (Monotone convergence) Suppose that (fy) is a monotone in-
creasing sequence of nonnegative, measurable functions f,, : X — [0, 0] on a mea-
sure space (X, A,u). Let f: X — [0,00] be the pointwise limit,

f(x) = lim f,(z).

n—oo

Then
lim fndu=/fdu-
n—oo

The convergence of the sequence in Example 12.32 is not monotone. A general-
ization of this result, called Fatou’s lemma, is the following.

Theorem 12.34 (Fatou) If (f,) is any sequence of nonnegative measurable func-
tions f, : X — [0, 00] on a measure space (X, A, u), then

/ <liminf fn) dp < liminf / o dps. (12.5)
n—o0 n—oo

Example 12.32 shows that we may have strict inequality in (12.5). Intuitively,
“mass” may “leak out to infinity” as n — 0o, so the integral of the lim inf may be
less than or equal to the liminf of the integrals.

The crucial hypothesis in the next theorem is that every function in the sequence
(fr) is bounded independently of n by the same integrable function g. This theorem
is the one of the most useful for applications.
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Theorem 12.35 (Lebesgue dominated convergence) Suppose that (f,) is a
sequence of integrable functions, f, : X — R, on a measure space (X,.A, 1) that
converges pointwise to a limiting function f : X — R. If there is an integrable
function g : X — [0, o] such that

| fn(2)] < g(z) forallz € X andn € N,

then f is integrable and
lim [ fp,du= /f dp.
n— o0
The sequence in Example 12.32 is bounded uniformly in n by the function

_ [ 1z it0<z<1,
g(“’)_{o if o =0,

but this function is not integrable on [0,1]. The same result applies if X is a
complete measure space, f, — f pointwise-a.e., and |f,(z)| < g(z) pointwise-a.e.

A corollary of the dominated convergence theorem is the following result for
differentiation under an integral, which is proved by approximation of the derivative
by difference quotients.

Corollary 12.36 (Differentiation under an integral) Suppose that (X, A4, p)
is a complete measure space, I C R is an open interval, and f : X x I = Ris a
measurable function such that:

(a) f(-,t) is integrable on X for each t € I;

(b) f(z,-) is differentiable in I for each € X \ N where u(N) = 0;
(c) there is an integrable function g : X — [0, co] such that

‘ﬂ

(z,t)| < g(x) a.e. in X for every t € I.

ot

Then
o(t) = /X f(@, 1) du(z)

is a differentiable function of ¢ in I, and

do . of
0= . 3¢ (& 1) du(@).

12.5 Product measures and Fubini’s theorem

One of the most elementary geometrical facts is that the area of a rectangle in
the plane is the product of the lengths of its sides. From the point of view of
measure theory, this means that Lebesgue measure on R? is the product of Lebesgue
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measures on R. We will describe a general construction of product measures here.
A closely related result from elementary calculus is that the double integral of a
continuous function over a smooth region in R? can be computed as two iterated
one-dimensional integrals. Fubini’s theorem provides a generalization of this result,
which states that an integral of a function on a product space can be computed
as iterated integrals over the individual components of the product space. Fubini’s
theorem is another of the most useful results in the theory of Lebesgue integration.
The key hypothesis in Fubini’s theorem is that the function is integrable on
the product space. The following example shows that the equality of double and
iterated integrals is not true, in general, without an integrability condition.

Example 12.37 Define f : [0,1] x [0,1] = R by

22 —y?

f(xay)Zm-

Then a straightforward computation shows that

/01 </01f(a:,y)dy) da::‘/oll_’_%da::%,
[ o) o[ o=

The function f in this example is not integrable, meaning that

[ [ 1 tasy = .

First, we define the product of two o-algebras.

N

Definition 12.38 Let (X,.4) and (Y, B) be measurable spaces. The product o-
algebra A ® B is the o-algebra on X x Y that is generated by the collection of
sets

{AxB|A€ A BeB}. (12.6)

The collection of sets in (12.6) does not form a o-algebra, since the union of
two such sets is not, in general, another such set. Next, we state a theorem which
defines the product of two o-finite measures.

Theorem 12.39 Suppose that (X, A4, u) and (Y, B,v) are o-finite measure spaces.
There is a unique product measure pu ® v, defined on A ® B, with the property that
for every A € A and B € B

(1 ® v)(A x B) = p(A)v(B).
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Example 12.40 Suppose that X = R™ and Y = R" are equipped with the Borel
o-algebras A = R™ and B = R"™ and the Lebesgue measures y = A™ and v = \".
The product o-algebra is R™ @ R™ = R™*t" and the product measure is A @ \" =
A"t Thus, Lebesgue measure on R” is the n-fold product of Lebesgue measure
on R.

Let f: X xY — R. We denote by f¥: X — R and f, : Y — R the functions

fUzx) = f(z,y),  fo(y) = f=,p).

If (X,A,p) and (Y,B,v) are o-finite measure spaces and f : X x Y — R is an
A ® B-measurable function, then one can prove that f¥ is A-measurable for ev-
ery y € Y and f, is B-measurable for every x € X. Furthermore, the function
I(z) = [y f+(y) dv(y) is p-measurable, and the function J(y) = [y f¥(x)du(z) is
v-measurable. All the integrals appearing in the following statement of Fubini’s
theorem are therefore well defined.

Theorem 12.41 (Fubini) Let (X, A, 1) and (Y, B,v) be o-finite measure spaces.
Suppose that f: X x Y — R is an (A ® B)-measurable function.

(a) The function f is integrable, meaning that

[ flduswdr <,
XXY

if and only if either of the following iterated integrals is finite:

[ ([ 15w a)) duo),
[ ([ 1r@law) a).

(b) If f is integrable, then
[ ([ rwarw) due)

/y (/X @) d“@’ﬂ)) dv(y).

To apply this theorem, we usually check that one of the iterated integrals of | f|
is finite, and then compute the double integral of f by evaluation of an iterated
integral.

/ f (@) d(u(z) © v(y))
XxY

/ f(@,) d(u(z) ® v(y)
XxY

Example 12.42 Suppose that z,,, is a doubly-indexed sequence of real or complex
numbers, with m,n € N. The application of Fubini’s theorem to counting measure

on N implies that if
oo oo
Z < |xmn|> < 00,
=1

m=1 \n
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then
oo o oo oo
> () =3 (3 o).
m=1 \n=1 n=1 \m=1
The product of two complete measures is not necessarily complete, and this

leads to some technical complications in connection with Lebesgue measure.

Example 12.43 Suppose that X = R™ and Y = R, with m,n > 1, are equipped
with the Lebesgue o-algebras £™ = R™ and L™ = R7, respectively. It is not true
that £™ ® L™ = L™, Rather, we have

L = Lm g Ln.

For example, if £ C R™ is any non-Lebesgue measurable set (which cannot be a
subset of a set of m-dimensional Lebesgue measure zero) and y € R”, then the set
E x{y} C R™*" does not belong to L™® L". It is, however, an (L™*")-measurable
set, since it is a subset of R™ x {y} which has (m+n)-dimensional Lebesgue measure
zZero.

The following version of Fubini’s theorem applies in this context.

Theorem 12.44 Suppose that (X, A, u) and (Y, B,v) are complete o-finite mea-
sure spaces, and let (X x Y,L£,)\) be the completion of the product space. If
f: X xY = R is a nonnegative or integrable £-measurable function, then f,
is B-measurable p-a.e. in z € X and fY is A-measurable v-a.e. in y € Y. Further-
more, I(z) = [ fz(y)dv(y) and J(y) = [ f¥(z)dp(z) are measurable, and

[ o= [ ([ rwaw) e = [ ([ @) o,

12.6 The LP spaces

The LP-spaces consist of functions whose pth powers are integrable. The space L*>
requires a separate definition.

Definition 12.45 Let (X, .4, u) be a measure space and 1 < p < oo. The space
LP(X,u) is the space of equivalence classes of measurable functions f : X — C,
with respect to the equivalence relation of a.e.-equality, such that

[ 1817 du < .

The LP-norm of f is defined by

i1, = ([ 1sp du)l/p. (12.7)
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The space L*(X, ) consists of equivalence classes of functions f : X — C such
that there is a finite constant M with

F@I<M  pae.
The L*-norm is defined by

[1£1lo0 ess sup {|f(z)| |z € X}

inf{M | |f(z)| < M p-ae.}.

We are mainly interested in the case when X is a Lebesgue measurable subset of
R™, but most results below apply to arbitrary measure spaces. When the measure p
is understood, we often abbreviate LP(X, u) to L?(X), or simply LP. For example,
we write LP(R™) for LP(R™, \), where )\ is Lebesgue measure.

Theorem 12.46 If (X, A, 1) is a measure space and 1 < p < oo, then LP(X) is a
Banach space.

Proof. We will only prove the result for 1 < p < co. We abbreviate LP(X) to LP
and || - ||, to || - ||. The verification that L? is a linear space and that || - || is a norm
is straightforward, with the exception of the triangle inequality, which we prove in
Theorem 12.56 below. We therefore just have to show that LP is complete.

From Exercise 1.20, a normed linear space is complete if and only if every ab-
solutely convergent series converges. Suppose that f, € LP with n = 1,2,...1is a
sequence of functions such that

Do lfall =M,
n=1

where M < oo. We need to show that there is a function f € LP such that

N
f_ an
n=1

First, we consider the sequence of nonnegative functions gy defined by

N
gN = Z |fn|
n=1

The sequence (gn) is monotone increasing, so it converges pointwise to a nonnega-
tive, measurable extended real-valued function g : X — [0, 00]. We have ||gn|| < M
for every N € N, so

=0.

lim
N—oo

/Igzvl”du = |lgn|IP < MP.
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The monotone convergence theorem, Theorem 12.33, implies that
llgll” = lim f[lgn[[” < MP.
—00

In particular, ||g|| < oo, so g € LP. Therefore, g is finite p-a.e., which means that
the sum Y | fn(z) is absolutely convergent p-a.e. We can then define a function
f pointwise-a.e. by

The partial sums of this series satisfy

< g(x)P.

Since g € L? and |f(z)| < g(z), we have that f € LP. Furthermore, g € L' and

P
‘ Z fala

< (29(z))".
The dominated convergence theorem, Theorem 12.357 implies that

li n d =
dm =35 aumo
so the series converges to f in LP, which proves that LP is complete. d

The following example shows that the LP-convergence of a sequence does not
imply pointwise-a.e. convergence. One can prove, however, that if f, — f in LP,
then there is a subsequence of (f,) that converges pointwise-a.e. to f.

Example 12.47 For 2¥ <n < 2¥+!1 1 where k = 0,1,2,.. ., we define the interval
I, by

I, = [(n—2%)/2%, (n + 1 —2%)/2*]
and the function f, : [0,1] — R by

fn = Xx1,-

The sequence (f,) consists of characteristic functions of intervals of width 27* that
sweep across the interval [0,1]. We have f, — 0 in L?([0,1]), for 1 < p < oo,
but f,(z) does not converge for any = € [0,1]. The subsequence (fx) converges
pointwise-a.e. to zero.

As we have seen, it is often useful to approximate an arbitrary element in some
space as the limit of a sequence of elements with special properties. Every LP-
function may be approximated by simple functions.
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Theorem 12.48 Suppose that (X, .4, u) is a measure space and 1 < p < oo. If
f € LP(X), then there is a sequence () of simple functions ¢, : X — C such that

Jlim || f = @nllp = 0.

Proof. 1t is sufficient to prove the result for nonnegative functions, since we may
approximate a general function in LP by approximating its positive and negative
parts. We consider only the case 1 < p < oo for simplicity. If f > 0, then
from Theorem 12.26 there is a monotone increasing sequence of nonnegative simple
functions (i, ) that converges pointwise to f. The sequence (g, ) defined by

gn:fp_(f_‘pn)p

is a monotone increasing sequence of nonnegative functions. The monotone conver-

gence theorem implies that
/ gn dp — / fPdp
b'¢ b'¢

as n — 00, from which it follows that ¢,, — f in LP. d

As an application of this theorem, we prove that LP(R™) is separable for p < co.
Theorem 12.49 If 1 < p < oo, then LP(R™) is a separable metric space.

Proof. We have to show that LP(R") contains a countable dense subset. The
set S of simple functions whose values are complex numbers with rational real and
imaginary parts is dense in the space of simple functions. Hence, Theorem 12.48
implies that S is dense in LP(R™). The set S is not countable because there are
far too many measurable sets, but we can approximate every simple function by a
simple function of the form (12.3) in which each set A; is chosen from a suitable
countable collection F of measurable sets. For example, we can use the collection of
cubes of the form [a1, b1] X [az, b2] X - - - X [an, by], Where a1, by, az,b2,. .., an, by € Q.
We omit a detailed proof. The result then follows. a

This theorem also applies to LP(Q2), with 1 < p < oo, where 2 is an arbitrary
measurable subset of R”. The space L™ (R") is not separable (see Exercise 12.13).

For p < oo, we can approximate functions in LP(R"™) by continuous functions
with compact support.

Theorem 12.50 The space C.(R™) of continuous functions with compact support
is dense in LP(R™) for 1 < p < oo.

Proof. 1If f € LP(R™), then the Lebesgue dominated convergence theorem implies
that the sequence (f,) of compactly supported functions,

_f f(x) if|z[ <,
Fol@) = { 0 if |z| > n,
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converges to f in LP as n — 0o. Each f,, may be approximated by simple functions,
which are a finite linear combination of characteristic functions. It therefore suffices
to prove that the characteristic function x4 of a bounded, measurable set A in
R™ may be approximated by continuous functions with compact support. From
Theorem 12.10, for every € > 0 there is an open set G and a compact set K C G
such that K C A C G and A(G\ K) < €. By Urysohn’s lemma (see Exercise 1.16),
there is a continuous, real-valued function f such that 0 < f(z) <1, f=1on K,
and f =0 on G°. Then

1/p
1 = xally = ( L Vab dw) < AG\F)Y7 <e.
G\K -

We can use an approximate identity to smooth out C.-approximations, thus
obtaining C2°-approximations.

Theorem 12.51 If 1 < p < 0o, then C°(R™) is a dense subspace of LP(R™).

Proof. TFor e >0, let p. € C(R™) be an approximate identity. If f € C.(R"),
we define f, = ¢, x f. Then f. € C°(R™) for every € > 0. Moreover, f. — f
uniformly, and hence in L?, as e — 0F. Since C.(R™) is dense in LP(R™), the result
follows. d

12.7 The basic inequalities

It has been said that analysis is the art of estimating. In this section, we give the
basic inequalities of LP theory.

Many inequalities are based on convexity arguments. We first prove Jensen’s
inequality, which states that the mean of the values of a convex function is greater
than or equal to the value of the convex function at the mean. We recall from
Definition 8.47 that a function ¢ : C'— R on a convex set C is convex if

e (tr + (1 =t)y) < tp(x) + (1 —t)p(y)

for every z,y € C and t € [0,1]. We define the mean of an integrable function f on
a finite measure space (X, u) by

1
(Fhu= ) /X fdp. (12.8)

Theorem 12.52 (Jensen) Let (X, u) be a finite measure space. If ¢ : R — R is
convex and f: X — R belongs to L' (X, u1), then

e ((flu) <(pof),- (12.9)
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Proof. From Exercise 12.9, there is a constant ¢ € R such that

o(y) > e((Hu) +cly —(flu)  foreveryy e R. (12.10)

Setting y = f(z) in this inequality and integrating the result over X, we obtain
that

/Xswfdu > w((f)u)/x du+0(/deu—<f)u/X du)
= () (X).
Dividing this equation by p(X) < oo, we obtain (12.9). O

The right-hand side of (12.9) may be infinite. Although ¢ o f need not be in L!,
its negative part is integrable from (12.10), so its integral is well defined.

Example 12.53 Suppose that {z1,22,...,2,} is a finite subset of R, and p is a
discrete probability measure on R with p({z;}) = A\;, where 0 < A; < 1 and

MF+X+--+ A, =1.

Then Jensen’s inequality, with f(z) = z, implies that for any convex function
¢ : R — R we have

ez + Aoxe + ..o+ Apzy) < Ap(z1) + Asp(x2) + ..o+ Anp(zn).

Holder’s inequality is one of the most important inequalities for proving esti-
mates in LP-spaces. We say that two numbers 1 < p,p’ < oo are Holder conjugates
or conjugate exponents if they satisfy

1 1

» + v =1, (12.11)
with the convention that 1/0o = 0. For example, p = 1 and p' = oo are Holder
conjugates, and p = 2 is conjugate to itself. Holder’s inequality applies to a pair of
functions, one in L? and one in L¥'.

Theorem 12.54 (Hélder) Let 1 < p,p' < oo satisfy (12.11). If f € LP(X, u) and
g€ LV (X, ), then fg € LY(X, p) and

‘ / fgdu‘ < 7l llgl- (12.12)

Proof. For the conjugate pair of exponents (p,p') = (1, 0c), Holder’s inequality
is the obvious inequality

‘/X fgdu‘ < ||g||oo/X |f| dp.

We therefore assume that 1 < p,p’ < oo.
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The set Y = {z € X | g(z) # 0} is measurable, and

‘ [ 1@ dute)

We also have

- ‘ [ 1@t duto

< /Y 1£(@)] l9(@)] du().

1712 = /X 1P du> /Y N

Therefore, replacing X by Y if necessary, it is sufficient to prove (12.12) under the
assumption that f(z) > 0 and g(z) > 0 for every z € X.
We define a new measure v on X by

v(A) = /Agp’ du.

The function ¢ : R — R defined by ¢(z) = |z|P is convex for p > 1. An application
of Jensen’s inequality (12.9) to the function h : X — R defined by

_f
o gr'/p

implies that

©((h)y) <{(pohy),.

Writing out this equation explicitly, we obtain

1 f

P P
——dv 1 f
v(X) Jx g7'/P

<—= ;
“v(X) Jx g7
Rewriting the integrals with respect to v as integrals with respect to u, and using
the assumption that p and p’ are dual exponents, we obtain that

d p

Jx 97 dul = [x g7 du Jx
Taking the pth root of this equation, rearranging the result, and using the fact that
p and p' are conjugate exponents again, we get (12.12). Since the right-hand side
of this inequality is finite, it follows that h € L'(X,v) and fg € L' (X, ). O

dv.

In the special case when p = p’ = 2, Holder’s inequality is the Cauchy-Schwarz
inequality for L2-spaces. As an application of Holder’s inequality, we prove a result
about the inclusion of LP-spaces.

Proposition 12.55 Suppose that (X, u) is a finite measure space, meaning that
w(X) <oo,and 1 < g < p<oo. Then

LYX,p) D LU(X, ) D LP(X, ) D L®(X, ).
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Proof. We define 1 <r < oo by
1 1 1

p r 4q

Then p/q and r/q are Holder conjugates. Moreover, if f € LP, then |f|P/9 € L9 and
1€ L"/4 since u(X) < oco. Hélder’s inequality therefore implies that

17l = [ 1o tdu
x
a/p a/r
< ([ampna) ([ )
b'e b's
= @) Nf.
Hence, || f||q is finite for every f € LP, which proves the claimed inclusion. O

For these inclusions to hold, it is crucial that p(X) < oo, as illustrated in
Exercise 12.14. Minkowski’s inequality is the triangle inequality for the LP-norm.

Theorem 12.56 (Minkowski) If 1 < p < o0, and f,g € LP(X, ), then f+ g €
LP(X,p), and

I+ glly < I fllp + [lgllp- (12.13)
Proof. We have
If+9l" < (fI+19D”
< 22max(|f”,19/")
< 22(f17 +19) -

Hence, f+g € LP if f,g € LP.
If f+ge€LP, then |f + glp_1 € L7, where p' is the Holder conjugate of p, and

-1 -1
17 +art) = +al

Hence, using Holder’s inequality followed by this result, we find that

17+ gll” / F+gllf + 9P du

< /Ifl |f+glP ™ du+/lg| f+ 9P~ dp
< Ml 17 +01 7 +lial, 17 +07
< (1711, + gl ) 1S + gli2™"

If ||f + gll, # O, then division of this inequality by ||f —{—g||£_1 gives (12.13). If
lf +gll, = 0, then the result is trivial. O
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For 0 < p < 1, nonnegative functions satisfy the reverse triangle inequality

N7+ gllp = 1711y + [lgllp,

which explains why LP is only a normed linear space for p > 1.
Tchebyshev’s inequality is an elementary inequality that is especially useful in
probability theory.

Theorem 12.57 (Tchebyshev) Suppose that f € LP(X), where 0 < p < co. For
every € > 0, we have

ple € X 11f@) > ) < S

Proof. Define S; € A by
Se={z e X ||f(z)| > €}
Then

171z = /X P dp> /S FPdu > eu(S.),

which is what we had to prove. a

The following inequality for the LP-norm of convolutions is called Young’s in-
equality. This inequality shows that convolution is a continuous operation when
defined on an appropriate choice of Banach spaces.

Theorem 12.58 (Young) Suppose that 1 < p,q,r < oo satisfy

11 1
S+ -=14-.
P q r

If f € LP(R™) and g € LY(R™), then f xg € L"(R"), and
I *gll- <1 f1lpllgllq-

(12.14)

Proof. We leave it to the reader to check that it is sufficient to prove the result
for nonnegative functions f, g such that || f|l, = ||gllq = 1.

We first consider the special case p = ¢ = r = 1. Using Fubini’s theorem to
exchange the order of integration, we have

ifxals = [ |[ 1ate -y av) ao
o8] 0]

= [Ifllllgll, (12.15)

which proves the result in this case.
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For general values of p, ¢, we observe from (12.14) and the definition of the
Holder conjugate that

An application of the generalized Holder inequality in Exercise 12.12 therefore im-
plies that

fro@ = [ 1w g -0 107 [oe - 9'0"] dy

[ srate - : [ s s "

, 1/p'
[/g(x _ y)(l—q/r)p dy] .

Since (1 —p/r)¢' =p, (1 —q/r)p' = ¢, and ||fl|, = llg]l = 1, it follows that

IN

fw@YS/ﬂw%@—wW%

meaning that (f *xg)" < fP xg?. The use of this inequality and (12.15) then implies
that

If =gl = 1)l < 17+ g%l = 1£71l, 19?11y = IFII gllg = 1,
which proves the theorem. a

Two common special cases of this result are:

IF*glls < fllxllglls NIF * gllee < NFll2119ll2-

12.8 The dual space of LP

In Section 5.6, we gave the general definition of the dual space of a Banach space.
In this section, we describe the dual space LP(X)* of bounded, linear functionals
on LP(X), where X is a measure space equipped with a measure p.

Suppose that 1 < p < oo and g € L? (X)), where p' is the Hélder conjugate of p.
We define ¢, : LP(X) — C by

g (f) z/ fgdp  for every f € LP(X). (12.16)
X
Holder’s inequality implies that ¢, is a bounded linear functional on LP, with

||Sog||(LP)* < llgllza-
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Here, || - [|(z»)+ is the norm of a bounded linear function defined in (5.23). The next
theorem states that if 1 < p < 0o, then all linear functionals on L? are of the form
(12.16).

Theorem 12.59 If 1 < p < oo, then every ¢ € LP(X)* is of the form
p(f) = / fgdu
b'e

for some g € L” (X), where 1/p +1/p' = 1. If pu is o-finite the same conclusion
holds when p = 1 and p’ = oco. Moreover,

lellzeys = llgllzo-

We will not give the proof. According to Theorem 12.59, we may identify the
dual of LP with L?'. When p=p' =2, we recover the result of the Riesz represen-
tation theorem that the dual of the Hilbert space L? may be identified with itself.
The dual of L! is L™, but the dual of L™ is strictly larger than L' (except in trivial
cases, such as when X is a finite set). The full description of (L°°)* is complicated
and rarely useful, so we will not give it here. If 1 < p < oo, then (LP)** = LP and
LP is reflexive, but L' and L™ are not reflexive.

The continuous linear functionals define the weak topology. From Definition 5.59,
Definition 5.60, and Theorem 12.59, we have the following definition of weak LP-
convergence.

Definition 12.60 Suppose that 1 < p < co. A sequence (f,,) converges weakly to
fin LP, written f,—f, if

li_>m frgdp = /fg dp for every g € L¥', (12.17)

where p' is the Holder conjugate of p. When p = oo and p' = 1, the condition in
(12.17) corresponds to weak-* convergence f, — f in L.

As in the case of Hilbert spaces, discussed in Section 8.6, weak LP-convergence
does not imply strong LP-convergence, meaning convergence in the LP-norm. The
following example illustrates three typical ways in which a weakly convergent se-
quence of functions can fail to be strongly convergent.

Example 12.61 Let g € LP(R) be a fixed nonzero function, where 1 < p < oo.
For each of the following three sequences, we have f,, — 0 weakly as n — oo, but
not f, — 0 strongly, in LP(R).

(a) fn(z) = g(z)sinnz (oscillation);
(b) fn(z) = n/Pg(nz) (concentration);
(¢) fa(x) = g(x —n) (escape to infinity).
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The Banach-Alaoglu theorem, in Theorem 5.61, leads to the following weak
compactness result for LP.

Theorem 12.62 Suppose that (f,) is a bounded sequence in LP(X), meaning that
there is a constant M such that ||f,|| < M for every n € N. If 1 < p < oo, then
there is a subsequence (f,,) and a function f € LP(X) with ||f|| < M such that
fr, — f as k — oo weakly in LP(X).

12.9 Sobolev spaces

Many problems in applied analysis involve differentiable functions. Sobolev spaces
are Banach spaces of functions whose weak derivatives belong to LP spaces. They
provide the simplest and most useful setting for the application of functional analytic
methods to the study of differential equations. We have already discussed several
special cases of Sobolev spaces in the chapters on Fourier series and unbounded
linear operators. Here, we give more general definitions of Sobolev spaces, and
describe some of their main properties. We use the multi-index notation introduced
in Section 11.1, and consider real-valued functions for simplicity.

We will define Sobolev spaces of functions whose domain is an open subset 2
of R”, equipped with n-dimensional Lebesgue measure. In particular, we could
have Q = R™. As usual, LP(Q2) denotes the space of Lebesgue measurable functions
f :Q — R whose pth powers are integrable. We also introduce the local LP spaces,
denoted by L? (). A function f belongs to LY. (Q) if it is measurable and

loc loc

/ |fI? dz < oo
K

for every compact subset K of Q. For example, 1/x belongs to L. _ ((0,1)), but not

loc
to L' ((0,1)) or L, (R). For every 1 < p < oo, we have the inclusions

Li,.(Q) D L},

loc

Q) > LP().

Thus, L], .(9) is the largest space of integrable functions. We adopt the following
definition of a test function for the purposes of this chapter.

Definition 12.63 A test function ¢ : @ — R on an open subset 2 of R" is a
function with continuous partial derivatives of all orders whose support is a compact
subset of ). We denote the set of test functions on Q by C°(Q).

Definition 12.64 If f,g, € LL (Q) are such that

loc

/gagodm = (=1)l / fo%pdz  for all p € C(9),
Q Q

then we say that g, = 0%f is the ath weak partial derivative of f.
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The weak derivative is only defined pointwise up to a set of measure zero.

Example 12.65 The function
1

R

f(z)

belongs to Li. .

x; is given by

(R™) if and only if a < n. The weak derivative of f with respect to

o ZT; 1
gi(z) = _GHW

provided that g; is locally integrable which is the case when a < n—1. For example,
in one space dimension, if f' € Lf (R) for some p > 1, then a < 0 and f is
continuous. In fact, the Sobolev embedding theorem below implies that any function
on R whose weak derivative belongs to L¥ (R) for some p > 1 is continuous. In
higher space dimensions, a function may be weakly differentiable but discontinuous.
The strength of an allowable singularity in a weakly differentiable function increases

with the number of space dimensions n.

Definition 12.66 Let k be a positive integer, 1 < p < oo, and {2 an open subset
of R®. The Sobolev space W*P(Q) consists of all functions f : @ — R such that
0 f € L*(Q) for all weak partial derivatives of order 0 < |a| < k. We define a norm
on WkP(Q) by

1/p

ooy = | 3 / 107 [P da

0<|a| <k

when 1 < p < 00, and by

1fllwhoo = max {suplaaf(w)l}

0<|a|<k \zeQ

when p = oo. Here, the supremum is to be interpreted as an essential supre-
mum. For p = 2, corresponding to the case of square integrable functions, we write
Wk2(Q) = H*¥(Q), and define an inner product on H*(Q) by

(f9mr@) = Z /Qaaf(‘?agdw.

0<al<k

The space W¥*P(Q) is a Banach space and H¥(Q) is a Hilbert space.

Next, we define a Sobolev space of functions that “vanish on the boundary of
Q‘”
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Definition 12.67 The closure of C2°(Q2) in W*?(Q) is denoted by
Wo? (@) = CE().

We also define
HE(Q) = Wy (Q).

Informally, we can think of W(f () as the WkP(Q)-functions whose derivatives
of order less than or equal to k — 1 vanish on the boundary 99 of Q. Compactly
supported functions are dense in W*?(R™), so that Wg"? (R") = Wk»(R").

The definition of the boundary values of Sobolev functions which do not vanish
on the boundary is non-trivial. The boundary of a smooth set has measure zero,
but Sobolev functions are not necessarily continuous and they are defined pointwise
only up to sets of measure zero. The trace theorem, in Theorem 12.76 below, gives
a way to assign boundary values to Sobolev functions.

Sobolev spaces of negative orders may be defined by duality.

Definition 12.68 Let k& be a positive integer, 1 < p < o0, and p’ Ithe Holder
conjugate of p. The Sobolev space W~—#P(Q) is the dual space of W(f P (). That
is, f € W=FP(Q) is a continuous linear map

FWE Q) SR frue (£ u).

We define a norm on W~%?(Q) by

—k,p = Ssu —_.
||f||W k.p p , ||U||

In particular, H=*((Q) is the dual space of H(f2). Elements of W~%P(Q) are
distributions whose action on test functions extends continuously to an action on
functions in W," I (Q). The dual space of W*# (Q) is not a space of distributions,
because the action of a continuous linear functional on functions in W*# (Q) de-
pends on the values of the W*#' (Q)-functions on the boundary 91, and therefore it
is not determined by its action on compactly supported test functions. It is possible
to show that any distribution f € W~%?(Q)) may be written (nonuniquely) as

f= Z 0%ga

lal<k

where g, € LP(Q). The action of this distribution f on a W(f’p "_function w is given
by

() = 3 (=1 [ gududa,

lo|<k
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More generally, it is possible to define Sobolev spaces W®P of fractional order for
any s € R and p € [1,00]. These spaces arise naturally in connection with the trace
theorem below, but we will not describe them here. For p = 2, the Hilbert spaces
H?3(R™) may be defined by use of the Fourier transform (see Definition 11.38).

12.10 Properties of Sobolev spaces

In this section, we summarize the main properties of Sobolev spaces without proof.
These properties include the approximation of Sobolev functions by smooth func-
tions (density theorems), the integrability or continuity properties of Sobolev func-
tions (embedding theorems), compactness conditions (the Rellich-Kondrachov the-
orem), and the definition of boundary values of Sobolev functions (trace theorems).
Depending on the context, there are many different regularity conditions that the
domain Q on which the Sobolev functions are defined must satisfy, and the differ-
ences between them are sometimes quite subtle. We will say that a domain is reqular
if it satisfies an appropriate regularity condition, without stating the precise condi-
tion that is required. Any domain bounded by a smooth hypersurface (meaning that
the boundary is locally the zero set of a smooth function with nonzero derivative)
satisfies the regularity conditions for all the results stated in this section. Domains
with outward pointing cusps or needle-shaped protrusions are typical examples of
domains with insufficient regularity, and some of the properties stated below do not
hold on such domains.

We use C(2) to denote the space of uniformly continuous functions on €, and
Co(R™) to denote the space of continuous functions on R" that tend to zero as
x — oo. This space is the closure of C°(R") in L>(R"). The space C*(Q2) consists
of functions whose partial derivatives of order less than or equal to k are uniformly
continuous in 2, and C*°(Q) consists of functions with uniformly continuous deriva-
tives of all orders in 2. If a function is uniformly continuous in the open set (2, then
it has a unique continuous extension to the closure Q.

In the theorems stated below, we consider two types of domains: 2 = R”; and 2
a regular, bounded, open subset of R” with boundary 0f2. It is frequently possible
to consider more general domains, but this complicates the statements of some of
the theorems. The order k is a positive integer and 1 < p < oo, unless stated
otherwise.

Theorem 12.69 (Density) The space C°(R") is dense in WEP(R?). If Q is an
open subset of R", then C°(Q) is dense in W(f’p(ﬂ), and if (2 is regular, then C>(Q2)
is dense in WkP(Q).

Meyers and Serrin proved for general domains that C*(Q) N W*P(Q) is dense
in W*?(Q), but functions in C*°(£2) need not be smooth up to the boundary.
Among the most important properties of Sobolev spaces are the embedding the-
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orems, which provide information about the integrability or continuity of a function
given information about the integrability of its derivatives. To motivate the embed-
ding theorems, we first consider functions v : R* — R, and ask when it is possible
to have an estimate of the form

l[ullze < C[[Vul| e (12.18)

for a constant C' that is independent of u. Here,

s (2 00w
T\ Oz 0y By

is the gradient, or derivative, of u and

(e

We also use the notation Du for Vu.
For t > 0, we define the rescaled function

H O
L? 6:82

)

LP H Ozn

ug(z) = u(tx).
A simple calculation shows that
luellze =t ullee, — [IVuellze =t ~"7(|Vul|Ls. (12.19)

These norms must scale according to the same exponent if the estimate in (12.18)
is to hold. This occurs if and only if p < n and ¢ = p*, where

«_ _"p

n—p

This equation may also be written as
— == (12.20)

We call p* the Sobolev conjugate of p. The inequality in (12.18) does in fact hold
for every u € C°(R™) when ¢ = p*, and it follows by a density argument that every
function in W?(R") belongs to L?" (R") when p < n.

The inclusion W?(R*) C LP" (R") is equivalent to the existence of an embed-
ding

J: WHP(R™) — LP" (RM),

where Jf = f. The estimate (12.18) implies the continuity of J.

If O C R is a bounded domain, then we have W?(Q) ¢ L? () and L?" (Q) C

L1(Q) for 1 < g < p*. Thus, there is a continuous embedding J : W1P(Q) — LI(Q).
Summarizing these results, we get the following theorem.
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Theorem 12.70 (Embedding) Suppose that  is a regular, bounded, open set
in R”, p < n, and p* is the Sobolev conjugate of p, defined in (12.20).

(a) If u € WHP(R™), then u € LP" (R*). There is a constant C' = C(p,n) such
that

llull Lo+ (mmy) < ClIVUl|Lo@n)-

(b) If u € WHP(Q) and 1 < q < p*, then u € LI(Q). There is a constant
C = C(p,q, ) such that

lull La(e) < Cllullwe(a)-

To prove this theorem, one uses the Holder inequality to show that the estimate
holds for test functions. The result follows for arbitrary Sobolev functions by the
density of test functions in Sobolev spaces (see Adams [1] for complete proofs).

The above embedding theorem applies if p < n. If p > n, then functions in
WLP are continuous and one can estimate their uniform norm in terms of their
W1P_norm.

Theorem 12.71 (Embedding) Suppose that n < p < oo, and Q is a regular
bounded open subset of R™.

(a) If u € WHP(R™), then u € Co(R"). There exists a constant C = C(p,n)
such that

llul| Lo (mmy < ClIVullLe@ny-

(b) If u € WHP(Q) then u € C(Q) and there exists a constant C = C(p, )
such that

”U”L"“(Q) < C”U”Wl,p(g).

A more refined version of this embedding theorem states that the functions are
Hélder continuous.

Definition 12.72 A function u : Q — R is Hélder continuous in the open set (2,
with exponent 0 < r <1, if

|u(z) — u(y)|

sup o < o0.
z,yeN |1' - y|
TFy
If u is Holder continuous with exponent r = 1, then u is Lipschitz continuous.
Any Holder continuous function is continuous, but not conversely. The Banach
space C%7(Q) consists of all bounded Hélder continuous functions in © with the
norm

lu(z) — u(y)|
llullco.r gy = sup |u(z)| + sup -
e (Q) z€eN T,yeQ |'CL. - y|r
TFy
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For each positive integer k and 0 < r < 1, we define C*7(Q) to be the space of
functions that are k times continuously differentiable in 2, with uniformly contin-
uous derivatives whose kth-order derivatives are Holder continuous with exponent
r. This space is a Banach space with the norm

0~ -0
l[ullcr.r@) =  max {suplao‘u(w)|}+max sup 9% u(z) u)]
0<]al<k | zeQ |a‘:kz,y€Q |£L._y|7‘
THY

Theorem 12.73 (Morrey) Suppose that n < p < co. Let

r=1-"2.
p
(a) fu € WHP(R"), then u € C%"(R™) and there exists a constant C = C(p,n)

such that
llullco.rmny < ClIVullLe®n)-

(b) If u € WP(Q), then u € C%"(Q2) and there exists a constant C' = C(p, Q)
such that

||u||C°’T(Q) < C”U”Wl,p(g).

Spaces of continuous functions form an algebra with respect to the pointwise
product, since the pointwise product of continuous functions is continuous, but the
LP-spaces do not form an algebra; for example, the product of two L?-functions
belongs to L', but not in general to L2. The Sobolev spaces form an algebra when
they consist of continuous functions.

Theorem 12.74 Suppose that 2 is an open subset of R”, including the possibility
Q = R". If kp > n, then W*P(Q) is an algebra and there is a constant C such that

[[uv||wr.e < Cllullwr.s||v]|lwe» for all u,v € Wk?(Q).

It is a general principle that a set of functions whose derivatives are uniformly
bounded is compact. The Sobolev-space version of this principle is the Rellich-
Kondrachov theorem which states that W*P(Q) is compactly embedded in LI(f)
for ¢ < p*. The boundedness of the domain 2 and the condition that q is strictly
less than the Sobolev conjugate p* of p are both essential for compactness. In the
critical case, ¢ = p*, the embedding is continuous but not compact.

Theorem 12.75 (Rellich-Kondrachov) Let 2 be a regular bounded domain in
R™.

(a) Suppose that 1 < p < n and 1 < ¢ < p*. Then bounded sets in W1?(Q)
are precompact in L2((2).
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(b) Suppose that p > n. Then bounded sets in W!P(2) are precompact in
c(Q).

In particular, suppose that (uy) is a sequence of functions in W?(£2) such that
lukllwir <C

for a constant C that is independent of k. If p < n and 1 < ¢ < p*, then there is
a subsequence of (uy) that converges strongly in L2(Q2). If p > n, then there is a
uniformly convergent subsequence.

If p>nand 0 < r < 1-—n/p, then the embedding of W!P(Q) into C*7(Q)
is compact. General compactness theorems follow by repeated application of this
result. For example, if kp < n then W*P(Q) is compactly embedded in L9(Q) for
any 1 < g < np/(n — kp), while if kp > n then W*?(Q) is compactly embedded in
cQ).

There is no sensible way to assign boundary values u|gsq to a general function
u € LP(Q). Functions in L? are defined only pointwise-a.e., and the boundary 99 of
a regular domain has measure zero. The situation is different for Sobolev functions.
If u € W*P(Q), then one can assign boundary values to the derivatives of u of order
less than or equal to k — 1/p. It is not possible to define boundary values of kth
order derivatives, however, since they are just LP functions.

Theorem 12.76 (Trace) There is a surjective bounded linear operator
v WEP(Q) » Wi1/PP(HQ)
such that
yu=ulsa  ifue WLP(Q)NC(Q).

There is a “loss of 1/p derivatives” in restricting a Sobolev function to the
boundary. For example, the boundary values of a function in H'(2) belong to
H'/2(8Q). Conversely given an element of H'/2(dQ), there is a function in H'(f)
which takes those boundary values.

Our last result is the Poincaré inequality, which has many variants. The common
theme is that, after removing nonzero constant functions, one can estimate the LP-
norm of a function in terms of the LP-norm of its derivative.

Theorem 12.77 (Poincaré) Suppose that 2 is a bounded domain. Then there is
a constant C' such that

lullze < ClIVul|»

for every u € Wy P(9).

More generally, this estimate holds if {2 is bounded in one direction. The
Poincaré estimate is false for nonzero constant functions, so the assumption that
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u € I/VO1 P rather than u € WP, is essential. A useful consequence of this estimate
is that ||Vul||r» provides an equivalent norm on Wy**(Q). When p = 2, it follows
that we can use

(u,v) = / Vu(z) - Vu(z) dx
Q
as an inner product on H}(Q). Another Poincaré inequality is the following.

Theorem 12.78 (Poincaré) Suppose that  is a smooth connected bounded do-
main. There exists a constant C' such that

lu = (Wl > < ClIVullL» (12.21)

for every u € WHP(Q), where (u) is the mean of u over (,

1
W = / u(z) dr,

and |Q]| is the volume of Q.

12.11 Laplace’s equation

The Dirichlet problem for the Laplacian is

—Au=f x €1, (12.22)
u(z) =0 x € 0N.

Here, f : © — R is a given function (or distribution) and Q is a smooth bounded
open set in R™”. We assume homogeneous boundary conditions for simplicity; non-
homogeneous boundary conditions may be transferred to the PDE in the usual
way.

To formulate any PDE problem in a precise way, we have to specify what function
space solutions should belong to. We also have to specify how the derivatives are
defined and in what sense the solution satisfies the boundary conditions and any
other side conditions. There is often a great deal of choice in how this is done. A
classical solution of (12.22) is a twice-continuously differentiable function u that
satisfies the PDE pointwise, wheras a weak solution satisfies it in a distributional
sense.

To motivate the definition of a weak solution, we suppose that u is a smooth
solution. Let ¢ € C°(2) be any test function. Then multiplication of (12.22) by ¢
and an integration by parts imply that

/Vu(x)-Vgo(x) dx:/f(a:)go(m) dzx. (12.23)
Q Q



Laplace’s equation 371

Conversely, if u is a smooth function that vanishes on 0 and satisfies (12.23) for
all test functions ¢, then wu is a classical solution of the original boundary value
problem.

Let us require that the solution u and the test function ¢ belong to the same
space. Then Vu and V¢ must both be square-integrable, so it is natural to look
for solutions in the space H}(Q). Since ¢ € H}(2), we can make sense of the
right-hand side of (12.23) provided that f € H~1(Q). This leads to the following
definition.

Definition 12.79 Given a distribution f € H~1(Q), we say that u is a weak solu-
tion of (12.22) if u € H} () and

/ Vu-Vodr = {f,¢) for every ¢ € HJ (1),
Q

where (-,-) denotes the duality pairing between H~!(Q) and H; ().

If we define a quadratic functional I : H}(Q) — R by

Iw) = 5 [ 1VuP do = (fu),

then, as we will see in Section 13.9, a function u that minimizes I is a weak solution
of (12.22). As a result of this connection, the present approach to the study of the
Laplacian is often called the variational method. The boundary condition u = 0 on
09 is replaced by the condition that u € H} (). The precise sense in which weak
solutions satisfy boundary conditions or initial conditions often requires careful
attention. Definition 12.79 is not the most general definition of weak solutions. For
example, we could consider distributional solutions of (12.22) when f ¢ H~1(Q).
The definition given is the natural one for the following existence theorem.

Theorem 12.80 There is a unique weak solution u € Hg () of (12.22) for every
f € H71(Q). There is a constant C = C(Q) such that

lullgs < Clifllg-r  for all f € H-1(Q),

Proof. By the Poincaré inequality, we can use
(u,v) = / Vu - Vudz
Q

as an inner product on Hg (Q2). Since f € H~1(Q) = H}(Q)*, and H}(Q) is a Hilbert
space, the Riesz representation theorem implies that there is a unique u € Hg (f2)
such that

(u,0) = (f, )

for every ¢ € H}(2). This function u is the unique weak solution of (12.22).
Moreover, we have ||ull gz = || f[|z-1- O
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This theorem implies that
—~A:H}(Q) = H (D)

is a Hilbert space isomorphism; in fact, it is the isomorphism between H{ () and
its dual space H—1(Q), in which the dual space is represented concretely as a space
of distributions.

The proof of Theorem 12.80 gives a solution u of (12.22) that belongs to H} ().
This is the best regularity one can hope for in the case of a general right hand side
f € H™1. If, however, f € H* is smooth, then elliptic regularity theory shows that
the solution v € H¥*2 and that

lull e+ < CllF |l ere-

This gain of derivatives is typical of elliptic equations. One can estimate the L2-
norm of all second derivatives of u in terms of the L?-norm of the single combination
of second derivatives Au. If f € H*¥(Q) with k& > n/2, then it follows from the
Sobolev embedding theorem that u € H¥*2(Q) C C2?(12), so u is a classical solution,
and if f € C®(Q), then u € C=(Q).

If f € C(Q), then it is not necessarily true that v € C?(Q). If, however,
f € C*7(Q) is Holder continuous, where 0 < r < 1, then there is a unique Holder
continuous solution u € C*¥+27(€Q)), and one can estimate the Hélder norms of the
second derivatives of u in terms of the Holder norm of f. Analogous existence,
uniqueness, and regularity results hold in LP(Q) for 1 < p < oo, but not for p =1
or p = 00.

The idea in Theorem 12.80 of using the Riesz representation theorem to prove
the existence and uniqueness of a weak solution applies to more general linear PDEs.
Consider a linear equation that can be written in the abstract form

Au=f, (12.24)

where A : H — H* is a bounded linear operator from a Hilbert space H to its
dual space H*, and f € H*. In the case of Laplace’s equation, we had A = —A,
H = H§(Q), and H* = H~1(Q). Evaluation of (12.24) on a test function v € H,
gives an equivalent weak formulation:

a(u,v) = {f,v) for all v € H,
where a : H x H — R is defined by
a(u,v) = (Au,v).

This bilinear form a is called the Dirichlet form associated with A. In the case of
Laplace’s equation, we have

a(u,v) = / Vu - Vudz.
Q
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The Dirichlet form of a Sturm-Liouville ordinary differential operator is given in
(10.38). If a is a symmetric, positive definite, sesquilinear form, and there exists a
constant a > 0 such that

a(u,u) > af|ul|? for all u € H,
then the energy norm
llulla = Va(u, u)

is equivalent to the original norm on #, and the Riesz representation theorem
implies the existence and uniqueness of a weak solution u of (12.24) for every f € H*.

If a is not symmetric, then it does not define an inner product on #, and the
Riesz representation cannot be used directly to establish the existence of a weak
solution. Nevertheless, a similar result, called the Lax-Milgram lemma, still applies.
The proof is outlined in Exercise 12.23.

Theorem 12.81 (Lax-Milgram) Suppose that a : H x % — R is a sesquilinear
form on a Hilbert space #, and there are constants a > 0, f > 0 such that

allel® < la(z,2)|,  la(z,y)| < Bll=]l Iyl

for all z,y € H. Then for every bounded linear functional F' : H — C there is a
unique element x € ‘H such that

a(z,y) = F(y) for all y € H.

Finally, we mention that (12.23) is a useful starting point for numerical methods
of solving Laplace’s equation, especially the finite element method.

12.12 References

Jones [25] gives a clear and well-motivated introduction to the Lebesgue integral.
For a detailed account of measure theory, see Folland [12]. A concise, concrete
introduction to the subject, including a discussion of LP-spaces, is in Lieb and Loss
[32]. For a detailed account of Sobolev spaces, see Adams [1]. For Sobolev spaces
and elliptic PDEs, see Evans [11] and Gilbarg and Trudinger [15]. An extensive
discussion of Sobolev spaces, variational problems, and related analysis of linear
PDEs is contained in Dautry and Lions [7].
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12.13 Exercises

Exercise 12.1 Prove that the Borel o-algebra on R is generated by the following
families of sets:

{(a,b] | a < b}, {[a,b) | a < b}, {[a,b] | a < b}, {(a,) | a € R}.

Exercise 12.2 Let A be a o-algebra of subsets of {2, and suppose y is a measure
on ). Prove the following properties:

(a) If A,B € A, then A\ B € A4
(b) If A,B € A, and A C B, then u(A) < p(B);
(¢) If A,B € A, then pu(AU B) < u(A4) + p(B).

Exercise 12.3 If (4;) is an increasing sequence of measurable sets, meaning that
A1 CAyC...CA CA1 C...,
then prove that
o
2 <U Ai) = igﬂoloﬂ(Ai) .
=1
If (A;) is a decreasing sequence of measurable sets, meaning that
AL DA D...D A DAH_l D,

and p(A41) < oo, prove that

Il (ﬂ A,.> = lim pu(A)).
i=1

Give a counterexample to show that this result need not be true if u(4;) is infinite
for every i.

Exercise 12.4 Give an example of a monotonic decreasing sequence of nonnega-
tive functions converging pointwise to a function f such that the equality in Theo-
rem 12.33 does not hold.

Exercise 12.5 Check that the counting measure defined in Example 12.6 is a mea-
sure.

Exercise 12.6 Use the dominated convergence theorem to prove Corollary 12.36
for differentiation under an integral sign.

Exercise 12.7 Prove that f ~ ¢ if and only if f = g pointwise-a.e. defines an
equivalence relation on the space of all measurable functions.
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Exercise 12.8 Let f,, : X — C be a sequence of measurable functions converging
to f pointwise-a.e. Suppose there exists g € LP(X) such that |f,| < g a.e. Prove
that f, — f in the LP-norm.

Exercise 12.9 Let ¢ : R — R be a convex function. Prove the following properties:

(a) for all z € R the left- and right-derivatives, ¢’ (z) and ¢/, () exist and
satisfy

¢’ (x) < ¢\ (x);

(b) ¢ is continuous on R;
(c) for all z € R, there exists a constant ¢ € R such that

o(y) > p(z) + c(y — ) for all y € R. (12.25)

The graph of the function y — c¢(y — z) satisfying (12.25) is called a support line of
@ at x.

Exercise 12.10 If 2,y > 0 and € > 0 is any positive number, show that

€ o 1,
< — —y~.
TYS QT oY

This estimate is sometimes called the Peter-Paul inequality.

Exercise 12.11 Let p1,po,...,py be positive numbers whose sum is equal to one.
Prove that for any nonnegative numbers x1, o, . .., Z,, we have the inequality
$1111m1212 .. .ZL'Z" <pix1 +p2z2+ ...+ PnTn.

Exercise 12.12 Prove the following generalization of Holder’s inequality: if 1 <
p; > 0o, where ¢ = 1,...,n, satisfy

I

i Pi

and f; € L (X, p), then fi--- f, € L*(X, ) and

‘/fl---fndu‘ < Aills -l

Exercise 12.13 Prove that L> ([0,1]) is not separable, and that C ([0,1]) is not
dense L ([0, 1]).

Exercise 12.14 Prove that for any pair of distinct exponents 1 < p,q < oo, we
have LP(R) ¢ L(R). Show that the function

f(z) = .

|z[1/24/1 + log? ||

belongs to L2(R), but not to LP(R) for any 1 < p < oo that is different from 2.
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Exercise 12.15 If f € LP(R*) N LY(R"), where p < g, prove that f € L"(R") for
any p < r < ¢, and show that

1/r—1/q 1/p=1/7
11 < (L) 3 (Lt Y

This result is one of the simplest examples of an interpolation inequality.

Exercise 12.16 A function f : R* — C is said to be LP-continuous if 7, f — f in
LP(R™) as h — 0 in R", where 71, f () = f(z — h) is the translation of f by h. Prove
that, if 1 < p < oo, every f € LP(R™) is LP-continuous. Give a counter-example to
show that this result is not true when p = oco.

HiINT. Approximate an LP-function by a C.-function.

Exercise 12.17 Prove that the unit ball in L?([0,1]), where 1 < p < o0, is not
strongly compact.

Exercise 12.18 Give an example of a bounded sequence in L*([0, 1]) that does not
have a weakly convergent subsequence. Why doesn’t this contradict the Banach-
Alaoglu theorem?

Exercise 12.19 Let 1 < p < 00. Prove that if f € LP(R), and its weak derivative
is identically zero, then f is a constant function.

Exercise 12.20 Which of the following functions belongs to H!([—1,1])?

(a) f(z) = |zl;
(b) g(z) =sgnuz;
() h(z) = 3, (1/n)*/? sinna.

Exercise 12.21 Prove a Poincaré inequality of the form (12.21) for periodic func-
tions defined on the n-dimensional torus T".

Exercise 12.22 Use the Riesz representation theorem to prove that there is a
unique weak solution u € H!(R™) of the equation

—Au+u=f

for every f € H-!(R"). Show that (—A + 1) : H'(R*) — H~!(R") is an isomor-
phism. Is —A : H(R*) — H~!(R") an isomorphism?

Exercise 12.23 Suppose that a : H x H — R is a sesquilinear form on a Hilbert
space ‘H that satisfies the hypotheses of the Lax-Milgram lemma in Theorem 12.81.

(a) Show that there is a bounded linear map J : H — H such that Jz is the
unique element satisfying

a(z,y) = (Jzx,y) for all y € H,

where (-, -) denote the inner product on H.
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(b) Show that al|z|| < ||Jz||. Deduce that J is one-to-one and onto.
HiINT. Show that ran.J is closed and use the projection theorem to show
that J is onto.

(c) Show that there is a unique solution z of the equation

(Jz,y) = F(y) for all y € H,

and prove the Lax-Milgram lemma.



