Chapter 2

Continuous Functions

In Chapter 1, we introduced the notion of a normed linear space, with finite-di-
mensional FEuclidean space R as the main example. In this chapter, we study
linear spaces of continuous functions on a compact set equipped with the uniform
norm. These function spaces are our first examples of infinite-dimensional normed
linear spaces, and we explore the concepts of convergence, completeness, density,
and compactness in this context. As an application of compactness, we prove an
existence result for initial value problems for ordinary differential equations.

2.1 Convergence of functions

Suppose that (f,) is a sequence of real-valued functions f,, : X — R defined on a
metric space X. What would we mean by f, — f? Two natural ways to answer
this question are the following.

(a) The functions f, are defined by their values, so the functions converge
if the values converge. That is, we say f, — f if fo(z) — f(z) for all
x € X. This definition reduces the convergence of real-valued functions to
the convergence of real numbers, with which we are already familiar. This
type of convergence is called pointwise convergence.

(b) We define a suitable notion of the distance between functions, and say that
fn — [ if the distance between f,, and f tends to zero. In this approach, we
regard the functions as points in a metric space, and use metric convergence.

Both of these ideas are useful. It turns out, however, that they are not compat-
ible. For most domains X — for example, any uncountable domain — pointwise
convergence cannot be expressed as convergence with respect to a metric. The next
example shows that pointwise convergence is not a good notion of convergence to
use for continuous functions because it does not preserve continuity.
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36 Continuous Functions

Fig. 2.1 Left: the sequence of functions fn(z) = z™ converges pointwise but not uniformly

on [0,1]. Right: graphically, uniform convergence means that for an arbitrarily narrow tubular
neighborhood of the limiting function, the functions f, will be contained in it for all sufficiently
large n.

Example 2.1 We define f, : [0,1] = R by
fn(z) = 2™

As illustrated in Figure 2.1, the sequence (f,) converges pointwise to the function
f given by

(0 f0<z<1,
f(m)_{l ifz=1.

The pointwise limit f is discontinuous at x = 1.

In view of these somewhat pathological features of pointwise convergence, we
consider metric convergence. As we will see, there are many different ways to
define a distance between functions, and different metrics or norms usually lead to
different types of convergence. A natural norm on spaces of continuous functions is
the uniform or sup norm, which is defined by

If1l = sup |f(z)]- (2.1)
z€X

The norm ||f]| is finite if and only if f is bounded. The uniform norm is often
denoted by || - |lsup or || - ||co- The reason for the latter notation will become clear
when we study LP spaces in Chapter 12. In this chapter, we only use the uniform
norm, so we denote it by || - || without ambiguity.

As illustrated in Figure 2.1, two functions are close in the metric associated with
the uniform norm if their pointwise values are uniformly close. Metric convergence
with respect to the uniform norm is called uniform convergence.

Definition 2.2 A sequence of bounded, real-valued functions (f,) on a metric
space X converges uniformly to a function f if

Jim || fn — fII =0,
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where || - || is defined in (2.1).

Uniform convergence implies pointwise convergence. The sequence defined in
Example 2.1 shows that the opposite implication does not hold, since f, — f
pointwise but ||f, — f|| = 1 for every n. Unlike pointwise convergence, uniform
convergence preserves continuity.

Theorem 2.3 Let (f,,) be a sequence of bounded, continuous, real-valued functions
on a metric space (X, d). If f,, — f uniformly, then f is continuous.

Proof. In order to show that f is continuous at x € X, we need to prove that for
every € > 0 there is a § > 0 such that d(z,y) < d implies |f(z) — f(y)| < e. By the
triangle inequality, we have

[f(@) = FW)] < | (@) = fal@)] + | fu(@) = (W) + | fa(y) = F(Y)]-

Since f,, — f uniformly, there is an n such that

€ €
1f(@) = fal@) <3, |faly) = fW)I <3 forallz,yeX.
Since f, is continuous at z, there is a § > 0 such that d(z,y) < & implies that
€
Fa) = Fala)| < 5.

It follows that d(z,y) < § implies |f(z) — f(y)| < €, so f is continuous at z. O

The “e/3-trick” used in this proof has many other applications. The proof fails
if f, = f pointwise but not uniformly.

2.2 Spaces of continuous functions

Let X be a metric space. We denote the set of continuous, real-valued functions
f: X = R by C(X). The set C(X) is a real linear space under the pointwise
addition of functions and the scalar multiplication of functions by real numbers.
That is, for f,g € C(X) and A € R, we define

(f+9) (@) = fl@) +9(x),  (Af)(z) =A(f(2))-

From Theorem 1.68, a continuous function f on a compact metric space K is
bounded, so the uniform norm ||f|| is finite for f € C(K). It is straightforward
to check that C(K) equipped with the uniform norm is a normed linear space. For
example, the triangle inequality holds because

lf + gll = sup | f(z) + g(z)| < sup |f(z)| + sup |g(z)| = [|f]| + [lgl-
zeK zeK zeK

We will always use the uniform norm on C(K), unless we state explicitly otherwise.
A basic property of C(K) is that it is complete, and therefore a Banach space.
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Theorem 2.4 Let K be a compact metric space. The space C(K) is complete.

Proof. Let (f,) be a Cauchy sequence in C(K) with respect to the uniform norm.
We have to show that (f,) converges uniformly. We do this in two steps. First,
we construct a candidate function f for the limit of the sequence, as the pointwise
limit of the sequence. Second, we show that the sequence converges uniformly to f.

First, the fact that (f,) is Cauchy in C'(K) implies that the sequence (f,(x)) is
Cauchy in R for each x € K. Since R is complete, the sequence of pointwise values
converges, and we can define a function f : K — R by

J@) = tim_ f, ()

For the second step, we use the fact that (f,,) is Cauchy in C'(K) to prove that

it converges uniformly to f. Since f,,(xz) — f(x) as m — oo, we have

Ifo = fIl = sup|fu(z) - f(2)]

reK
= sup 1i_I>n |fn($)_fm($)|

< liminf sup |fn($) _fm(x)l (22)
m—00 zeK
The fact that (f,) is Cauchy in the uniform norm means that for all € > 0 there is
an N such that

sup |fn(z) — fm(z)| <€ for all m,n > N.
zeK

It follows from (2.2) that || f,, — f|| < € for n > N, which proves that ||f,— f|| = 0 as
n — oo0. By Theorem 2.3, the limit function f is continuous, and therefore belongs
to C(K). Hence, C(K) is complete. O

Example 2.5 Suppose K = {z1,...,z,} is a finite space, with metric d defined
by d(z;,x;) = 1for ¢ # j. A function f : K — R can be identified with a point
y=(y1,.-.,yn) € R*, where f(z;) = y;, and
171l = ma [y

Thus, the space C(K) is linearly isomorphic to the finite-dimensional space R™
with the maximum norm, which we have already observed is a Banach space. If
K contains infinitely many points, for example if K = [0,1], then C(K) is an
infinite-dimensional Banach space.

The same proof applies to complex-valued functions f : K — C, and the space
of complex-valued continuous functions on a compact metric space is also a Banach
space with the uniform norm (2.1).
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The pointwise product of two continuous functions is continuous, so C(K) has
an algebra structure. The product is compatible with the norm, in the sense that

I£gll < 1711 lgll- (2.3)

We say that C(K) is a Banach algebra. Strict inequality may occur in (2.3); for
example, the product of two functions that are nonzero on disjoint sets is zero.

Equation (2.1) does not define a norm on C(X) when X is not compact, since
continuous funtions may be unbounded. The space Cy(X) of bounded continuous
functions on X is a Banach space with respect to the uniform norm.

Definition 2.6 The support, supp f, of a function f : X - R (or f : X — C) on
a metric space X is the closure of the set on which f is nonzero,

supp f = {z € X | f(z) # 0}.

We say that f has compact support if supp f is a compact subset of X, and denote
the space of continuous functions on X with compact support by C.(X).

The space C.(X) is a linear subspace of Cy(X), but it need not be closed, in
which case it is not a Banach space. We denote the closure of C.(X) in Cy(X)
by Co(X). Since Cp(X) is a closed linear subspace of a Banach space, it is also
a Banach space. (We warn the reader that the notation Co(X) is often used to
denote the space C.(X) of functions with compact support.) We have the following
inclusions between these spaces of continuous functions:

C(X) D Cp(X) D Co(X) D C.(X).

If X is compact, then these spaces are equal.

Example 2.7 A function f : R® — R has compact support if there is an R > 0
such that f(z) = 0 for all z with ||z|| > R. The space Co(R") consists of continuous
functions that vanish at infinity, meaning that for every € > 0 there is an R > 0 such
that ||z|| > R implies that | f(z)| < e. We write this condition as lim ;|| f(z) = 0.

Example 2.8 Consider real functions f : R = R. Then f(z) = z? is in C(R)
but not Cp(R). The constant function f(z) = 1 is in Cy(R) but not Co(R). The
function f(z) = e~ isin Co(R) but not C.(R). The function

[ 1-2* if|z| <1,
f(m)_{o if o] > 1,

is in C.(R).
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2.3 Approximation by polynomials

A polynomial p : [a,b] = R on a closed, bounded interval [a, ] is a function of the
form

n
p(.’L‘) = Z ckmka
k=0

where the coefficients ¢y are real numbers. If ¢, # 0, the integer n > 0 is called the
degree of p. The Weierstrass Approximation Theorem states that every continuous
function f : [a,b] — R can be approximated by a polynomial with arbitrary accuracy
in the uniform norm.

Theorem 2.9 (Weierstrass approximation) The set of polynomials is dense in

C([a,b]).

Proof. We need to show that for any f € C([a,b]) there is a sequence of polyno-
mials (p,) such that p, — f uniformly.

We first show that, by shifting and rescaling z, it is sufficient to prove the
theorem in the case [a, b] = [0,1]. We define T : C([a,b]) — C(][0,1]) by

(Tf)(@)=f(a+ (b—a)z).

Then T is linear and invertible, with inverse

i@ =1(5=2).

a

Moreover, T is an isometry, since [|Tf|| = ||f||, and for any polynomial p both
Tp and T~ 'p are polynomials. If polynomials are dense in C([0,1]), then for any
f € C([a, b]) we have polynomials p,, such that p,, — T'f in C([0, 1]). It follows that
the polynomials 7~ p, converge to f in C([a, b]).

To show that polynomials are dense in C([0,1]), we use a proof by Bernstein,
which gives an explicit formula for a sequence of polynomials converging to a func-
tion f in C([0,1]). These polynomials are called the Bernstein polynomials of f,
and are defined by

Bo(z; f) = ;:%f (5) (})+a-or (2.4

Notice that each term z¥(1 — z)" %, attains its maximum at = = k/n. This is

illustrated in Figure 2.2 for n = 20 and some values of k. The value of B,(z; f)
for x near k/n, is therefore predominantly determined by the values of f(z) near
xz = k/n. In (2.4), we use the standard notation for the binomial coefficients,

(1) =
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Fig. 2.2 The polynominals z*(1 — z)»~*, for the case n = 20, appearing in the definition of the
Bernstein polynomials (2.4). Note that they attain their maximum at z = k/n.

The binomial theorem implies that

i (:)xk(l — )k =1.

k=0

Therefore, the difference between f and its nth Bernstein polynomial can be written
as

B~ 10 =3 [1 (1) 1] () a-wr e

Taking the supremum with respect to x of the absolute value of this equation, we

get
£(5)-s@)| (7)ea- m)"—k] @)

Here, we use By,(z; f) to denote the value of the Bernstein polynomial at z, and
B, (-; f) to denote the corresponding polynomial function.

Let € > 0 be an arbitrary positive number. From Theorem 1.67, the function f
is uniformly continuous, so there is a § > 0 such that

1Ba(-3 £) = £l < sup [Z

0<z<1 k=0

|z —y| <& implies |[f(z) - f(y) <e (2.7)
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for all z,y € [0,1]. To estimate the right hand side of (2.6), we divide the terms in
the series into two groups. We let

I(z) ={k|0< k<mnand |z — (k/n)| <8},
J()={k|0<k<mnand |z — (k/n)| > d}. (2.8)

From (2.6), (2.7), and (2.8), we get the following estimate,

x (e
(Z) (1 - m)"_k]

> |7 (%) s
3 (Z)mk(l—x)”k:|. (2.9)

keJ(z)
keJ(z)

0<z<1

I1Ba(-5f) = fl < € sup [

+ sup
0<z<1

< e+ 2[|f]| sup l

0<z<1

Since [z — (k/n)]? > &2 for k € J(z), the sum on the right hand side of (2.9) can be
estimated as follows:

ny k n—k
sup E ( )m (1-2)
O<az<l [keJ(z) k

1 n 2k k2 n
< 2 av no k(1 _ \n—k
<o [ (2 2es B) (D)0 -ar

s
<<l k=0
1
< = sup [2°Bp(z;1) — 22By(z;2) + Bn(z;2%)] . (2.10)
6% 0<a<i1

To find an expression for the Bernstein polynomials B,,(x; 1), B, (z; z), and B, (x; z?)
of the polynomials 1, z, and 22, we write out the binomial expansion of (z + y)7,
compute the first and second derivatives of the expansion with respect to z, and
rearrange the results. This gives

wror = 3 (F)ar
gz +y)"t = Z(

("; 1) 2z +y)" % + (%) oz +y)" ' = Ii (
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Fig. 2.3 Some approximations of the function x + cos(4z) by its Bernstein polynomials.

Evaluation of these equations at y = 1 — z, and the use of (2.4) gives

Bn(xrl) = 1,
B,(z;z) = =, (2.11)

()G
r+ |- ),
n n
for all n > 1. Using (2.10) and (2.11) in (2.9), we obtain the estimate

. LAl
1Bn(-5f) — fll < e+ s

Taking the lim sup of this equation as n — oo, we get

limsup ||Bn(-; f) — fl| <e.
n— oo

By (x;27)

Since e is arbitrary, it follows that lim sup,,_, .. ||Bn(-; f)—fll = 0, so the polynomials
B,(-; f) converge uniformly to f. O

The first few approximations by Bernstein polynomials of the function f(z) =
cos(4x) are graphed in Figure 2.3. Note that we could have formulated the theorem
for complex-valued functions with the same proof.

The Weierstrass approximation theorem differs from Taylor’s theorem, which
states that a function with sufficiently many derivatives can be approximated locally
by its Taylor polynomial. The Weierstrass approximation theorem applies to a
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continuous function, which need not be differentiable, and states that there is a
global polynomial approximation of the function on the whole interval [a, b].

An analogous result is the density of trigonometric polynomials in the space of
periodic continuous functions on the circle, which we prove below in Theorem 7.3.
Both of these theorems are special cases of the Stone-Weierstrass theorem (see
Rudin [48]).

2.4 Compact subsets of C(K)

The proof of the Heine-Borel theorem, that a subset of R” is compact if and only
if it is closed and bounded, uses the finite-dimensionality of R™ in an essential
way. Compact subsets of infinite-dimensional normed spaces are also closed and
bounded, but these properties are no longer sufficient. In this section, we prove the
Arzela-Ascoli theorem, which characterizes the compact subsets of C(K). To state
the theorem, we introduce the notion of equicontinuity.

Definition 2.10 Let F be a family of functions from a metric space (X,d) to a
metric space (Y,d). The family F is equicontinuous if for every z € X and € > 0
there is a 6 > 0 such that d(z,y) < 0 implies d (f(z), f(y)) < e for all f € F.

The crucial point in this definition is that § does not depend on f, although it
may depend on z. If § can be chosen independent of x as well, then the family is
said to be uniformly equicontinuous. The following theorem is a generalization of
Theorem 1.67.

Theorem 2.11 An equicontinuous family of functions from a compact metric space
to a metric space is uniformly equicontinuous.

Proof. Suppose that K is a compact metric space, and F is a family of functions
f + K = Y that is not uniformly equicontinuous. We will prove that F is not
equicontinuous.

Since F is not uniformly equicontinuous, there is an € > 0, such that for every
n € N there are points z,,y, € K and a function f, € F with

A(enyn) < and d(fulyn), Jalra)) > 2 (2.12)

Since K is compact, the sequence (z,) has a convergent subsequence, which we
also denote by (z,). Suppose that =, — = as n — oo. Then (2.12) implies that
yn — = as well. Hence, for all § > 0, there are points z,,, y, such that d(z,,z) < §
and d(yn,z) < 6. But, from (2.12), we must have either d (f,(z,), fn(z)) > € or
d(fn(yn), fn(x)) > €, so F is not equicontinuous at z. O

Next, we give necessary and sufficient conditions for compactness in C(K).
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Theorem 2.12 (Arzela-Ascoli) Let K be a compact metric space. A subset of
C(K) is compact if and only if it is closed, bounded, and equicontinuous.

Proof. Recall that a set is precompact if its closure is compact, and that a set is
compact if and only if it is closed and precompact. We will prove that a subset of
C(K) is precompact if and only if it is bounded and equicontinuous.

We divide the proof into three parts. First, we show that an unbounded subset
is not precompact. Second, we show that a precompact subset is equicontinuous.
Third, we show that a bounded, equicontinuous subset is precompact.

For the first part, suppose that F is an unbounded subset of C(K). Then there
is a sequence of functions f, € F, with || foy1|| > ||fnll + 1, so that ||fr — fie]| > 1
for all n # m. It follows that (f,) has no Cauchy subsequence, and therefore no
convergent subsequence, so F is not precompact.

For the second part, suppose that F is a precompact subset of C(K). Fix € > 0.
Since F is dense in F, we have

? C U Be/3(f)

fer

Since F is compact, there is a finite subset {fi,..., fr} of F such that

k

i=1
Each f; is uniformly continuous by Theorem 1.67, so there is a §; > 0 such that
d(z,y) < §; implies that |f;(z) — fi(y)| < €/3 for all z,y € K. We define § by

6 = min 6;.
1<i<k

Since 4 is the minimum of a finite set of §; > 0, we have § > 0. For every f € F,
there is an 1 <4 < k such that ||f — fi]| < /3. We conclude that for d(z,y) < 0

|F (@) = fW)l < |f (@) = filz)| + |fi(@) = fi)| + [ fi(y) — FW)] <e.

Since € is arbitrary and 9§ is independent of f, the set F is equicontinuous.

For the third part, suppose that F is a bounded, equicontinuous subset of C'(K).
We will show that every sequence (f,) in F has a convergent subsequence. By
Lemma 1.63 there is a countable dense set {z;, z2, 3, . ..} in the compact domain K.
We choose a subsequence (fi ) of (f,) such that the sequence of values (f1,,(z1))
convergesin R. Such a subsequence exists because (f,(z1)) is bounded in R, since F
is bounded in C(K). We choose a subsequence (f2 ,,) of (f1,n) such that (f2,(z2))
converges, which exists for the same reason. Repeating this procedure, we obtain
sequences (frn) o, for k =1,2,... such that (fr41,,) is a subsequence of (f,n),
and (fx,n(zr)) converges as n — co. Finally, we define a “diagonal” subsequence
(9%) by gk = fr,x- By construction, the sequence (gi) is a subsequence of (f,,) with
the property that gg(z;) converges in R as k — oo for all z; in a dense subset of K.
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So far, we have only used the boundedness of F. The equicontinuity of F is
needed to ensure the uniform convergence of (gx). Let € > 0. Since F is equicontin-
uous and K is compact, Theorem 2.11 implies that F is uniformly equicontinuous.
Consequently, there is a § > 0 such that d(z,y) < § implies

lgx (z) — gr(y)| < g

Since {z;} is dense in K, we have

K C Ej B(s(w,)

i=1
Since K is compact, there is a finite subset of {z;}, which we denote by {z1,...,2,},
such that
n
K C ] Bs(x)-
i=1
The sequence (gx(x;)) is convergent for each ¢ = 1,...,n, and hence Cauchy, so

there is an N such that
€
3

forall j,k > Nandi=1,...,n. For any z € K, there is an 4 such that z € Bs(x;).
Then, for j,k > N, we have

l9; (i) — gr(xi)| <

19j(z) — gk ()| < gj(x) — g;(@i)| + |95 (@i) — g (zs)| + gk (i) — gr(2)| <e.

It follows that (gi) is a Cauchy sequence for the uniform norm and, since C'(K) is
complete, it converges. d

In the proof of this theorem, we again used Cantor’s diagonal argument, and
the “e/3-trick.”

Example 2.13 For each n € N, we define a function f, :[0,1] - R by

0 ifo<z<2™,
2n+1(x _ 27n) if2"<zr<3- 27(n+1)7

fu(z) = 2n+1(27(n71) —z) if3- 9—(n+1) < 7 < 2_(n_1)7 (2.13)
0 if 2= <2 < 1.

These functions consist of ‘tent’ functions of height one that move from right to left
across the interval [0, 1], becoming narrower and steeper as they do so.

The first two functions are shown in Figure 2.4. Let F = {f, | n € N}. Then
[|fall = 1 for all n > 1, so F is bounded, but ||f, — frl| = 1 for all m # n, so
the sequence (f,) does not have any convergent subsequences. Hence, the set F
is a closed, bounded subset of C([0,1]) which is not compact. Note that F is not
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14 38 112 1 X

Fig. 2.4 The sequence of bounded continuous functions defined in Example 2.13 is not equicon-
tinuous.

equicontinuous either, because the graphs of the f,, become steeper as n gets larger.
The same phenomenon occurs for the set F = {sin(nnz) | n € N}.

Heuristically, a subset of an infinite-dimensional linear space is precompact if it is
“almost” contained in a bounded subset of a finite-dimensional subspace. Without
making this statement more precise at the moment (but see Theorem 9.17), we
illustrate it with the following example.

Example 2.14 Let F be the subset of C([0,1]) that consists of functions f of the
form

o0 o0
flz) = Z ansin(nwz) with Z nla,| < 1.
n=1

n=1

The series defining f converges uniformly, so f is an element of C([0,1]). The set
F is bounded in C(K), since for any f € F we have

oo oo
A<D lan] <> nlan| < 1.
n=1 n=1

By the mean value theorem, for any z < y € R there is a 2 < £ < y with
sinx —siny = (cos€) (x — y).
Hence, for all z,y € R we have
|sinz —siny| < |z — y|.
Thus, every f € F satisfies

(@) = f()] < lan| [sin(nme) = sin(nmy)| <Y~ wnlan| [z —y| < 7l —y) .

n=1 n=1
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Fig. 2.5 The graph of two continuous functions on [0,1]: f(z) = z2, and g(z) = /z. f is Lipschitz
n [0,1], but g is not Lipschitz at the point 0. The ratio Af/Axz is bounded for arbitrarily small
Az everywhere in [0, 1], but Ag/Axz is unbounded for small Az near z = 0.

Therefore, given € > 0, we can pick § = €/w, and then |z — y| < ¢ implies |f(z) —
f(y)| < efor all f € F. From the Arzela-Ascoli theorem, F is a precompact subset
of C([0,1]). For large N, the subset F is “almost” contained in the unit ball in the
finite-dimensional subspace spanned by {sin7z,sin 27z, ...,sin Nnz}.

The previous example illustrates a useful sufficient condition for equicontinuity,
which we now describe. We begin by defining Lipschitz continuous functions.

Definition 2.15 A function f : X — R on a metric space X is Lipschitz continuous
on X if there is a constant C' > 0 such that

[f(z) — f(y)| < Cd(z,y) for all z,y € X. (2.14)

We will often abbreviate the term “Lipschitz continuous” to “Lipschitz.” Ev-
ery Lipschitz continuous function is uniformly continuous, but there are uniformly
continuous functions that are not Lipschitz.

Example 2.16 As illustrated in Figure 2.5, the square function f(z) = 22 is
Lipschitz continuous on [0, 1], but the uniformly continuous square-root function
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g(z) = v/z is not, because

lim 19®) = 9(0)] _
e—0t |z —0|

If f: X — R is a Lipschitz function, then we define the Lipschitz constant
Lip(f) of f by

() = sup @) = I
= ey

Equivalently, Lip(f) is the smallest constant C' that works in the Lipschitz condition
(2.14),

Lip(f) =inf {C'| |f(z) — f(y)| < Cd(z,y) for all 2,y € X}.

Suppose that K is a compact metric space and M > 0. We define a subset JFjs
of C(K) by

Fumr ={f | f is Lipschitz on K and Lip(f) < M}. (2.15)
The set Fyr is equicontinuous, since if € > 0 and § = ¢/M, then
d(z,y) < d implies |f(z)— f(y)| <e forall f € Fp.

The set Fs is closed, since if (f,,) is a sequence in F)s that converges uniformly to
fin C(K), then

PN FiCo B ()]
Hp(f) = oy d@,y)
 up [ L) =1t
THY

nooo  d(z,y)
)

< tmint | s Ua®) = o0
n—00 | ptycK d(a:,y)
< M.

Thus, the limit f belongs to Fas. The set Fas is not bounded, since the constant
functions belong to Fj; and their sup-norms are arbitrarily large. Consequently,
although Fs itself is not compact, the Arzela-Ascoli theorem implies that every
closed, bounded subset of Fjs is compact, and every bounded subset of Fjys is
precompact.

Example 2.17 Suppose that x is a point in a compact metric space K. Let
By =A{f € Fum | f(zo) = 0}.
Then B, is bounded because for every f € By, we have

Il = sup |f(z) — f(z0)| < M sup |z — zo| < Mdiam K,
zeK zeK
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where diam K is finite since K is compact, and hence bounded. The set By is
closed, since if f,(z¢) =0 and f,, — f in C(K), then

n—oo
Therefore, the set By is a compact subset of C(K).

Lemma 2.18 Suppose that f : C' = R is a continuously differentiable function on
an open, convex subset C' of R”, and that the partial derivatives of f are bounded
on C. Then, for all z,y € C, we have

|f(z) = fW)| < Mllz —yl], (2.16)
where || - || denotes the Euclidean norm and
M = sup ||V £(2)]]- (2.17)
zeC

Proof. Since C is convex, the point tz + (1 — t)y lies in C for all z,y € C and
0 <t < 1. The fundamental theorem of calculus and the chain rule imply that

1

d
fle) - fly) = o (G + (1 =1)y) dt
0
1
= / Vi@z+ Q1 —1t)y)-(z—y)dt, (2.18)
0
where
_(9f of
V= (8x1,...,6mn)
is the gradient of f with respect to x = (x1,...,z,). We take the absolute value of

equation (2.18), and estimate the resulting integral, to obtain
|f(@) = fy)| < sup {IVf(tz+ (L —=t)y) [} |z —yll.
0<t<1

The use of (2.17) in this equation gives (2.16). O

From Lemma 2.18, a continuously differentiable function with bounded partial
derivatives is Lipschitz. A Lipschitz continuous function need not be differentiable
everywhere, however, since its graph may have “corners.”

Example 2.19 The absolute value function f(z) = |z| is Lipschitz continuous,
with Lipschitz constant one, because

|F (@) = f@W) = ]| =yl | < |z —yl.

The absolute value function is not differentiable at z = 0.
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Lemma 2.18 implies that a family of continuously differentiable functions with
uniformly bounded derivatives is equicontinuous. If the family is also bounded, then
it is precompact. The idea that a uniform bound on suitable norms of the derivatives
of a family of functions implies that the family is precompact will reappear when
we study Sobolev spaces in Chapter 12.9.

Example 2.20 Let C*([0,1]) denote the space of all continuous functions f on
[0,1] with continuous derivative f’. For constants M > 0 and N > 0, we define the
subset F of C([0,1]) by

F={feC (0,1 [l <M [f| <N},

where || - || denotes the sup-norm. Then F is precompact in C(K). It is not closed,
however, because the uniform limit of continuously differentiable functions need not
be differentiable. Thus, F is not compact. Its closure in C([0,1]) is the compact
set

F={fec(o,1)|Ifll £ M,Lip(f) < N}.

2.5 Ordinary differential equations

A differential equation is an equation that relates the values of a function and its
derivatives at each point. We distinguish between ordinary differential equations
(ODEs) for functions of a single variable, and partial differential equations (PDEs)
for functions of several variables. In this section, we discuss the existence and
uniqueness of solutions of ODEs.

To focus on the central ideas in the simplest setting, we consider a scalar, first
order ODE for a real-valued function u(t) of the form

i = f(t,u). (2.19)

In (2.19), we use u(t) to denote the derivative of w(t) with respect to ¢, and f :
R? — R is a given continuous function. We say that (2.19) is a linear ODE if
f(t,u) is a linear (strictly speaking, we should say “affine”) function of u of the
form f(t,u) = a(t)u + b(t). Otherwise, we say that (2.19) is a nonlinear ODE.

A solution of (2.19), defined in an open interval I C R, is a continuously differ-
entiable function u : I — R such that

u(t) = f(t,u(t)) forallt € I.

If the solution is defined on the whole of R, then we call it a global solution. If the
solution is defined only on a subinterval of R, then we call it a local solution.

We will refer to the independent variable ¢ in (2.19) as “time.” Equation (2.19)
determines the rate of change of the function u at each time in terms of the value of
u. We expect that if we know the value of u at some time, then the ODE determines
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the values of u at nearby times, and by repetition of this process, we expect that
there is a unique solution of the initial value problem (IVP)
U= f(ta ’LL), (220)
U(to) = Uug.
Here, to is a given initial time, and ug is a given initial value. As the following

examples show, however, the question of the existence and uniqueness of solutions
(2.20) is not always as straightforward as this naive discussion might suggest.

Example 2.21 Consider the linear initial value problem,

U = au, (221)
u(0) = uy,
where a € R is a constant. This initial value problem has a unique, global solution
u(t) = uoe®. Equation (2.21) has a simple interpretation in terms of population
growth. It states that the growth rate u of a population is proportional to the

population u. If the per capita growth rate 4/u = a is positive, then the population
grows exponentially in time, as Malthus observed in 1798.

Example 2.22 Consider the nonlinear initial value problem,

o =u?, (2.22)
u(0) = ug.

The unique solution is

Uo

u(t) = T ugt’

This solution becomes arbitrarily large as t — 1/ug. For ug > 0, the initial value
problem in (2.22) has a local solution defined in the interval —oo < ¢t < 1/ug,
but it does not have a global solution. This phenomenon is called “blow-up,”
and is a fundamental difficulty in the study of nonlinear differential equations.
When interpreted as a population model, equation (2.22) describes the growth of a
population in which the per capita growth rate is equal to the population. Thus,
as the population increases the growth rate increases both because the population
is larger and because the per capita growth rate is larger. As a result, the solution
tends to infinity in finite time.

Example 2.23 Consider the initial value problem

u=+/|ul, (2.23)

u(0) = 0.
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The zero function u(t) = 0 is a global solution, but it is not the only one. The
following function satisfies (2.23) for any a > 0,

() = 0 ift <a,
Y=L t—a)?/4 ift>a.

In this example, the function f(u) = 4/|u| is a continuous function of w, but it is
not Lipschitz continuous at the initial value u = 0.

These examples show that the most we can hope for, if f is an arbitrary contin-
uous function, is the existence of a local solution of the initial value problem (2.20).
If f is smooth, the solution is unique, as we will see, but it may not exist globally.

For general f, we cannot prove the existence of a solution by giving an explicit
analytical formula for it, as we did in the simple examples above. Instead we use a
compactness argument, analogous to the one used in the proof of Theorem 1.68. We
construct a family {u.} of functions that satisfy (2.20) in a suitable approximate
sense. Since the functions are approximate solutions of the ordinary differential
equation, their derivatives are uniformly bounded, and the Arzela-Ascoli theorem
implies that they form a precompact set. Consequently, there is a subsequence of
approximate solutions that converges uniformly as € — 0 to a function u. We then
show that u is a solution of (2.20).

Theorem 2.24 Suppose that f(t,u) is a continuous function on R2. Then, for
every (tg,uo), there is an open interval I C R that contains g, and a continuously
differentiable function u : I — R that satisfies the initial value problem (2.20).

Proof. We say that uc(t) is an e-approzimate solution of (2.20) in an interval I
containing tg if:

(a) ue(to) = uo;

(b) uc(t) is a continuous function of ¢ that is differentiable at all but finitely
many points of I;

(c) at every point t € I where 4.(t) exists, we have

le (£) — f (£, ue(B))] < €.
To construct an e-approximate solution u., we first pick 77 > 0, and let
Li={t|[t—to| <Ti}.
We partition I; into 2N subintervals of length h, where T3 = Nh, and let
th =to+kh  for —N <k <N.

We denote the values of the approximate solution at the times ¢y by ue(tx) = ag.-
We define these values by the following finite difference approximation of the ODE,

w = f(tr,ax),
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ag = Ug-

This discretization of (2.20) is called the forward Euler method. It is not an accurate
numerical method for the solution of (2.20), but its simplicity makes it convenient
for an existence proof.

Inside the subinterval ¢y <t < tgy1, we define u(t) to be the linear function of
t that takes the appropriate values at the endpoints. That is,

ue(t) = a + by, (t — tx) for t, <t <tpt1,
where the parameters ay and by are defined recursively by
ap = ug, ar = ag—1 + br_1h,
bo = f(to,uo),  bi = f(tk,ar).

Thus, u.(t) is a continuous, piecewise linear function of ¢ that is differentiable except
possibly at the points ¢t = tg, and 4.(t) = by, for t, < t < tgq1. For t, <t < tgy1,
we have

lie(t) — f(t,ue(®)| = |f (tr, ar) — f (£, ar + bi(t — tr)) |, (2.24)
|t—tk| < h, |ak+bk(t—tk) —ak| < |bk|h (2.25)

We choose an L > 0, and a T < T} such that the graph of every u, with |t —to| < T
is contained in the rectangle R C R? given by

R={(t,u) | [t —to| < T, |u—uo| <L}.

To do this, we consider the closed rectangle R; C R2?, centered at (to,uq), defined
by

Ry ={(t,u) | [t —to| <T1, |[u—uo| < L}.
We let
M =sup {|f(t,u)|| (t,u) € R1}, T = min (T1,L/M).

It follows that, for |t — to| < T, the slopes by, of the linear segments of u, are less
than or equal to M, and the graph of u, lies in the cone bounded by the lines
u—ug = M(t—ty) and u —ug = —M(t — tg). Figure 2.6 shows why this is true.

Since R is compact, the function f is uniformly continuous on R. Therefore, for
every € > 0, there is a § > 0 such that

[f(s,u) = f(t,v)| <€

for all (s,u), (t,v) € R such that |s —t| < § and |u — v| < §. Using (2.24)—(2.25),
we see that u. is an e-approximate solution when h < § and Mh < 4.

Each u. is Lipschitz continuous, and its Lipschitz constant is bounded uniformly
by M, independently of e. We also have u.(to) = uo for all . From Example 2.17,
the set {u.} is precompact in C([to — T,to + T]). Hence there is a continuous
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< slope M

t

0

Fig. 2.6 The construction of the rectangle R used in the proof of Theorem 2.24.

function u and a sequence (€,) with €, — 0 as n — oo such that u,, - v asn — oo
uniformly on [tg — T, to + T.

It remains to show that the limiting function u solves (2.20). Since u, is piecewise
linear, we have

t
w(t) = udlto)+ /t e (s) ds
t ° t
wo+ [ f(s,uels))ds + / i — f(5,ue(s)] ds. (226

to tO

Here, 1. is not necessarily defined at the points ¢, but this does not affect the value
of the integral. We set € = €, in (2.26), and let n — co. Using Exercise 2.2 to take
the limit, we find that

u(t) = ugp + t f(s,u(s)) ds. (2.27)
to

The fundamental theorem of calculus implies that the right hand side of (2.27) is
continuously differentiable. Therefore, the function u is also continuously differen-
tiable in |t — to| < T', and u(t) = f (¢, u(t)). O

More generally, the same proof applies if f is continuous only in some open set
D C R? which contains the initial point (to,u0), provided we choose the rectangles
R; and R so that they are contained in D (see Figure 2.6).

This proof shows the existence of a local solution in some interval about the
initial time, but the solution need not be global. A solution has, however, a maximal
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open interval of existence that contains ¢g.

As shown by Example 2.23, the continuity of f does not guarantee uniqueness,
but if f(¢,u) is Lipschitz continuous in u, then the solution is unique. The condition
that f is Lipschitz continuous is a mild one, and is met in nearly all applications,
where f is typically a smooth function. To prove this fact, we use the following
result, called Gronwall’s inequality.

Theorem 2.25 (Gronwall’s inequality) Suppose that u(t) > 0 and ¢(t) > 0

are continuous, real-valued functions defined on the interval 0 < ¢ < T and ug > 0
is a constant. If u satisfies the inequality

¢

u(t) < ug +/ p(s)u(s) ds for t € [0,T], (2.28)

0
then
t
u(t) < ugexp (/ o(s) ds) for t € [0, T.
0

In particular, if ug = 0 then u(t) = 0.

Proof. Suppose first that ug > 0. Let

t
U(t) =ug + / p(s)u(s) ds.
0
Then, since u(t) < U(t), we have that
U = pu < U, U(0) = uo.
Since U(t) > 0, it follows that
U
—1 ==<o.
ogU T P
Hence
¢
logU(t) < logug +/ o(s) ds,
0
S0
¢
u(t) < U(t) < ugexp (/ »(s) ds) . (2.29)
0
If the inequality (2.28) holds for ug = 0, then it also holds for all ug > 0, so (2.29)

holds for all ug > 0. Taking the limit of (2.29) as ug — 07, we conclude that
u(t) = 0, which proves the result when ug = 0. O
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Theorem 2.26 Suppose that f(¢,u) is continuous in the rectangle
R={(t,u) | |t —to] < T, |u—uo| < L},
and that
[ftu)| <M if (t,u) € R.
Let 6 = min(T, L/M). If u(t) is any solution of (2.20), then
|u(t) —uo| < L when |t — o] < 4. (2.30)

Suppose, in addition, that f is a Lipschitz continuous function of u, uniformly in ¢,
meaning that there is a constant C' such that

|f(t,u) = f(t,v)] < Clu—1| for all (¢t,u) € R.
Then the solution of (2.20) is unique in the interval |t — tg] < 4.
Proof. The result in (2.30) is intuitively obvious: if a solution u(t) stays inside
the interval |u(t) — ug| < L, then its derivative is bounded by M, so the solution

cannot escape the interval in less time than L/M. To avoid circularity in the proof,
we use a “continuous induction” argument. We consider the set D defined by

D={0<n<é|[u(t) —uo|l <Lforall [t —to| <n}.
Then 0 € D, and if n € D, then ' € D for all 0 < 5’ < 7. Thus, D is a nonempty
interval. Moreover, D is closed in [0, d] because u(t) is a continuous function of ¢.
If n€ D and n < §, then f (t,u(t)) < M for |t —to| <, so

|u(t) — up| < < Mn< Mé=L.

t f(s,u(s)) ds
to

Since we have strict inequality, and u is continuous, it follows that there is an € > 0
such that |u(t) —uo| < L when |t —t9| < n+e. Thus, D is open in [0, d], from which
we conclude that D = [0,4]. This proves the first part of the theorem.

To prove the uniqueness part, we use a common strategy: we derive an equation
for the difference of two solutions which shows that it is zero. Suppose that v and
v are solutions of (2.20) on a interval I that contains ¢t3. Then subtraction and
integration of the ODEs satisfied by u and v implies that

t
u(t) —o(t) = / [ (s,u(s)) = [ (s,0(s))] ds.

to
Taking the absolute value of this equation, and estimating the result, we find that
w = |u — v| satisfies the inequality

t

w(t) < [ [f (s,u(s)) = f(s,0(s))| ds. (2.31)
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By the first part of the theorem, the graph of any solution remains in R for [t —tg| <
d. The Lipschitz continuity of f in R therefore implies that

|f (& u(®) = f (0() | < Clu(t) —o(t)] = Cuw(t).

The use of this inequality in (2.31) implies that w > 0 satisfies

w(t) <C tw(s) ds.

to

Therefore, from Gronwall’s inequality, we have w = 0, and u = v. a

We will give another proof of the existence and uniqueness of solutions of the
initial value problem for ODEs in the next chapter, as a consequence of the con-
traction mapping theorem. The existence theorem above, based on compactness, is
called the Peano existence theorem, while the theorem in the next chapter, based
on the contraction mapping theorem, is called the Picard existence theorem.

2.6 References

Most of the material in this chapter is also covered in Rudin [47] and Marsden and
Hoffman [37]. For an introduction to the theory of ordinary differential equations,
see Hirsch and Smale [21].

2.7 Exercises

Exercise 2.1 Define f :[0,1] — R by

T if x is irrational,
psin(1l/q) if x = p/q, where p,q are relatively prime integers.

@)= {
Determine the set of points where f is continuous.

Exercise 2.2 Let f, € C([a,b]) be a sequence of functions converging uniformly
to a function f. Show that

b b
lim fn(z)dx = / f(z) dz.
n—00 a a
Give a counterexample to show that the pointwise convergence of continuous func-
tions f, to a continuous function f does not imply the convergence of the corre-
sponding integrals.

Exercise 2.3 Suppose that f : G — R is a uniformly continuous function defined
on an open subset G of a metric space X. Prove that f has a unique extension to
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a continuous function f : G — R defined on the closure G of G. Show that such an
extension need not exist if f is continuous but not uniformly continuous on G.

Exercise 2.4 Give a counterexample to show that f, — f in C([0,1]) and f,
continuously differentiable does not imply that f is continuously differentiable.

Exercise 2.5 Consider the space of continuously differentiable functions,
C"' ([a,b]) = {f : [a,b] = R| f, f" are continuous},
with the C'-norm,
Ifll= sup [f(z)|+ sup |f'(z)].
a<z<b a<z<b
Prove that C* ([a,b]) is a Banach space.

Exercise 2.6 Show that the space C ([a,b]) equipped with the L'-norm || - ||; de-
fined by

b
11l = / (@) da,

is incomplete. Show that if f, — f with respect to the sup-norm || - ||, then
fn — f with respect to || - ||1. Give a counterexample to show that the converse
statement is false.

Exercise 2.7 Prove that the set of Lipschitz continuous functions on [0, 1] with
Lipschitz constant less than or equal one and zero integral is compact in C([0, 1]).

Exercise 2.8 Prove that C([a,b]) is separable.

Exercise 2.9 Let w : [0,1] = R be a nonnegative, continuous function. For f €
C([0,1]), we define the weighted supremum norm by

[fllw = sup {w(z)[f(z)[}
0<z<1

If w(z) >0 for 0 < z < 1, show that || - || is @ norm on C([0,1]). If w(z) > 0 for

0 <z <1, show that || - ||, is equivalent to the usual sup-norm, corresponding to
w = 1. (See Definition 5.21 for the definition of equivalent norms.) Show that the
norm || - ||, corresponding to w(z) = z is not equivalent to the usual sup-norm. Is

the space C([0,1]) equipped with the weighted norm || - ||, a Banach space?

Exercise 2.10 Let Co(R") be the closure of the space C.(R"™) of continuous, com-
pactly supported functions with respect to the uniform norm. Prove that Co(R™)
is the space of continuous functions that vanish at infinity.
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Exercise 2.11 Suppose f, € C([0,1]) is a monotone decreasing sequence that
converges pointwise to f € C([0,1]). Prove that f,, converges uniformly to f. This
result is called Dini’s monotone convergence theorem.

Exercise 2.12 Let {f, € C([0,1]) | n € N} be equicontinuous. If f,, — f point-
wise, prove that f is continuous.

Exercise 2.13 Consider the scalar initial value problem,

u(t) = fu(t)|,
u(0) = 0.

Show that the solution is unique if o > 1, but not if 0 < a < 1.
Exercise 2.14 Suppose that f(t,u) is a continuous function f : R? — R such that
|f(t,u) — f(t,v)] < K|u—v| for all t,u,v € R.
Also suppose that
M =sup{|f(t,uo)| | [t —to| <T}.
Prove that the solution u(t) of the initial value problem
u=f(t,u), u(to) = uo
satisfies the estimate
|u(t) — uo| < MTeKT for [t —to| < T.
Explicitly check this estimate for the linear initial value problem

u = Ku, u(to) = uo-



